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1. Introduction

The Foundations of Programming Languages course introduces the formal foundations of pro-
gramming languages and the techniques and methods involved. The learning objective is to be
able to apply most of the techniques.

Rather than dealing with syntax-based problems, such as lexing and parsing programs, the
course is mainly concerned with the meaning of programs. So the main question is, how to
define, represent, and reason about the meaning of programs. Of course, before such a semantics
of the language can be defined, the syntax has to be specified (which we will do most of the time
by using context-free grammars and additional side conditions). To specify the semantics we
will learn several methods and also look at the connections between them.

But before we think about the semantics, we need to think about the language: Which program-
ming language should we consider?

When classifying programming languages, several characteristics can be considered.

Programming Paradigms. There are two main classes of programming paradigms (and there
also exist languages that combine them, such as Scala which is a multiparadigm language):

• Imperative programming languages: Languages that focus on how to execute tasks (e.g.,
C, C++, Python, Java). Object-oriented languages (C++,Java, etc.) are usually classified
as a subclass of the imperative languages.

• Declarative programming languages: Languages that focus on what the program is sup-
posed to compute. The main subclasses of declarative programming languages are logical
programming languages (e.g. Prolog) and functional programming languages (e.g. Haskell,
ML).

Level of Abstraction. Another classification is the level of abstraction:

• Machine languages: Low level languages closely associated with hardware (e.g.assembly).

• High-level languages: Languages that provide greater abstraction from the hardware (e.g.,
Haskell, Python, Java).

• Mid-level Languages: Languages that combine high-level abstractions with low-level
capabilities (e.g., C).

Scope of Languages. It is also possible to classify languages according to their scope:
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1. Introduction

• General-purpose languages: Languages designed to be used for a wide range of program-
ming tasks (e.g. Haskell, Python, C, Java, . . . ).

• Domain-specific languages: Languages that are tailored to specific application domains
and offer specialised features to facilitate tasks within that context (e.g. MATLAB for
mathematical computations).

Computational Power We also can consider the computational power of languages:
• Turing completeness: Languages that can perform any computation that can be described

algorithmically (e.g.,JavaScript, C).
• Non Turing complete languages: Languages that are limited in their computational capa-

bilities (e.g., simply typed lambda calculus, some domain-specific languages, etc.).
However, all modern programming languages have a rich syntax and thus lead to a very complex
semantics, which means that they are out of scope for explaining the basic concepts of semantics
and also for reasoning about them (there are research projects doing this for full languages).
Therefore, we will look for much more basic computational models, i.e. basic models that
describe computation. These include
Turing Machine: Alan Turing’s model of computation which will mainly be used to establish a

notion of computability.
WHILE Language: A very simple imperative language that has variables, assignment, if-then-

else, and while loops. However, its computational power is the same as that of Turing
machines. So it can be considered as a core language of imperative languages. We will
use the WHILE language to explain different styles of semantics.

Lambda Calculus: A model where functions and function applications are used to build pro-
grams. It can be seen as a core language of functional programming. Besides different
evaluation strategies which model different categories of functional programming lan-
guages, we will discuss polymorphic typing after extending the calculus to make it more
handy to program.

1.1. Outline

We start with a short introduction to computability, in particular we define Turing computability
and recall the definition of a Turing machine in Chapter 2. The chapter ends with an explanation
of the Church-Turing thesis. In Chapter 3 we will introduce the lambda calculus and different
evaluation strategies for it. In Chapter 4 extensions of the lambda calculus are introduced,
i.e. these languages are better suited as core languages of functional programming languages. In
Chapter 5 the polymorphic typing of a functional language is explained and two algorithms for
this static analysis are presented and analysed. In Chapter 6 different formalisms for defining
formal semantics are explained and illustrated for an imperative core language. We conclude in
Chapter 7. References and further reading on the various topics can be found in the corresponding
chapters.
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2. Computability

2.1. Intuitively Computable Functions

Every programmer has a sense of what a computer program can and cannot compute. However,
it seems to be quite difficult to formalize a notion of “computable” and to prove that something
can be computed or that something cannot be computed.
To give an intuition about computability, we first define a notion of computability that should
coincide with the notion of “intuitively computable” (we cannot prove the coincidence, since
“intuitively” cannot be captured formally). We then discuss the notion for some examples.

Definition 2.1.1 (Intuitive Computability). A function 𝑓 : ℕ𝑘
0 → ℕ0 is called computable iff

there exists an algorithm (a program in a modern programming language) that computes 𝑓 ,
i.e. on input (𝑛1, . . . , 𝑛𝑘) ∈ ℕ𝑘

0 the program terminates after a finite number of steps and returns
𝑓 (𝑛1, . . . , 𝑛𝑘) as result. If 𝑓 is a partial function, then for all inputs (𝑛1, . . . , 𝑛𝑘) for which is 𝑓
is undefined, the algorithm should not terminate, but run forever.

Example 2.1.2. The algorithm with input 𝑛 ∈ ℕ0 and code

while true {skip};

computes the partial function 𝑓1 : ℕ0 → ℕ0 which is undefined for all inputs. (often written as
𝑓1(𝑥) = ⊥).
The algorithm with inputs 𝑛1, 𝑛2 ∈ ℕ0 and code:

result := 𝑛1 + 𝑛2;
return result ;

computes the function 𝑓2 : (ℕ0 ×ℕ0) → ℕ0 with 𝑓2(𝑥, 𝑦) = 𝑥 + 𝑦.

Example 2.1.3. The function

𝑓3(𝑛) =
{
1, if 𝑛 is a prefix of the digits of the decimal representation of 𝜋
0, otherwise

E.g. 𝑓3(31) = 1 and 𝑓3(314) = 1, but 𝑓3(2) = 0 and 𝑓3(315) = 0. The function 𝑓3 is computable,
since there are algorithms that can compute the first 𝑥 digits of 𝜋, a subsequent comparison of
the digits with the digits of 𝑛 is also easily implementable.
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2. Computability

Example 2.1.4. Consider the function

𝑓4(𝑛) =
{
1, if 𝑛 is a substring of the digits of the decimal representation of 𝜋
0, otherwise

There seems to be no obvious algorithm, and thus it is not clear whether 𝑓4 is computable. On
the other hand, if we knew that 𝜋 contains every sequence of numbers (an open problem), then
the algorithm would be trivial by returning 1 on each input, and thus 𝑓4 would definitely be
computable.

Example 2.1.5. For the function

𝑓5(𝑛) =


1, if the digits of the decimal representation of 𝜋 contains the substring 3𝑚

for some number 𝑚 ≥ 𝑛.
0, otherwise

computability seems to be as hard as for 𝑓4, but this is not true: Either there a fixed number 𝑚0,
such that 𝜋 contains all words 3𝑚 with 𝑚 ≤ 𝑚0 and no words 3𝑚 with 𝑚 > 𝑚0 or there is no
such number. For the first case, the algorithm to compute 𝑓5 is easy: if 𝑛 > 𝑚0, then return 0
else return 1. For the latter case 𝑓5(𝑛) = 1 holds for all 𝑛. So even though we do not know which
of the two algorithms computes 𝑓5, there exists an algorithm that computes 𝑓5 and thus we know
that 𝑓5 is computable.

The last example shows that we only have to show existence of an algorithm that computes 𝑓 ,
but that we do not need to construct the algorithm.

Example 2.1.6. The function

𝑓6(𝑛) =
{
1, if 𝑃 = 𝑁𝑃

0, if 𝑃 ≠ 𝑁𝑃

is computable, because either 𝑃 = 𝑁𝑃 holds (then 𝑓6(𝑛) = 1 for all 𝑛), or (𝑃 ≠ 𝑁𝑃) holds (then
𝑓6(𝑛) = 0 for all 𝑛). Again, we do not know which algorithm is the right one, but this does not
affect the computability of 𝑓6.

Let 𝑓 𝑟 be the function and 𝑟 be a real number

𝑓 𝑟 (𝑛) =
{
1, if 𝑛 is prefix of the digits of the decimal representation of 𝑟
0, otherwise

One might think, that 𝑓 𝑟 is computable for every real number 𝑟 (since as we have argued 𝑓 𝜋 is
computable. But there is a simple argument why this cannot be the case: The real numbers are
not countable, but the algorithms (or programs of a programming language) are countable. Thus
there are more functions 𝑓 𝑟 than algorithms and since one algorithm cannot be used for different
numbers 𝑟1 ≠ 𝑟2 (obviously there is prefix that distinguishes the digits of 𝑟1 and 𝑟2), there must
be functions 𝑓 𝑟 that cannot be computed.
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2.2. Turing Computability

· · · 𝑎1 𝑎2 𝑎3 · · · 𝑎𝑛 · · · tape consisting of cells
(unbounded to the left and to the right)

read-/write-head
(may move to the left or to the right)control unit

(finite states)

Figure 2.1.: Illustrating the Turing Machine

2.2. Turing Computability

We recall the Turing machine, which is a mathematical model for computation introduced in 1936
by the British computer scientist Alan Turing. An informal illustration of the Turing machine is
given in Fig. 2.1. Turing machines use an infinite tape as memory. The tape is divided into cells.
There is a read/write head which reads the content of the current cell (a symbol), the machine
calculates the next state, and writes a new symbol into the current cell, finally it can move the
head to the left or right direction by one cell.
The formal definition of Turing machines is as follows:

Definition 2.2.1 (Turing Machine). A Turing machine (TM) is a 7-tuple 𝑀 =

(𝑄, Σ, Γ, 𝛿, 𝑞0,□, 𝐹) where
• 𝑄 is a finite, non-empty set of states,
• Σ is a finite set of symbols, the input alphabet,
• Γ ⊃ Σ is a finite set of symbols, the tape alphabet,
• 𝛿 is the state transition function where in the case of a deterministic Turing machine (DTM),
𝛿 : (𝑄 × Γ) → (𝑄 × Γ × {𝐿, 𝑅, 𝑁}), and in case of a non-deterministic Turing machine
(NTM), 𝛿 : (𝑄 × Γ) → P(𝑄 × Γ × {𝐿, 𝑅, 𝑁}),

• 𝑞0 ∈ 𝑄 is the start state,
• □ ∈ Γ \ Σ is the blank symbol,
• 𝐹 ⊆ 𝑄 is the set of final states.

For a deterministic Turing machine, an entry 𝛿(𝑞, 𝑎) = (𝑞′, 𝑏, 𝑥) means that in state 𝑞, if the
content of the current cell is 𝑎, the next state will be 𝑞′, the content of the current cell will be
𝑏 and the read-/write-head moves into direction 𝑥 (which is left if 𝑥 = 𝐿, right if 𝑥 = 𝑅 and no
move if 𝑥 = 𝑁).
For a non-deterministic Turing machine the same holds if (𝑞′, 𝑏, 𝑥) ∈ 𝛿(𝑞, 𝑎), but it means,
that the TM can do this, but it can also do some other state transition in 𝛿(𝑞, 𝑎). It chooses
non-deterministically between the choices in 𝛿(𝑞, 𝑎).

Definition 2.2.2 (A configuration of a Turing machine). A configuration of a Turing machine is
a word 𝑤𝑞𝑤′ ∈ Γ∗𝑄Γ∗
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2. Computability

A configuration 𝑤𝑞𝑤′ means that the TM is in state 𝑞, the tape content is 𝑤𝑤′ and infinitely
many blank symbols left and right from 𝑤𝑤′, and the current head position is on the first symbol
of 𝑤′.
Initially the TM is in state 𝑞0 and the head is on the first symbol of the input word.

Definition 2.2.3 (Start-configuration of a TM). For input 𝑤, the start-configuration of a TM
𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞0,□, 𝐹) is 𝑞0𝑤.

The transition relation ⊢𝑀 of a TM 𝑀 is defined as a binary relation on configurations:

Definition 2.2.4 (Transition relation on configurations). Let 𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞0,□, 𝐹) be a TM.
The relation ⊢𝑀 is defined by the following cases (where 𝛿(𝑞, 𝑎) = (𝑞′, 𝑐, 𝑥) in case of an NTM
means (𝑞′, 𝑐, 𝑥) ∈ 𝛿(𝑞, 𝑎)):

1. 𝑤𝑞𝑤′ ⊬𝑀 if 𝑞 ∈ 𝐹 (no transition is possible for final states).
2. 𝑏1 · · · 𝑏𝑚𝑞𝑎1 · · · 𝑎𝑛 ⊢𝑀 𝑏1 · · · 𝑏𝑚𝑞′𝑐𝑎2 · · · 𝑎𝑛,

if 𝛿(𝑞, 𝑎1) = (𝑞′, 𝑐, 𝑁), 𝑚 ≥ 0, 𝑛 ≥ 1, 𝑞 ∉ 𝐹

3. 𝑏1 · · · 𝑏𝑚𝑞𝑎1 · · · 𝑎𝑛 ⊢𝑀 𝑏1 · · · 𝑏𝑚−1𝑞′𝑏𝑚𝑐𝑎2 · · · 𝑎𝑛,
if 𝛿(𝑞, 𝑎1) = (𝑞′, 𝑐, 𝐿), 𝑚 ≥ 1, 𝑛 ≥ 1, 𝑞 ∉ 𝐹

4. 𝑏1 · · · 𝑏𝑚𝑞𝑎1 · · · 𝑎𝑛 ⊢𝑀 𝑏1 · · · 𝑏𝑚𝑐𝑎2𝑞′𝑎3 · · · 𝑎𝑛,
if 𝛿(𝑞, 𝑎1) = (𝑞′, 𝑐, 𝑅), 𝑚 ≥ 0, 𝑛 ≥ 2, 𝑞 ∉ 𝐹

5. 𝑏1 · · · 𝑏𝑚𝑞𝑎1 ⊢𝑀 𝑏1 · · · 𝑏𝑚𝑐𝑞′□, if 𝛿(𝑞, 𝑎1) = (𝑞′, 𝑐, 𝑅) and 𝑚 ≥ 0, 𝑞 ∉ 𝐹

6. 𝑞𝑎1 · · · 𝑎𝑛 ⊢𝑀 𝑞′□𝑐𝑎2 · · · 𝑎𝑛, if 𝛿(𝑞, 𝑎1) = (𝑞′, 𝑐, 𝐿) and 𝑛 ≥ 1, 𝑞 ∉ 𝐹

Let ⊢𝑖
𝑀

be the 𝑖-fold application of ⊢𝑀 and ⊢∗
𝑀

the reflexive-transitive closure of ⊢𝑀 . We omit
the index 𝑀 in ⊢𝑀 and write ⊢ is 𝑀 is clear from the context.

We explain the different cases: Item 1 prohibits to proceed if the TM has reached a final state.
Items 2 to 4 are standard cases where the read-write-head does not move, moves to the left,
moves to the right. Item 5 covers the case, the TM has not discovered the symbols right from the
current one, and now moves to the right. Then a new blank symbol is added to the configuration.
Item 6 is the symmetric case for the left end of the tape.

Example 2.2.5. The DTM 𝑀 = ({𝑞0, 𝑞1, 𝑞2, 𝑞3}, {0, 1}, {0, 1,□}, 𝛿, 𝑞0,□, {𝑞3}) with

𝛿(𝑞0, 0) = (𝑞0, 0, 𝑅) 𝛿(𝑞0, 1) = (𝑞0, 1, 𝑅) 𝛿(𝑞0,□) = (𝑞1,□, 𝐿)
𝛿(𝑞1, 0) = (𝑞2, 1, 𝐿) 𝛿(𝑞1, 1) = (𝑞1, 0, 𝐿) 𝛿(𝑞1,□) = (𝑞3, 1, 𝑁)
𝛿(𝑞2, 0) = (𝑞2, 0, 𝐿) 𝛿(𝑞2, 1) = (𝑞2, 1, 𝐿) 𝛿(𝑞2,□) = (𝑞3,□, 𝑅)
𝛿(𝑞3, 0) = (𝑞3, 0, 𝑁) 𝛿(𝑞3, 1) = (𝑞3, 1, 𝑁) 𝛿(𝑞3,□) = (𝑞3,□, 𝑁)

interprets its input 𝑤 ∈ {0, 1}∗ as binary number and add 1 to it. In start state 𝑞0 the TM moves
its head to the right end of input (until it detects the blank symbol □), then it changes its state
to 𝑞1. In state 𝑞1 it tries to add 1. If there is no carryover, it switches to state 𝑞2 and moves its
head to the left until it reaches the blank symbol and accept in state 𝑞3. If there is a carryover of
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2.2. Turing Computability

1 then it has to be added to the next digit. The DTM remains in state 𝑞1 and moves its head to
the left and so on. If the carryover remains also after reading the whole number (from right to
left, for instance for input 1111), then an new digit is created by left from the first position by the
transition 𝛿(𝑞1,□) = (𝑞3, 1, 𝑁) and the DTM accepts in 𝑞3.
As an example, wir consider the input 0011. The execution of the TM is as follows:
𝑞00011 ⊢ 0𝑞0011 ⊢ 00𝑞011 ⊢ 001𝑞01 ⊢ 0011𝑞0□ ⊢ 001𝑞11□ ⊢ 00𝑞110□ ⊢ 0𝑞1000□ ⊢
𝑞20100□ ⊢ 𝑞2□0100□ ⊢ □𝑞30100□

While one can define the language accepted by a TM, we use the acceptance of a TM to define
computability of functions on natural numbers, and also computability of functions on words
over the input alphabet.

Definition 2.2.6. Let bin (𝑛) be the binary representation of number 𝑛 ∈ ℕ0. A function
𝑓 : ℕ𝑘

0 → ℕ0 is called Turing computable, if there exists a DTM 𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞0,□, 𝐹) such
that for all 𝑛1, . . . , 𝑛𝑘 , 𝑚 ∈ ℕ0:

𝑓 (𝑛1, . . . , 𝑛𝑘) = 𝑚 iff 𝑞0bin (𝑛1)# . . .#bin (𝑛𝑘) ⊢∗ □ . . .□𝑞 𝑓 bin (𝑚)□ . . .□ with 𝑞 𝑓 ∈ 𝐹.

A function 𝑓 : Σ∗ → Σ∗ is called Turing computable, if there exists a DTM 𝑀 =

(𝑄, Σ, Γ, 𝛿, 𝑞0,□, 𝐹) such that for all 𝑢, 𝑣 ∈ Σ∗:

𝑓 (𝑢) = 𝑣 iff 𝑞0𝑢 ⊢∗ □ . . .□𝑞 𝑓 𝑣□ . . .□ with 𝑞 𝑓 ∈ 𝐹.

If 𝑓 (𝑛1, . . . , 𝑛𝑘) is undefined (and 𝑓 is a partial function), the TM may loop. Moreover, we can
assume that this is always the case, by constructing an according TM from a given one.

Example 2.2.7. The successor function 𝑓 (𝑥) = 𝑥 + 1 for all 𝑥 ∈ ℕ0 is Turing computable. We
defined the corresponding TM already in Example 2.2.5.

Example 2.2.8. The identity 𝑓 (𝑥) = 𝑥 for all 𝑥 ∈ ℕ0 ist Turing computable, since for DTM 𝑀 =

({𝑞0}, {0, 1,#}, {0, 1,#□}, 𝛿, 𝑞0,□, {𝑞0}) with 𝛿(𝑞0, 𝑎) = (𝑞0, 𝑎, 𝑁) for all 𝑎 ∈ {0, 1,#,□},
we have 𝑞0bin (𝑛) ⊢∗ 𝑞0bin (𝑛) for all 𝑛 ∈ ℕ0.
The function 𝑓 (𝑥) = ⊥ which is undefined for every input is Turing computable, since 𝑀 =

({𝑞0}, {0, 1,#}, {0, 1,#,□}, 𝛿, 𝑞0,□, ∅) with 𝛿(𝑞0, 𝑎) = (𝑞0, 𝑎, 𝑁) loops for every input and
never reaches a final state.

Remark 2.2.9. We also could have used multitape Turing machines which have 𝑘-tapes each of
them with there own read-write-head. The notion of computability, however, remains the same,
since single tape TMs can simulate multitape TMs (and vice versa).

Let us recall the important result, that not all functions on natural numbers are computable.
Turing machines and words can be encoded as numbers (usally called Gödel numbers).
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2. Computability

Let 𝑓 be a function that gets a number, and checks whether the number is a valid encoding of
a tuple consisting of Turing machine 𝑀 and a word 𝑤 and returns 1 if the TM holds on this
configuration and 0 otherwise.

Let 𝑓 ′ be a function that gets a number, and checks whether the number is a valid encoding of
a tuple consisting of Turing machine 𝑀 and a word 𝑤 and returns 1 if the TM holds on this
configuration, and is undefined otherwise.

Then 𝑓 is not Turing computable, because it is equivalent to solve the halting problem for Turing
machines which is undecidable. The function 𝑓 ′ is Turing computable, because 𝑓 ′ can be
computed by a Turing machine, by simulating 𝑀 on word 𝑤.

2.3. The Church-Turing Thesis

Besides Turing and the definition of Turing computability, also other famous computer scientists
and mathematicians have attempted to answer the question what can be computed and what
cannot be computed. A lot of research has been done in the 1930s. Among them are Kurt Gödel
and Jacques Herbrand (defining the class of general recursive functions) and Alonzo Church and
Stephen Kleene (defining 𝜆-definable functions). As a remarkable result it was shown, that all
of the formalisms were shown to be equivalent, i.e. they define the same class of functions.

This lead to the Church-Turing thesis stating that the class of intuitively computable functions is
the same as Turing computable functions.

Church-Turing Thesis: The class of Turing computable functions is identical to
the class of intuitively computable functions.

The thesis cannot be proved, since there is no formal definition of “intuitively computable”.

The thesis however, is supported by showing Turing completeness of other formalisms:

Definition 2.3.1 (Turing completeness). A formalism (a programming language, a cellular
automaton, an instruction set of a computer, a rewrite system etc.) is called Turing complete iff
it can simulate a Turing machine. That means every Turing computable function can also be
computed by the formalism.

Surprisingly, a lot of of formalisms were shown to be Turing complete and thus they can be
replaced by Turing computability in the Church-Turing thesis – since they all compute the same
class of functions.

Among them are all modern programming languages, the lambda-definable functions, the general
recursive functions, WHILE-programs, GOTO-programs, the RAM-model, etc. (the proofs can
be found in introductionary books on computability theory).

You may convince yourself that your favourite programming language is Turing complete by
programming a simulation of Turing machines.
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2.4. Conclusion and References

2.4. Conclusion and References

Starting from a notion of intuitive computability, we recalled Turing machines and Turing
computability. A lot of models are Turing complete and thus the power of Turing computability
also holds for those models. The Church-Turing thesis states that all these notions of computability
are exactly the intuitively computable functions. In conclusion, it makes sense to a consider
foundational models and their semantics as a core of real programming languages, as long as the
computability is not weakened in the models (or there is a good reason to do so). In the next
chapter we will consider the Turing complete formalism of the (untyped) lambda calculus.
The presentation of intuitive computability including some examples and the presentation of Tur-
ing machines is oriented on (Schöning, 2008). Introductionary books covering Turing machines,
computability and the Church-Turing thesis are for instance (Hopcroft et al., 2006; Sipser, 2013).
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3. The Lambda Calculus

In this chapter we will introduce the untyped lambda calculus which is a foundational model of
computation and the core of functional programming languages. However, lambda notation is
used in other settings too. For instance, several non-functional programming languages like Java
or Python have introduced functional concepts and lambda expressions. Also in mathematics,
lambda notation is used to represent functions. We will also do this in other chapters, for instance,
when introducing the denotational semantics of an imperative programming language.
However, our first goal is to introduce the syntax and the operational semantics of the lambda
calculus with different variants that match non-strict functional programming languages like
Haskell and strict functional languages like ML and F#.
For introducing the lambda calculus, we first present the syntax and then present different
evaluation strategies which thus define different operational semantics.

3.1. Syntax of the Lambda Calculus

The lambda calculus was introduced by Alonzo Church in the 1930s (Church, 1941). The syntax
is quite simplistic:

Definition 3.1.1. Expressions of the lambda calculus are built according to the following gram-
mar (starting with non-terminal Expr):

Expr ::= 𝑉 | 𝜆𝑉.Expr | (Expr Expr)

Here 𝑉 is a non-terminal for variables (of a countable infinite set of variables, usually denoted
as 𝑥, 𝑦, 𝑧, . . .).

An expression of the form 𝜆𝑥.𝑠 is called an abstraction. The lambda binder 𝜆𝑥 binds the variable
𝑥 in the subexpression 𝑠 (which is called the body of the abstraction), i.e. the scope of 𝑥 is 𝑠.
An abstraction represents an anonymous function, i.e. a function that does not have a name. For
instance, the (non anonymous) identity function 𝑖𝑑 (𝑥) = 𝑥 is represented in the lambda calculus
by the abstraction 𝜆𝑥.𝑥.
The construct (𝑠 𝑡) is called an application. Applications allow applying functions to arguments.
The expression in function position 𝑠 and the argument 𝑡 are arbitrary expressions. For example,
the argument may again be an abstraction. That is why we also speak of the higher-order lambda
calculus, since functions may have functions as arguments or as result. For example, one may
apply the identity function to the identity function as ((𝜆𝑥.𝑥) (𝜆𝑥.𝑥))

D. Sabel, Programming Language Foundations,Winter 2024/25 Last update: January 8, 2025



3.1. Syntax of the Lambda Calculus

Convention 3.1.2. To omit parentheses, we use the following associativities and priorities:
Application is left-associative, i.e. 𝑠 𝑡 𝑟 means ((𝑠 𝑡) 𝑟) and not (𝑠 (𝑡 𝑟)). The body of an
abstraction extends as far as possible. For instance, 𝜆𝑥.𝑠 𝑡 means 𝜆𝑥.(𝑠 𝑡) and not ((𝜆𝑥.𝑠) 𝑡). As
short-hand notation we write 𝜆𝑥1, . . . , 𝑥𝑛.𝑡 for the nested abstractions 𝜆𝑥1.(𝜆𝑥2. . . . (𝜆𝑥𝑛.𝑡) . . .).

Example 3.1.3. Some prominent expressions of the lambda calculus are:

𝐼 := 𝜆𝑥.𝑥

𝐾 := 𝜆𝑥.𝜆𝑦.𝑥

𝐾2 := 𝜆𝑥.𝜆𝑦.𝑦

Ω := (𝜆𝑥.(𝑥 𝑥)) (𝜆𝑥.(𝑥 𝑥))
𝑌 := 𝜆 𝑓 .(𝜆𝑥.( 𝑓 (𝑥 𝑥))) (𝜆𝑥.( 𝑓 (𝑥 𝑥)))
𝑍 := 𝜆 𝑓 .(𝜆𝑥.( 𝑓 𝜆𝑧.(𝑥 𝑥) 𝑧)) (𝜆𝑥.( 𝑓 𝜆𝑧.(𝑥 𝑥) 𝑧))
𝑆 := 𝜆𝑥.𝜆𝑦.𝜆𝑧.(𝑥 𝑧) (𝑦 𝑧)

The expression 𝐼 is the identity function. The expressions 𝐾 and 𝐾2 take two arguments
and 𝐾 projects to the first one, while 𝐾2 projects to the second one. The expression Ω is a
non-terminating expression (we will see this later). The expression 𝑌 is a so-called fixpoint-
combinator, which means that 𝑌 𝑓 is (semantically) equal to 𝑓 (𝑌 𝑓 ). For 𝑌 this will hold for
call-by-name evaluation, while for call-by-value evaluation, 𝑍 is a fixpoint-combinator. The
expression 𝑆 is the so-called 𝑆-combinator of the so-called SKI-calculus (which only has 𝑆, 𝐾
and 𝐼).

We define functions FV and BV that compute the sets of free variables and bound variables for
a lambda expression.

FV (𝑥) = 𝑥 BV (𝑥) = ∅
FV (𝜆𝑥.𝑠) = FV (𝑠) \ {𝑥} BV (𝜆𝑥.𝑠) = BV (𝑠) ∪ {𝑥}
FV (𝑠 𝑡) = FV (𝑠) ∪ FV (𝑡) BV (𝑠 𝑡) = BV (𝑠) ∪ BV (𝑡)

Example 3.1.4. For the expression 𝑠 = (𝜆𝑥.𝜆𝑦.𝜆𝑤.(𝑥 𝑦 𝑧)) 𝑥, computing the free and bound
variables results in FV (𝑠) = {𝑥, 𝑧} and BV (𝑠) = {𝑥, 𝑦, 𝑤}.

IfFV (𝑡) = ∅, then we say that 𝑡 is closed or a program, otherwise 𝑡 is called open. An occurrence
of a variable 𝑥 in an expression 𝑠 is called bound if it is in the scope of a binder 𝜆𝑥, otherwise it
is called free.

Example 3.1.5. Let 𝑠 = (𝜆𝑥.𝜆𝑦.𝜆𝑤.(𝑥 𝑦 𝑧)) 𝑥. We label the occurrences of variables (not at the
binders): (𝜆𝑥.𝜆𝑦.𝜆𝑤.( 𝑥︸︷︷︸

1

𝑦︸︷︷︸
2

𝑧︸︷︷︸
3

)) 𝑥︸︷︷︸
4

. The occurrence of 𝑥 labeled with 1 and the

occurrence of 𝑦 labeled with 2 are bound occurrences. The occurrence of 𝑧 labeled with 3 and
the occurrence of 𝑥 labeled with 4 are free occurrences.

Exercise 3.1.6. Let 𝑠 = (𝜆𝑦.(𝑦 𝑥)) (𝜆𝑥.(𝑥 𝑦)) (𝜆𝑧.(𝑧 𝑥 𝑦)). Compute FV (𝑠) and BV (𝑠). Which
occurrences of 𝑥, 𝑦, 𝑧 are free, which are bound?
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3. The Lambda Calculus

Definition 3.1.7 (Capture-Avoiding Substitution). We write 𝑠[𝑡/𝑥] for the expression 𝑠 where
all free occurrences of variable 𝑥 are replaced by expression 𝑡. To avoid name and capturing
conflicts, we assume that BV (𝑠) ∩ FV (𝑡) = ∅ holds.
With this assumption, substitution can be defined inductively with the following equations:

𝑥 [𝑡/𝑥] = 𝑡

𝑦[𝑡/𝑥] = 𝑦, if 𝑥 ≠ 𝑦

(𝜆𝑦.𝑠) [𝑡/𝑥] =

{
𝜆𝑦.(𝑠[𝑡/𝑥]) if 𝑥 ≠ 𝑦
𝜆𝑦.𝑠 if 𝑥 = 𝑦

(𝑠1 𝑠2) [𝑡/𝑥] = (𝑠1 [𝑡/𝑥] 𝑠2 [𝑡/𝑥])
(𝑠1 𝑠2) [𝑡/𝑥] = (𝑠1 [𝑡/𝑥] 𝑠2 [𝑡/𝑥])

For example, (𝜆𝑥.𝑧 𝑥) [(𝜆𝑦.𝑦)/𝑧] results in (𝜆𝑥.((𝜆𝑦.𝑦) 𝑥)). Note that without the side condition,
free variables could be captured by substitution, for instance, consider (𝜆𝑥.𝑧 𝑥) [𝜆𝑦.𝑥/𝑧]: this
would result in 𝜆𝑥.((𝜆𝑦.𝑥) 𝑥) such that the free occurrence of 𝑥 in 𝜆𝑦.𝑥 would be captured (and
thus become a bound occurrence). However, we forbid this case.

Exercise 3.1.8. For 𝑠 = (𝑥 𝑧) (𝜆𝑦.𝑥) and 𝑡 = 𝜆𝑤.(𝑤 𝑤), compute 𝑠[𝑡/𝑥].

Contexts 𝐶 are expressions where one subexpression is replaced by the context hole [·]. Thus,
they are constructed according to the following grammar with start symbol Ctxt (where Expr

are generated as defined in Definition 3.1.1):

Ctxt ::= [·] | 𝜆𝑉.Ctxt | (Ctxt Expr) | (Expr Ctxt)

Replacing the hole of an expression by an expression results in a new expression. This kind of
substituting the hole of 𝐶 by expression 𝑠 is denoted as 𝐶 [𝑠] and it may capture variables of 𝑠.
For instance, let 𝐶 = 𝜆𝑥.[·], then 𝐶 [𝜆𝑦.𝑥] is the expression 𝜆𝑥.(𝜆𝑦.𝑥). The free occurrence of 𝑥
in 𝜆𝑦.𝑥 is captured by the substitution.

3.2. 𝛼-Renaming and 𝛽-Reduction

Next we define 𝛼-renaming. A single 𝛼-renaming-step is of the form:

𝐶 [𝜆𝑥.𝑠] 𝛼−→ 𝐶 [𝜆𝑦.𝑠[𝑦/𝑥]] if 𝑦 ∉ BV (𝐶 [𝜆𝑥.𝑠]) ∪ FV (𝐶 [𝜆𝑥.𝑠])

The reflexive-transitive closure of
𝛼−→ ∪ 𝛼←− is called 𝛼-equivalence and written 𝑠 =𝛼 𝑡. We do

not distinguish 𝛼-equivalent expressions (and thus write 𝑠 = 𝑡 also for 𝛼-equivalent expressions),
but to avoid naming conflicts, we assume the following convention:

Definition 3.2.1 (Distinct Variable Convention (DVC)). In any expression 𝑠, bound and free
variables are disjoint, i.e. BV (𝑠) ∩ 𝐹𝑉 (𝑠) = ∅, and all variables on binders are pairwise
distinct.
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3.2. 𝛼-Renaming and 𝛽-Reduction

The convention can be obeyed by using 𝛼-renamings (use new variable names and rename all
binders using 𝛼-renaming).

Example 3.2.2. The expression (𝑦 (𝜆𝑦.((𝜆𝑥.(𝑥 𝜆𝑥.𝑥)) (𝑥 𝑦)))) violates the DVC, since 𝑥 and 𝑦
occur free and bound, and 𝑥 occurs twice at a binder. We use 𝛼-renamings to satisfy the DVC:

(𝑦 (𝜆𝑦.((𝜆𝑥.(𝑥 𝜆𝑥.𝑥)) (𝑥 𝑦))))
𝛼−→ (𝑦 (𝜆𝑦1.((𝜆𝑥.(𝑥 𝜆𝑥.𝑥)) (𝑥 𝑦1))))
𝛼−→ (𝑦 (𝜆𝑦1.((𝜆𝑥1.(𝑥1 𝜆𝑥.𝑥)) (𝑥 𝑦1))))
𝛼−→ (𝑦 (𝜆𝑦1.((𝜆𝑥1.(𝑥1 𝜆𝑥2.𝑥2)) (𝑥 𝑦1))))

Exercise 3.2.3. Let 𝑠 = ((𝜆𝑥.(𝑥 𝜆𝑦.(𝑥 𝑧) (𝑦 𝑥))) (𝜆𝑧.𝑦)). Perform 𝛼-renamings for 𝑠, such that
the resulting expression satisfies the DVC.

Now substitution 𝑠[𝑡/𝑥] can be performed in any case:

Definition 3.2.4 (Substitution). If BV (𝑠) ∩ FV (𝑡) = ∅, then 𝑠[𝑡/𝑥] is defined as in Defini-
tion 3.1.7. Otherwise, let 𝑠′ =𝛼 𝑠 such that 𝑠′ fulfills the DVC. Then BV (𝑠′) ∩FV (𝑡) = ∅ holds.
Then let 𝑠[𝑡/𝑥] = 𝑠′ [𝑡/𝑥] using Definition 3.1.7 for 𝑠′ [𝑡/𝑥].

The classical reduction rule of the lambda calculus is 𝛽-reduction: it evaluates the application of
a function to an argument:

Definition 3.2.5. The (direct) (𝛽)-reduction is defined as

(𝛽) (𝜆𝑥.𝑠) 𝑡
𝛽
−→ 𝑠[𝑡/𝑥]

If 𝑟1
𝛽
−→ 𝑟2, the we say 𝑟1 directly reduces to 𝑟2.

The contextual closure of 𝛽-reduction is
𝐶,𝛽
−−−→ defined as

𝐶 [𝑠]
𝐶,𝛽
−−−→ 𝐶 [𝑡] iff 𝐶 is a context and 𝑠

𝛽
−→ 𝑡.

Example 3.2.6. Expression (𝜆𝑥.𝑥) (𝜆𝑦.𝑦) can be 𝛽-reduced:

(𝜆𝑥.𝑥) (𝜆𝑦.𝑦)
𝛽
−→ 𝑥 [(𝜆𝑦.𝑦)/𝑥] = 𝜆𝑦.𝑦

Expression (𝜆𝑦.𝑦 𝑦 𝑦) (𝑥 𝑧) can also be 𝛽-reduced:

(𝜆𝑦.𝑦 𝑦 𝑦) (𝑥 𝑧)
𝛽
−→ (𝑦 𝑦 𝑦) [(𝑥 𝑧)/𝑦] = (𝑥 𝑧) (𝑥 𝑧) (𝑥 𝑧)

To obey the DVC after a 𝛽-reduction, one has to rename the resulting expression: consider the
expression (𝜆𝑥.(𝑥 𝑥)) (𝜆𝑦.𝑦). One 𝛽-reduction results in

(𝜆𝑥.(𝑥 𝑥)) (𝜆𝑦.𝑦)
𝛽
−→ (𝜆𝑦.𝑦) (𝜆𝑦.𝑦)
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3. The Lambda Calculus

But (𝜆𝑦.𝑦) (𝜆𝑦.𝑦) violates the DVC. With 𝛼-renaming we obtain (𝜆𝑦1.𝑦1) (𝜆𝑦2.𝑦2), which
satisfies the DVC.

For the evaluation of expressions, it is not sufficient to perform 𝛽-reductions on the top-level of
expressions, since e.g. the expression ((𝜆𝑥.𝑥) (𝜆𝑦.𝑦)) (𝜆𝑧.𝑧) could not be reduced. Thus

𝐶,𝛽
−−−→-

steps have to be used. However, as this is not deterministic, since for instance, the expression
((𝜆𝑥.𝑥 𝑥) ((𝜆𝑦.𝑦) (𝜆𝑧.𝑧))) has two positions, where a 𝛽-reduction is possible (the corresponding
subexpressions are called a redex (short form of reducible expression)):

• ((𝜆𝑥.𝑥 𝑥) ((𝜆𝑦.𝑦) (𝜆𝑧.𝑧))) → ((𝜆𝑦.𝑦) (𝜆𝑧.𝑧)) ((𝜆𝑦.𝑦) (𝜆𝑧.𝑧)) or
• ((𝜆𝑥.𝑥 𝑥) ((𝜆𝑦.𝑦) (𝜆𝑧.𝑧))) → ((𝜆𝑥.𝑥 𝑥) (𝜆𝑧.𝑧)).

Fixing the position where to reduce is also called a reduction strategy and we will fix it, when
defining the operational semantics of the lambda calculus. But before, we analyse arbitrary
𝛽-reductions at arbitrary positions.

3.3. Confluence and the Church-Rosser-Theorem

We define some notation: Let→ ⊆ (𝑀 × 𝑀) be a binary relation. We denote with
• ←→ the symmetric closure of→ (i.e. 𝑎 ←→ 𝑏 iff 𝑎 → 𝑏 or 𝑏 → 𝑎).

• 𝑖−→ the 𝑖-fold composition of→ defined by 𝑎
0−→ 𝑎 for all 𝑎 ∈ 𝑀 , and for 𝑖 > 0: 𝑎

𝑖−→ 𝑏, if
there exists 𝑏′ ∈ 𝑀 such that 𝑎 → 𝑏′ and 𝑏′

𝑖−1−−−→ 𝑏.
•

𝑖∨ 𝑗
−−→ is the union of the 𝑖-fold and the 𝑗-fold composition (i.e. 𝑎

𝑖∨ 𝑗
−−→ 𝑏 iff 𝑎

𝑖−→ 𝑏 or 𝑎
𝑗
−→ 𝑏).

In particular,
0∨1−−−→ is the reflexive-closure of→.

• ∗−→ the reflexive-transitive closure of→ (i.e. 𝑎
∗−→ 𝑏 iff there exists some 𝑖 ∈ ℕ0 such that

𝑎
𝑖−→ 𝑏).

• ∗←→ the reflexive-transitive closure of←→.
• +−→ the transitive closure of→ (i.e. 𝑎

+−→ 𝑏 iff there exists some 𝑖 ∈ ℕ such that 𝑎
𝑖−→ 𝑏).

The relation
𝐶,𝛽,∗
←−−→ is sometimes also called 𝛽-equivalence or also convertibility.

Definition 3.3.1. A binary relation→ ⊆ 𝑀 × 𝑀 has the diamond property iff whenever 𝑎 → 𝑏

and 𝑎 → 𝑐 there exists 𝑑 ∈ 𝑀 such that 𝑏 → 𝑑 and 𝑐 → 𝑑.

𝑎

�� ��
𝑏

��

𝑐

��
𝑑

Relation→ is confluent iff ∗−→ has the diamond property.
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3.3. Confluence and the Church-Rosser-Theorem

Lemma 3.3.2. If reduction relation→ is confluent, then 𝑎 ∗←→ 𝑏 implies ∃𝑐 : 𝑎 ∗−→ 𝑐 ∧ 𝑏 ∗−→ 𝑐

𝑎 oo
∗ //

∗
��

𝑏

∗
��

𝑐

Proof. By induction of the given sequence 𝑎
𝑖←→ 𝑏. If 𝑖 = 0, then 𝑎 = 𝑏 and the claim is obvious.

If 𝑖 > 0, then there exists 𝑎′ such that 𝑎 ←→ 𝑎′
𝑖−1←−→ 𝑏. The induction hypothesis gives us 𝑐′ with

𝑎′
∗−→ 𝑐′ and 𝑏

∗−→ 𝑐′.
𝑎 oo // 𝑎′ oo

𝑖−1 //

∗   

𝑏

∗��
𝑐′

We distinguish two cases:

• 𝑎 → 𝑎′: Then 𝑎 → 𝑎′
∗−→ 𝑐′ and thus 𝑎

∗−→ 𝑐′. Since also 𝑏
∗−→ 𝑐′, the claim holds for

𝑐 = 𝑐′.

• 𝑎′ → 𝑎: Then also 𝑎′
∗−→ 𝑎. Since→ is confluent,

∗−→ has the diamond property and thus
from 𝑎′

∗−→ 𝑎 and 𝑎′
∗−→ 𝑐′, we obtain 𝑑 with 𝑎

∗−→ 𝑑 and 𝑐′
∗−→ 𝑑. Since 𝑏

∗−→ 𝑐′
∗−→ 𝑑, the

claim holds for 𝑐 = 𝑑. We illustrate this case:

𝑎

∗
��

oo 𝑎′ oo
𝑖−1 //

∗   

𝑏

∗��
𝑑 𝑐′∗
oo

□

Lemma 3.3.3. Let→ be a binary relation and ∗−→ be its reflexive-transitive closure. If→ has
the diamond property, then ∗−→ has the diamond property.

Proof. The following (stronger claim) also holds: if 𝑎
𝑖−→ 𝑏 and 𝑎

𝑗
−→ 𝑐 then there exists 𝑑

with 𝑏
𝑖−→ 𝑑 and 𝑐

𝑗
−→ 𝑑. The claim can be shown by induction on the pair (𝑖, 𝑗) ordered

lexicographically and using the diamond property of→ and the following illustration.
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3. The Lambda Calculus

𝑎
//𝑖

��

𝑗

��

// //

�� ��

//

��

𝑐

��

��

//

��

//

�� ��

//

��// // //

��

//

��

//

�� ��

//

��
𝑏 // // // 𝑑

The inner square diagrams follow from the diamond property of→. Since they are squares, there
is a one-to-one correspondence w.r.t. the numbers of steps. □

We define some notation for different closures of 𝛽-reduction:

Definition 3.3.4. With 𝑠
𝐶,𝛽
←−→ 𝑡 we denote the symmetric closure of

𝐶,𝛽
−−−→ (i.e. 𝑠

𝐶,𝛽
←−→ 𝑡 iff 𝑠

𝐶,𝛽
−−−→ 𝑡

or 𝑡
𝐶,𝛽
−−−→ 𝑠).

With 𝑠
𝐶,𝛽,∗
−−−−→ 𝑡 we denote the reflexive-transitive closure of

𝐶,𝛽
−−−→ With 𝑠

𝐶,𝛽,∗
←−−→ 𝑡 we denote the

reflexive-transitive closure of
𝐶,𝛽
←−→.

Remark 3.3.5. Note that
𝐶,𝛽
−−−→ does not have the diamond property:

(𝜆𝑥.𝑥 𝑥) ((𝜆𝑦.𝑦) (𝜆𝑧.𝑧))

ss ))
((𝜆𝑦1.𝑦1) (𝜆𝑧1.𝑧1)) ((𝜆𝑦.𝑦) (𝜆𝑧.𝑧)) (𝜆𝑥.𝑥 𝑥) (𝜆𝑧.𝑧)

The right expression can be reduced to (𝜆𝑧1.𝑧1) (𝜆𝑧.𝑧) However, the left expression
((𝜆𝑦1.𝑦1) (𝜆𝑧1.𝑧1)) ((𝜆𝑦.𝑦) (𝜆𝑧.𝑧)) can be reduced to (𝜆𝑧1.𝑧1) ((𝜆𝑦.𝑦) (𝜆𝑧.𝑧)) or
((𝜆𝑦1.𝑦1) (𝜆𝑧1.𝑧1)) (𝜆𝑧.𝑧) which are different.

Thus, for proving confluence of
𝛽
−→, we have to find another proof. The idea is to use another

reduction relation, called→1, which can do a bit more than
𝐶,𝛽
−−−→ or nothing, but not more than

𝐶,𝛽,∗
−−−−→, in particular

𝐶,𝛽,0∨1
−−−−−−−→ ⊆ →1 ⊆

𝐶,𝛽,∗
−−−−→ and

∗−→1 =
𝐶,𝛽,∗
−−−−→ will hold. Proving that

∗−→1 has
the diamond property, will then imply that

𝐶,𝛽,∗
−−−−→ has the diamond property. The idea of relation

→1 is to reduce an arbitrary number of parallel 𝛽-redexes in one step.

Definition 3.3.6 (Parallel Reduction →1). The relation →1 ⊆ (Expr × Expr) is inductively
defined by:
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3.3. Confluence and the Church-Rosser-Theorem

1. 𝑠→1 𝑠 for all expressions 𝑠.
2. if 𝑠1 →1 𝑠2 and 𝑡1 →1 𝑡2, then (𝑠1 𝑠2) →1 (𝑡1 𝑡2).
3. if 𝑠1 →1 𝑠2 and 𝑡1 →1 𝑡2, then ((𝜆𝑥.𝑠1) 𝑡1) →1 𝑠2 [𝑡2/𝑥].
4. if 𝑠→1 𝑡, then 𝜆𝑥.𝑠→1 𝜆𝑥.𝑡.

Lemma 3.3.7.
𝐶,𝛽
−−−→ ⊆ →1

Proof. Let 𝐶 [(𝜆𝑥.𝑠) 𝑡]
𝐶,𝛽
−−−→ 𝐶 [𝑠[𝑡/𝑥]]. We show 𝐶 [(𝜆𝑥.𝑠) 𝑡] →1 𝐶 [𝑠[𝑡/𝑥]] by structural

induction on 𝐶.
If 𝐶 is the empty context, then (𝜆𝑥.𝑠) 𝑡 →1 𝑠[𝑡/𝑥] by Definition 3.3.6, Item 3, since 𝑠→1 𝑠 and
𝑡 →1 𝑡 by Definition 3.3.6, Item 1.
For the induction step, we consider several cases where 𝐶 is not the empty context, and assume
as induction hypothesis that 𝐶′ [(𝜆𝑥.𝑠) 𝑡] →1 𝐶

′ [𝑠[𝑡/𝑥]] where 𝐶′ is a proper subcontext of
context 𝐶.

• If 𝐶 = (𝐶′ 𝑟), then 𝑟 →1 𝑟 by Definition 3.3.6, Item 1, 𝐶′ [(𝜆𝑥.𝑠) 𝑡] →1 𝐶
′ [𝑠[𝑡/𝑥]] by

the induction hypothesis and thus

𝐶 [(𝜆𝑥.𝑠) 𝑡] = (𝐶′ [(𝜆𝑥.𝑠) 𝑡] 𝑟) →1 (𝐶′ [𝑠[𝑡/𝑥]] 𝑟) = 𝐶 [𝑠[𝑡/𝑥]]

by Definition 3.3.6, Item 2.
• The case 𝐶 = (𝑟 𝐶′) is completely analogous to the previous one.
• If 𝐶 = 𝜆𝑦.𝐶′, then 𝐶′ [(𝜆𝑥.𝑠) 𝑡] →1 𝐶

′ [𝑠[𝑡/𝑥]] by the induction hypothesis and thus

𝐶 [(𝜆𝑥.𝑠) 𝑡] = 𝜆𝑦.𝐶′ [(𝜆𝑥.𝑠) 𝑡] →1 𝜆𝑦.𝐶
′ [𝑠[𝑡/𝑥]] = 𝐶 [𝑠[𝑡/𝑥]]

by Definition 3.3.6, Item 4. □

Example 3.3.8. We consider the expressions from Remark 3.3.5.

(𝜆𝑥.𝑥 𝑥) ((𝜆𝑦.𝑦) (𝜆𝑧.𝑧)) →1 ((𝜆𝑦1.𝑦1) (𝜆𝑧1.𝑧1)) ((𝜆𝑦.𝑦) (𝜆𝑧.𝑧))

and
(𝜆𝑥.𝑥 𝑥) ((𝜆𝑦.𝑦) (𝜆𝑧.𝑧)) →1 (𝜆𝑥.𝑥 𝑥) (𝜆𝑧.𝑧),

since both reductions are also
𝐶,𝛽
−−−→-reductions.

For (𝜆𝑥.𝑥 𝑥) (𝜆𝑧.𝑧) ,we also have (𝜆𝑥.𝑥 𝑥) (𝜆𝑧.𝑧) →1 (𝜆𝑧1.𝑧1) (𝜆𝑧.𝑧)
For ((𝜆𝑦1.𝑦1) (𝜆𝑧1.𝑧1)) ((𝜆𝑦.𝑦) (𝜆𝑧.𝑧)), we can reduce the parallel 𝛽-redexes in on step, which
also results in (𝜆𝑧1.𝑧1) (𝜆𝑧.𝑧)

Lemma 3.3.9. If 𝑡 →1 𝑢 then for all 𝑠: 𝑠[𝑡/𝑥] →1 𝑠[𝑢/𝑥].

Proof. By structural induction on 𝑠.
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• If 𝑠 = 𝑥 then 𝑠[𝑡/𝑥] = 𝑡 →1 𝑢 = 𝑠[𝑢/𝑥].
• If 𝑠 = 𝑦 ≠ 𝑥, then 𝑠[𝑡/𝑥] = 𝑦 = 𝑠[𝑢/𝑥] and the claim holds, since 𝑟 →1 𝑟 for all 𝑟.
• If 𝑠 = (𝑠1 𝑠2) then by the induction hypothesis, we have 𝑠𝑖 [𝑡/𝑥] →1 𝑠𝑖 [𝑢/𝑥] for 𝑖 = 1, 2.

Then 𝑠[𝑡/𝑥] = (𝑠1 𝑠2) [𝑡/𝑥] = (𝑠1 [𝑡/𝑥] 𝑠2 [𝑡/𝑥]) →1 (𝑠1 [𝑢/𝑥] 𝑠2 [𝑢/𝑥]) = (𝑠1 𝑠2) [𝑢/𝑥] =
𝑠[𝑢/𝑥].

• If 𝑠 = 𝜆𝑥.𝑠′, then 𝑠[𝑡/𝑥] = 𝜆𝑥.𝑠′ = 𝑠[𝑢/𝑥] the claim holds, since 𝑟 →1 𝑟 for all 𝑟.
• If 𝑠 = 𝜆𝑦.𝑠′, with 𝑦 ≠ 𝑥, then 𝑠[𝑡/𝑥] = 𝜆𝑦.𝑠′ [𝑡/𝑥] →1 𝜆𝑦.𝑠

′ [𝑢/𝑥] by the induction
hypothesis and since 𝑡 →1 𝑢. Since 𝑠[𝑢/𝑥] = 𝜆𝑦.𝑠′ [𝑢/𝑥], the claim holds. □

Lemma 3.3.10. If 𝑠→1 𝑟 and 𝑡 →1 𝑢 then 𝑠[𝑡/𝑥] →1 𝑟 [𝑢/𝑥].

Proof. This can be shown by induction on 𝑠→1 𝑟 . For the base case 𝑠 = 𝑟 the claim follows by
Lemma 3.3.9. For the induction step, we consider several cases:

• If 𝑠 = (𝑠1 𝑠2) →1 (𝑟1 𝑟2) = 𝑟 with 𝑠𝑖 →1 𝑟𝑖 for 𝑖 = 1, 2, the induction hypothesis shows
𝑠𝑖 [𝑡/𝑥] →1 𝑟𝑖 [𝑢/𝑥] for 𝑖 = 1, 2 and thus (𝑠1 [𝑡/𝑥] 𝑠2 [𝑡/𝑥]) →1 (𝑟1 [𝑢/𝑥] 𝑟2 [𝑢/𝑥]). Since

𝑠[𝑡/𝑥] = (𝑠1 𝑠2) [𝑡/𝑥] = (𝑠1 [𝑡/𝑥] 𝑠2 [𝑡/𝑥]) →1 (𝑟1 [𝑢/𝑥] 𝑟2 [𝑢/𝑥]) = (𝑟1 𝑟2) [𝑢/𝑥] = 𝑟 [𝑢/𝑥],

the claim holds.
• If 𝑠 = (𝜆𝑦.𝑠1) 𝑠2 →1 𝑟1 [𝑟2/𝑦] with 𝑠1 →1 𝑟1 and 𝑠2 →1 𝑟2 and 𝑦 ≠ 𝑥, the

induction hypothesis shows 𝑠1 [𝑡/𝑥] →1 𝑟1 [𝑢/𝑥] and 𝑠2 [𝑡/𝑥] →1 𝑟2 [𝑢/𝑥]. Then
(𝜆𝑦.𝑠1 [𝑡/𝑥]) 𝑠2 [𝑡/𝑥] →1 𝑟1 [𝑢/𝑥] [𝑟2 [𝑢/𝑥]/𝑦]. Since

𝑠[𝑡/𝑥] = ((𝜆𝑦.𝑠1) 𝑠2) [𝑡/𝑥] =(𝜆𝑦.𝑠1 [𝑡/𝑥]) 𝑠2 [𝑡/𝑥]
→1 𝑟1 [𝑢/𝑥] [𝑟2 [𝑢/𝑥]/𝑦] = 𝑟1 [𝑟2/𝑦] [𝑢/𝑥] = 𝑟 [𝑢/𝑥],

the claim holds.
• If 𝑠 = (𝜆𝑥.𝑠1) 𝑠2 →1 𝑟1 [𝑟2/𝑥] with 𝑠1 →1 𝑟1 and 𝑠2 →1 𝑟2, then 𝑠[𝑡/𝑥] = (𝜆𝑥.𝑠1) 𝑠2 [𝑡/𝑥]

and 𝑟 [𝑢/𝑥] = 𝑟1 [𝑟2 [𝑢/𝑥]/𝑥]. The induction hypothesis shows that 𝑠2 [𝑡/𝑥] →1 𝑟2 [𝑢/𝑥]
and thus 𝑠[𝑡/𝑥] = (𝜆𝑥.𝑠1) 𝑠2 [𝑡/𝑥] →1 𝑟1 [𝑟2 [𝑢/𝑥]/𝑥] = 𝑟 [𝑢/𝑥].

• If 𝑠 = 𝜆𝑥.𝑠′ →1 𝜆𝑥.𝑟
′ = 𝑟 and 𝑠′ →1 𝑟

′. Then 𝑠[𝑡/𝑥] = 𝑠 and 𝑟 [𝑢/𝑥] = 𝑟 and the claim
holds.

• If 𝑠 = 𝜆𝑦.𝑠′ →1 𝜆𝑦.𝑟
′ = 𝑟 and 𝑠′ →1 𝑟

′ where 𝑥 ≠ 𝑦, then the induction hypothesis shows
𝑠′ [𝑡/𝑥] →1 𝑟

′ [𝑢/𝑥] and thus 𝑠[𝑡/𝑥] = 𝜆𝑦.𝑠′ [𝑡/𝑥] →1 𝜆𝑦.𝑟
′ [𝑢/𝑥] = 𝑟 [𝑢/𝑥] □

Lemma 3.3.11. Relation→1 has the diamond property.

Proof. We show that whenever 𝑠 →1 𝑡 then for all 𝑟 with 𝑠 →1 𝑟 there exists 𝑟 ′ with 𝑡 →1 𝑟
′

and 𝑟 → 𝑟 ′. We use induction on the definition of→1 in 𝑠→1 𝑡.
Base case: 𝑡 = 𝑠, i.e. 𝑠→1 𝑠. Then choose 𝑟 ′ = 𝑟 and the claim holds.
For the induction step, we consider the other cases of the definition of→1:
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• If 𝑠 = (𝑠1 𝑠2), 𝑡 = (𝑡1 𝑡2), 𝑠1 →1 𝑡1 and 𝑠2 →1 𝑡2, then for 𝑠 →1 𝑟 there are the following
cases:

– 𝑠 = (𝑠1 𝑠2) →1 (𝑟1 𝑟2) with 𝑠1 →1 𝑟1 and 𝑠2 →1 𝑟2. The induction hypothesis
applied twice (to 𝑠1 and 𝑠2) gives us 𝑟 ′1, 𝑟

′
2 with 𝑡𝑖 → 𝑟 ′

𝑖
, 𝑟𝑖 → 𝑟 ′

𝑖
for 𝑖 = 1, 2. Let

𝑟 ′ = (𝑟 ′1 𝑟 ′2). Then the definition of→1 shows that 𝑡 →1 𝑟
′ and 𝑟 →1 𝑟 . Thus we are

finished.

– 𝑠1 = 𝜆𝑥.𝑠′1 and 𝑠′1 →1 𝑟1, 𝑠2 →1 𝑟2, and 𝑟 = 𝑠′1 [𝑟2/𝑥]. Then 𝑡1 = 𝜆𝑥.𝑡′1 where
𝑠′1 →1 𝑡

′
1 (other cases are not possible).

Applying the induction hypothesis to 𝑠′1 →1 𝑡
′
1 and 𝑠′1 →1 𝑟1 shows that there is 𝑟 ′1

with 𝑡′1 →1 𝑟
′
1 and 𝑟1 →1 𝑟

′
1. Applying the induction hypothesis to 𝑠2 → 𝑡2 and

𝑠2 → 𝑟2 show that there is 𝑟 ′2 with 𝑡1 →1 𝑟
′
2 and 𝑟2 → 𝑟 ′2.

This shows that 𝑡 = (𝑡1 𝑡2) = ((𝜆𝑥.𝑡′1) 𝑡2) →1 𝑟
′
1 [𝑟 ′2/𝑥] and also 𝑟 = 𝑠′1 [𝑟2/𝑥] →1

𝑟 ′1 [𝑟 ′2/𝑥] (where we apply Lemma 3.3.10).

• If 𝑠 = ((𝜆𝑥.𝑠1) 𝑠2) and 𝑡 = 𝑡1 [𝑡2/𝑥] where 𝑠1 →1 𝑡1 and 𝑠2 →1 𝑡2. Then for 𝑠→1 𝑟 there
are again two cases:

– 𝑠 = ((𝜆𝑥.𝑠1) 𝑠2) →1 ((𝜆𝑥.𝑟1) 𝑟2) with 𝑠1 →1 𝑟1 and 𝑠2 →1 𝑟2. Applying the
induction hypothesis to 𝑠1 →1 𝑡1 and 𝑠1 →1 𝑟1 and also to 𝑠2 →1 𝑡2 and 𝑠2 →1 𝑟2

shows that there exists 𝑟 ′1 and 𝑟 ′2 such that: 𝑡𝑖 →1 𝑟
′
𝑖
, 𝑟𝑖 →1 𝑟

′
𝑖
for 𝑖 = 1, 2. This shows

that 𝑡1 [𝑡2/𝑥] →1 𝑟
′
1 [𝑟 ′2/𝑥] and ((𝜆𝑥.𝑟1) 𝑟2) →1 𝑟

′
1 [𝑟 ′2/𝑥] (using Lemma 3.3.10).

Thus the diamond property holds.

– If 𝑠 = ((𝜆𝑥.𝑠1) 𝑠2) and 𝑟 = 𝑟1 [𝑟2/𝑥] where 𝑠1 →1 𝑟1 and 𝑠2 →1 𝑟2. Applying the
induction hypothesis to 𝑠1 →1 𝑡1 and 𝑠1 →1 𝑟1 and also to 𝑠2 →1 𝑡2 and 𝑠2 →1 𝑟2

shows that there exists 𝑟 ′1 and 𝑟 ′2 such that: 𝑡𝑖 →1 𝑟
′
𝑖
, 𝑟𝑖 →1 𝑟

′
𝑖

for 𝑖 = 1, 2. This
shows that 𝑡1 [𝑡2/𝑥] →1 𝑟

′
1 [𝑟 ′2/𝑥] and 𝑟1 [𝑟2/𝑥] →1 𝑟

′
1 [𝑟 ′2/𝑥] (using Lemma 3.3.10).

Thus the diamond property holds.

• If 𝑠 = 𝜆𝑥.𝑠1, 𝑡 = 𝜆𝑥.𝑡1, and 𝑠1 →1 𝑡1, then for 𝑠 →1 𝑟 only 𝑟 = 𝜆𝑥.𝑟1 with 𝑠1 →1 𝑟1

can hold. Applying the induction hypothesis to 𝑠1 →1 𝑡1 and 𝑠1 →1 𝑟1 shows that there
exists 𝑟 ′1 with 𝑡1 →1 𝑟

′
1 and 𝑟1 → 𝑟 ′1. Definition of →1 thus shows 𝜆𝑥.𝑡1 → 𝜆𝑥.𝑟 ′1 and

𝜆𝑥.𝑟1 → 𝜆𝑥.𝑟 ′1. Thus the diamond property holds. □

Lemma 3.3.12.
𝐶,𝛽,∗
−−−−→ =

∗−→1

Proof sketch. Since
𝐶,𝛽
−−−→ ⊆ →1 (Lemma 3.3.7),

𝐶,𝛽,∗
−−−−→ ⊆ ∗−→1 also holds.

The inclusion →1 ⊆
𝛽,∗
−−→ can be proved by inspecting the different cases of the inductive

definition of→1. Finally,
∗−→1 ⊆

𝐶,𝛽
−−−→ holds, since

∗−→1 ⊆
(
𝐶,𝛽,∗
−−−−→

)∗
and

𝐶,𝛽,∗
−−−−→

∗
=

𝐶,𝛽,∗
−−−−→. □

We are now able to show that
𝐶,𝛽
−−−→ is confluent, which follows from the following theorem:
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3. The Lambda Calculus

Theorem 3.3.13 (Church-Rosser-Theorem). For the lambda calculus the following holds: If
𝑎

𝐶,𝛽,∗
←−−→ 𝑏, then there exists 𝑐, such that 𝑎

𝐶,𝛽,∗
−−−−→ 𝑐 and 𝑏

𝐶,𝛽,∗
−−−−→ 𝑐

𝑎

𝐶,𝛽,∗ ��

𝐶,𝛽,∗ // 𝑏

𝐶,𝛽,∗��

oo

𝑐

(Note that this result is up to 𝛼-equivalence.)

Proof. Applying Lemma 3.3.3 for →1 (using Lemma 3.3.11) shows that →1 is confluent and
that

∗−→1 has the diamond property. With the equation of Lemma 3.3.12, we have that
𝐶,𝛽,∗
−−−−→ has

the diamond property and thus
𝐶,𝛽
−−−→ is confluent. Finally, Lemma 3.3.2 then shows the claim. □

One nice property of confluence is that normal forms are unique, i.e. if we 𝛽-reduce a𝜆-expression
into an expression that has no more 𝛽-redexes, then we always get the same expression (up to
𝛼-renaming), independently from the order and positions where the reductions were applied.

3.4. Call-by-Name Evaluation

The call-by-name evaluation always reduces the leftmost-outermost 𝛽-redex. The idea is to
evaluate an application of an abstraction to an argument without evaluating the argument, but
immediately passing the argument to the body of the abstraction.
Formally, we define call-by-name reduction using reduction contexts:

Definition 3.4.1. Reduction contexts 𝑅 are built by the following grammar with start symbol
RCtxt (where Expr are generated as defined in Definition 3.1.1):

RCtxt ::= [·] | (RCtxt Expr)

If 𝑟1
𝛽
−→ 𝑟2 and 𝑅 is a reduction context, then 𝑅[𝑟1]

𝑛𝑎𝑚𝑒−−−−→ 𝑅[𝑟2] is a call-by-name reduction
step.

Exercise 3.4.2. Let 𝑠 = (𝜆𝑤.𝑤) (𝜆𝑥.𝑥) ((𝜆𝑦.((𝜆𝑢.𝑦) 𝑦)) (𝜆𝑧.𝑧)). Write down all reduction
contexts 𝑅 and expressions 𝑡 such that 𝑅[𝑡] = 𝑠. Perform a call-by-name reduction step for
expressions 𝑠

Remark 3.4.3. When a closed expressions is reduced using call-by-name reduction steps, then in
principle, one can omit the 𝛼-renaming, since capturing free variables is impossible for this case.
But: if 𝛽-steps are performed, which are not call-by-name reduction steps, then the 𝛼-renaming
is needed to avoid unwanted (and wrong) captures of free variables.
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An alternative method for performing call-by-name reduction is the following (intuitive) algo-
rithm using labels on the expressions.
Let 𝑠 be an expression. Label 𝑠 with a star, i.e. 𝑠★.
Now, perform the following shifting of the label as long as possible:

(𝑠1 𝑠2)★⇒ (𝑠★1 𝑠2)

The result is of the form (𝑠★1 𝑠2 . . . 𝑠𝑛), where 𝑠1 is not an application. There are the following
cases:

• 𝑠1 is an abstraction 𝜆𝑥.𝑠′1: If 𝑛 ≥ 2, then reduce 𝑠 as follows:

(𝜆𝑥.𝑠′1) 𝑠2 . . . 𝑠𝑛
𝑛𝑎𝑚𝑒−−−−→ (𝑠′1 [𝑠2/𝑥] . . . 𝑠𝑛).

If 𝑛 = 1, then no call-by-name reduction is possible (since the whole expression is an
abstraction).

• 𝑠1 is a variable. Then no call-by-name reduction is applicable, but a free variable has been
detected (for closed expressions, this case does not occur).

As an example, we consider ((𝜆𝑥.𝜆𝑦.𝑥) ((𝜆𝑤.𝑤) (𝜆𝑧.𝑧))). The labeling algorithm shifts the label
as follows:

((𝜆𝑥.𝜆𝑦.𝑥) ((𝜆𝑤.𝑤) (𝜆𝑧.𝑧)))★⇒ ((𝜆𝑥.𝜆𝑦.𝑥)★((𝜆𝑤.𝑤) (𝜆𝑧.𝑧)))

Now a call-by-name reduction is possible, since the subexpression labeled with★ is an abstraction
which is applied to an argument, i.e. the call-by-name reduction is:

((𝜆𝑥.𝜆𝑦.𝑥) ((𝜆𝑤.𝑤) (𝜆𝑧.𝑧))) 𝑛𝑎𝑚𝑒−−−−→ 𝜆𝑦.((𝜆𝑤.𝑤) (𝜆𝑧.𝑧))

Since, this first step result in an abstraction, no further call-by-name reduction step is applicable
and the call-by-name evaluation stops.

Exercise 3.4.4. Evaluate the following expressions with call-by-name evaluation (i.e. perform
call-by-name reduction steps as long as possible)

• (𝜆 𝑓 .(𝜆𝑥. 𝑓 (𝑥 𝑥))) (𝜆. 𝑓 .(𝜆𝑥. 𝑓 (𝑥 𝑥))) (𝜆𝑤.𝜆𝑧.𝑤)
• (𝜆 𝑓 .(𝜆𝑥. 𝑓 (𝑥 𝑥))) (𝜆. 𝑓 .(𝜆𝑥. 𝑓 (𝑥 𝑥))) ((𝜆𝑧.𝑧) (𝜆𝑤.𝑤))

Call-by-name reduction is deterministic, i.e. for expression 𝑠, there is at most one expression
such that 𝑠

𝑛𝑎𝑚𝑒−−−−→ 𝑡. There are expressions where no reduction is possible, which is the case if
evaluation detects a free variable in function position (for example (𝑥 (𝜆𝑦.𝑦)), in general, the
expression is of the form 𝑅[𝑥] where 𝑅 is a reduction context), or if the expression is an abstrac-
tion. Abstractions are also called FWHNFs (functional weak head normal forms). If we reach
an FWHNF using

𝑛𝑎𝑚𝑒−−−−→-reduction, the call-by-name evaluation successfully stops. Expressions
which evaluate to an abstraction are called converging (or alternatively, are terminating).

Let
𝑛𝑎𝑚𝑒,+−−−−−−→ be the transitive closure of

𝑛𝑎𝑚𝑒−−−−→ and
𝑛𝑎𝑚𝑒,∗−−−−−−→ be the reflexive-transitive closure of

𝑛𝑎𝑚𝑒−−−−→.

D. Sabel, Programming Language Foundations, Winter 2024/25 21 Last update: January 8, 2025



3. The Lambda Calculus

Definition 3.4.5. An expression 𝑠 (call-by-name) converges iff there is a sequence of call-by-
name reduction steps starting with 𝑠 that ends in an abstraction. In this case, we write 𝑠↓.
I.e.

𝑠↓ iff ∃abstraction 𝑣 : 𝑠
𝑛𝑎𝑚𝑒,∗−−−−−−→ 𝑣.

If 𝑠 does not converge, we write 𝑠⇑ and say 𝑠 diverges.

In the remainder of this section, we will show that call-by-name evaluation is an optimal strategy
with respect to termination. For the proof, we again use the parallel reduction→1, where we use
→1 also on contexts: contexts are treated like an expression where the hole [·] is treated like a
new constant 𝑐, and then usual→1-reduction on expressions is performed.

Lemma 3.4.6. For→1-reduction on contexts the following holds:
1. If 𝑅 →1 𝑅

′ for a reduction context 𝑅, then 𝑅′ is also a reduction context.
2. If 𝐶 →1 𝐶

′, 𝑠→1 𝑠
′, where 𝐶 is a context, then 𝐶 [𝑠] →1 𝐶 [𝑠′]

Proof. This can be shown by structural induction on 𝑅 or 𝐶, respectively. □

We define the relation
𝑛𝑎𝑚𝑒−−−−→1 where the idea is, that it is a →1-step that includes a

𝑛𝑎𝑚𝑒−−−−→-
reduction. In contrast, the relation

𝑖𝑛𝑡−−→1 represents a →1-step that does not contain a
𝑛𝑎𝑚𝑒−−−−→-

reduction.

Definition 3.4.7. If 𝑅 →1 𝑅
′, 𝑠→1 𝑠

′, 𝑡 →1 𝑡
′, and 𝑅 is a reduction context,

then 𝑅[(𝜆𝑥.𝑠) 𝑡] 𝑛𝑎𝑚𝑒−−−−→1 𝑅
′ [𝑠′ [𝑡′/𝑥]].

Let 𝑖𝑛𝑡−−→1 :=→1\
𝑛𝑎𝑚𝑒−−−−→1 be the internal

1−→-reduction.

An easy consequence of the definitions is:

Lemma 3.4.8. The following chain of inclusions holds: 𝑛𝑎𝑚𝑒−−−−→ ⊂ 𝑛𝑎𝑚𝑒−−−−→1 ⊂ →1

Before proving the next lemma, we introduce a measure, which counts the number of 𝛽-redexes
that are contracted by a single →1-step. Note that we cannot define the measure on the left
expression of the reduction step, we need to consider the full step, since→1 allows to reduce any
subset of all parallel 𝛽-redexes.

Definition 3.4.9. Define the measure 𝜙 :→1 → ℕ0 inductively as

𝜙(𝑥 →1 𝑥) = 0, if 𝑥 is a variable
𝜙(𝜆𝑥.𝑠→1 𝜆𝑥.𝑠

′) = 𝜙(𝑠→ 𝑠′)
𝜙(((𝜆𝑥.𝑠) 𝑡) →1 𝑠

′ [𝑡′/𝑥]) = 1 + 𝜙(𝑠→1 𝑠
′) + 𝑘 · 𝜙(𝑡 →1 𝑡

′),where 𝑘 is the number of
free occurrences of 𝑥 in 𝑠

𝜙((𝑠 𝑡) →1 (𝑠′ 𝑡′)) = 𝜙(𝑠→1 𝑠
′) + 𝜙(𝑡 →1 𝑡

′)
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We observe, that the measure 𝜙 is defined for every→1-step and that it is well-founded, since it
cannot be smaller than 0.
The following lemma shows that a →1 step can be split into a sequence of call-by-name steps
followed by an internal→1 -step.

Lemma 3.4.10. If 𝑠→1 𝑡, then 𝑠
𝑛𝑎𝑚𝑒,∗−−−−−−→ 𝑠′

𝑖𝑛𝑡−−→1 𝑡.

Proof. Let 𝑠→1 𝑡. If the reduction is internal, i.e. 𝑠
𝑖𝑛𝑡−−→1 𝑡, then the claim holds.

Otherwise, the reduction is a
𝑛𝑎𝑚𝑒−−−−→1-reduction. Then there exist reduction contexts 𝑅 and 𝑅′

such that 𝑠 = 𝑅[(𝜆𝑥.𝑟) 𝑢], 𝑟 →1 𝑟
′, 𝑢 →1 𝑢

′, 𝑅 →1 𝑅
′, and 𝑡 = 𝑅′ [𝑟 ′ [𝑢′/𝑥]].

Then 𝑠
𝑛𝑎𝑚𝑒−−−−→ 𝑅[𝑟 [𝑢/𝑥]] →1 𝑅′ [𝑟 ′ [𝑢′/𝑥]] and this process can be iterated (starting with

𝑅[𝑟 [𝑢/𝑥]] in the next iteration).
Thus if the iteration stops, the demanded reduction sequence is constructed, and the claim of the
lemma holds.
However, we have to argue that it is terminating: We use the measure 𝜙 and show that 𝜙(𝑠 →1

𝑡) > 𝜙(𝑅[𝑟 [𝑢/𝑥]] →1 𝑅
′ [𝑟 ′ [𝑢′/𝑥]]). Since 𝜙 is well-founded, the iteration must terminate.

We have
𝜙(𝑅[(𝜆𝑥.𝑟) 𝑢] →1 𝑅

′ [𝑟 ′ [𝑢′/𝑥]])
= 𝜙(𝑅 →1 𝑅

′) + 𝜙((𝜆𝑥.𝑟) 𝑢 →1 𝑟
′ [𝑢′/𝑥])

= 𝜙(𝑅 →1 𝑅
′) + 1 + 𝜙(𝑟 →1 𝑟

′) + 𝑘𝜙(𝑢 →1 𝑢
′)

where 𝑘 is the number of free occurrences of 𝑥 in 𝑟 .
For 𝑅[𝑟 [𝑢/𝑥]] →1 𝑅

′ [𝑟 ′ [𝑢′/𝑥]], we have

𝜙(𝑅[𝑟 [𝑢/𝑥]]] →1 𝑅
′ [𝑟 ′ [𝑢′/𝑥]])

= 𝜙(𝑅 →1 𝑅
′) + 𝜙(𝑟 →1 𝑟

′) + 𝑘𝜙(𝑢 →1 𝑢
′)

where still 𝑘 is the number of free occurrences of 𝑥 in 𝑟 .
Thus, the measure is strictly decreased, which shows the claim. □

Lemma 3.4.11. Let 𝑠, 𝑡, 𝑟 be expressions such that 𝑠→1 𝑡
𝑛𝑎𝑚𝑒−−−−→ 𝑟 , then there exists 𝑢 such that

𝑠
𝑛𝑎𝑚𝑒,+−−−−−−→ 𝑢

𝑖𝑛𝑡−−→1 𝑟 .
𝑠

1
//

𝑛𝑎𝑚𝑒,+
��

𝑡

𝑛𝑎𝑚𝑒

��
𝑢

1

𝑖𝑛𝑡 // 𝑟

Proof. We apply Lemma 3.4.10 to 𝑠→1 𝑡 and thus the sequence 𝑠→1 𝑡
𝑛𝑎𝑚𝑒−−−−→ 𝑟 can be rewritten

as 𝑠
𝑛𝑎𝑚𝑒,∗−−−−−−→ 𝑡′

𝑖𝑛𝑡−−→1 𝑡
′′ 𝑛𝑎𝑚𝑒−−−−→ 𝑟 .

Since 𝑡′′
𝑛𝑎𝑚𝑒−−−−→ 𝑟 we can assume that 𝑡′′ = 𝑅[(𝜆𝑥.𝑡0) 𝑡1]

𝑛𝑎𝑚𝑒−−−−→ 𝑅[𝑡0 [𝑡1/𝑥]] = 𝑟 for some
expressions 𝑡0, 𝑡1 and reduction context 𝑅. Since 𝑡′

𝑖𝑛𝑡−−→1 𝑡
′′ is internal, the following must hold
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𝑡′ = 𝑅′ [(𝜆𝑥.𝑡′0) 𝑡′1] where 𝑅′ →1 𝑅, 𝑡′0 →1 𝑡0, and 𝑡′1 →1 𝑡1. But then 𝑡′ = 𝑅′ [(𝜆𝑥.𝑡′0) 𝑡′1]
𝑛𝑎𝑚𝑒−−−−→

𝑅′ [𝑡′0 [𝑡′1/𝑥]]
𝑖𝑛𝑡−−→1 𝑅[𝑡0 [𝑡1/𝑥]] = 𝑟 holds, which shows the claim. □

Lemma 3.4.12. If 𝑠 →1 𝑡
𝑛𝑎𝑚𝑒,∗−−−−−−→ 𝑟 where 𝑟 is an FWHNF, then there exists a sequence

𝑠
𝑛𝑎𝑚𝑒,∗−−−−−−→ 𝑟 ′

𝑖𝑛𝑡−−→1 𝑟 where 𝑟 ′ is an FWHNF.

Proof. For 𝑠 →1 𝑡
𝑛𝑎𝑚𝑒, 𝑗
−−−−−−→ 𝑟 , apply Lemma 3.4.11 𝑗-times to shift the→1-reduction over each

𝑛𝑎𝑚𝑒−−−−→-reduction. □

Call-by-name reduction has the following property:

Theorem 3.4.13 (Call-by-name evaluation is standardising). Let 𝑠 be an expression. If 𝑠 can be
transformed into an abstraction using arbitrary 𝛽-reduction steps (at any position), then 𝑠↓.

Proof. The given sequence is also a sequence of →1-reductions, since
𝐶,𝛽
−−−→ ⊆ →1. Thus it

suffices to show that if 𝑠
𝑛−→1 𝑣 where 𝑣 is an FWHNF, then 𝑠↓. We use induction on 𝑛. If

𝑛 = 0, then the claim holds. For the induction step, let 𝑠 →1 𝑠
′ 𝑛−1−−−→1 𝑣 where 𝑣 is an FWHNF.

By the induction hypothesis we get that 𝑠′↓, i.e. 𝑠′
𝑛𝑎𝑚𝑒,∗−−−−−−→ 𝑣′ where 𝑣′ is an FWHNF. Now

apply Lemma 3.4.12 to 𝑠 →1 𝑠
′ 𝑛𝑎𝑚𝑒,∗−−−−−−→ 𝑣′ which shows that 𝑠

𝑛𝑎𝑚𝑒,∗−−−−−−→ 𝑣′′
𝑖𝑛𝑡−−→1 𝑣

′ where 𝑣′′ is
an FWHNF. Hence we have 𝑠↓.
The induction step can be depicted as follows, where the dashed reductions follow from the
induction hypothesis and the dotted reductions follow from Lemma 3.4.12.

𝑠
1
//

𝑛𝑎𝑚𝑒,∗
��

𝑠′
𝑛−1

1
//

𝑛𝑎𝑚𝑒,∗
��

𝑣

𝑣′′
1

𝑖𝑛𝑡 // 𝑣′

□

The theorem shows, that call-by-name evaluation is an optimal strategy w.r.t. termination.

3.5. Call-by-Value Evaluation

An import other evaluation strategy which is used in strict functional programming languages
is call-by-value evaluation (sometimes called strict evaluation). The main difference compared
to call-by-name evaluation, is that 𝛽-reduction is permitted only if the argument applied to the
abstraction is already a value (and thus also an abstraction or a variable). So we define:

Definition 3.5.1. The (direct) (𝛽𝑣𝑎𝑙𝑢𝑒)-reduction is defined as

(𝛽𝑣𝑎𝑙𝑢𝑒) (𝜆𝑥.𝑠) 𝑣
𝛽𝑣𝑎𝑙𝑢𝑒−−−−−→ 𝑠[𝑣/𝑥], where 𝑣 is a variable or an abstraction
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The contextual closure of 𝛽𝑣𝑎𝑙𝑢𝑒-reduction is
𝐶,𝛽𝑣𝑎𝑙𝑢𝑒−−−−−−−→ defined as

𝐶 [𝑠]
𝐶,𝛽𝑣𝑎𝑙𝑢𝑒−−−−−−−→ 𝐶 [𝑡] iff 𝐶 is a context and 𝑠

𝛽𝑣𝑎𝑙𝑢𝑒−−−−−→ 𝑡.

Clearly,
𝛽𝑣𝑎𝑙𝑢𝑒−−−−−→⊂

𝛽
−→.

To proceed e.g. with the evaluation of the expression (𝜆𝑥.𝑥) 𝑠 where 𝑠 = ((𝜆𝑦.(𝑦 𝑦)) (𝜆𝑧.𝑧)),
call-by-value evaluation is not allowed to reduce (𝜆𝑥.𝑥) 𝑠, since 𝑠 is not a value. The strategy
of call-by-value evaluation can thus be described by “evaluate parameters before calling the
function” (in contrast, for call-by-name evaluation we call the function without evaluating the
parameters).
To defined this strategy we again use contexts:

Definition 3.5.2. Call-by-value reduction contexts 𝐸 are built by the following grammar with
start symbol ECtxt (where Expr are generated as defined in Definition 3.1.1)

ECtxt ::= [·] | (ECtxt Expr) | ((𝜆𝑉.Expr) ECtxt)

If 𝑟1
𝛽𝑣𝑎𝑙𝑢𝑒−−−−−→ 𝑟2 and 𝐸 is a call-by-value reduction context, then

𝐸 [𝑟1]
𝑣𝑎𝑙𝑢𝑒−−−−→ 𝐸 [𝑟2]

is a call-by-value reduction.

As alternative definition of call-by-value reduction, we can again use a labeling algorithm. If 𝑠
is an expression, then begin with 𝑠★ and apply the following label-shifting rules exhaustively:

(𝑠1 𝑠2)★⇒ (𝑠★1 𝑠2)
(𝑣★ 𝑠) ⇒ (𝑣 𝑠★) if 𝑣 is an abstraction and 𝑠 is not an abstraction or a variable

If in the result a variable is labeled with ★, then no reduction is applicable, since a free variable
was found in reduction position (i.e. the expression 𝑠 is of the form 𝐸 [𝑥]). If 𝑠 is labeled with
★, then 𝑠 is a variable or an abstraction, and no reduction is possible (since also for call-by-value
reduction, abstractions are the successful values, as we will see below). Otherwise, an abstraction
is labeled with ★ and the direct superterm is an application where the argument is an abstraction
or a variable (i.e. 𝑠 = 𝐸 [((𝜆𝑥.𝑠′) 𝑣)] and labeling stopped with 𝐸 [((𝜆𝑥.𝑠′)★ 𝑣)]). Call-by-value
evaluation reduces this application.
Let us consider the expression ((𝜆𝑥.𝜆𝑦.𝑥) ((𝜆𝑤.𝑤) (𝜆𝑧.𝑧))). Searching the redex using the
labeling algorithm performs the following shiftings:

((𝜆𝑥.𝜆𝑦.𝑥) ((𝜆𝑤.𝑤) (𝜆𝑧.𝑧)))★
⇒((𝜆𝑥.𝜆𝑦.𝑥)★ ((𝜆𝑤.𝑤) (𝜆𝑧.𝑧)))
⇒((𝜆𝑥.𝜆𝑦.𝑥) ((𝜆𝑤.𝑤) (𝜆𝑧.𝑧))★)
⇒((𝜆𝑥.𝜆𝑦.𝑥) ((𝜆𝑤.𝑤)★ (𝜆𝑧.𝑧)))
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The first call-by-vale reduction is thus:

((𝜆𝑥.𝜆𝑦.𝑥) ((𝜆𝑤.𝑤) (𝜆𝑧.𝑧))) 𝑣𝑎𝑙𝑢𝑒−−−−→ (𝜆𝑥.𝜆𝑦.𝑥) (𝜆𝑧.𝑧)

Now the argument of the topmost application is a value and thus the whole expression is the
redex of the subsequent call-by-value 𝛽-reduction, resulting in

(𝜆𝑥.𝜆𝑦.𝑥) (𝜆𝑧.𝑧) 𝑣𝑎𝑙𝑢𝑒−−−−→ 𝜆𝑦.𝜆𝑧.𝑧

Now an abstraction is obtained and call-by-value evaluation successfully stops.
Using induction on the term structure, it is easy to verify that call-by-value reduction is deter-
ministic and hence unique. Values are FWHNFs (i.e. abstractions). Convergence is then defined
as follows:

Definition 3.5.3. An expression 𝑠 converges for call-by-value evaluation iff there is sequence of
call-by-value reduction, that transforms 𝑠 into an abstraction. In this case we write 𝑠↓𝑣𝑎𝑙𝑢𝑒. I.e.,
𝑠↓𝑣𝑎𝑙𝑢𝑒 iff ∃abstraction 𝑣 : 𝑠

𝑣𝑎𝑙𝑢𝑒,∗−−−−−−→ 𝑣. If 𝑠 does not call-by-value converge, we write 𝑠⇑𝑣𝑎𝑙𝑢𝑒
and say 𝑠 diverges for call-by-value evaluation.

From Theorem 3.4.13 immediately follows: 𝑠↓𝑣𝑎𝑙𝑢𝑒 =⇒ 𝑠↓. The reverse implication does not
hold, since there exist expressions that diverge for call-by-value evaluation, but converge using
call-by-name evaluation:

Example 3.5.4. Consider the expression Ω := (𝜆𝑥.𝑥 𝑥) (𝜆𝑥.𝑥 𝑥). It is easy to verify that
Ω

𝑛𝑎𝑚𝑒−−−−→ Ω and also Ω
𝑣𝑎𝑙𝑢𝑒−−−−→ Ω. Hence we have Ω⇑ and Ω⇑𝑣𝑎𝑙𝑢𝑒. Now consider the expression

𝑡 := ((𝜆𝑥.(𝜆𝑦.𝑦)) Ω). Then 𝑡 𝑛𝑎𝑚𝑒−−−−→ 𝜆𝑦.𝑦, i.e. 𝑡↓. But call-by-value evaluation will first evaluate
the argument Ω which does not terminate (i.e. 𝑡 𝑣𝑎𝑙𝑢𝑒−−−−→ 𝑡

𝑣𝑎𝑙𝑢𝑒−−−−→ ·). Thus 𝑡⇑𝑣𝑎𝑙𝑢𝑒.

The order of evaluation is predictable for call-by-value evaluation. For instance, when applying
function 𝑓 to closed expressions 𝑠1, 𝑠2, 𝑠3, then first 𝑠1, 𝑠2, 𝑠3 are evaluated sequentially and then
the application of 𝑓 to the values is evaluated. For call-by-name evaluation the exact order,
when 𝑠1, 𝑠2 and 𝑠3 are evaluated (if at all!) depends on the definition of 𝑓 . Since the order is
predictable for call-by-value evaluation, side-effects like printing on a screen etc. is often done
directly in strict functional languages, while in non-strict languages like Haskell more effort is
necessary to control (and this execute) side-effects. Some prominent examples of strict functional
programming languages are ML (with dialects SML, OCaml), Scheme and Microsofts F#.

3.6. Call-by-Need Evaluation

Call-by-need evaluation can be seen as an optimization of call-by-name evaluation. To keep things
simple, we introduce a variant of the call-by-need evaluation, which uses a new syntactic construct
(i.e. let-expressions). However, even with this construct, evaluation is quite complicated.
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Definition 3.6.1. The syntax of expressions with let is given by the following grammar with
start non-terminal Expr:

Expr ::= 𝑉 | 𝜆𝑉.Expr | (Expr Expr) | let 𝑉 = Expr in Expr

The scope of 𝑥 in let 𝑥 = 𝑠 in 𝑡 is 𝑡, i.e. our let-expressions are not recursive. For the distinct
variable convention, we thus assume that 𝑥 ∉ FV (𝑠).
Call-by-need reduction contexts 𝑅𝑛𝑒𝑒𝑑 are generated by the following grammar with start symbol
R𝑛𝑒𝑒𝑑 . It uses two further context classes, built by the non-terminalsA andLR. The non-terminal
Expr represents expressions built according to Definition 3.6.1.

R𝑛𝑒𝑒𝑑 ::= LR[A] | LR[let 𝑥 = A in R𝑛𝑒𝑒𝑑 [𝑥]]
A ::= [·] | (A Expr)

LR ::= [·] | let 𝑉 = Expr in LR

The A-contexts are like call-by-name reduction contexts (the path to the context whole always
chooses the left argument of an application). The LR-contexts have their hole in the in-part of
the let-expressions1. Reduction contexts first exhaustively walk through the in-expressions of
(perhaps nested) let-expressions. If needed, let-bindings are visited, if the value of a binding
𝑥 = 𝑡 is needed.

Example 3.6.2. As an example consider the expression 𝑠 := let 𝑥 = ((𝜆𝑧.𝑧) (𝜆𝑢.𝑢)) in let 𝑦 =
𝜆 𝑤.𝑤 in (𝑥 𝑤): Then there are the following pairs of a reductions contexts 𝑅 and expressions
𝑡, such that 𝑅[𝑠] = 𝑡:

• 𝑅 = [·] and 𝑡 = 𝑠
• 𝑅 = let 𝑥 = ((𝜆𝑧.𝑧) (𝜆𝑢.𝑢)) in [·] and 𝑡 = let 𝑦 = 𝜆 𝑤.𝑤 in (𝑥 𝑤)
• 𝑅 = let 𝑥 = ((𝜆𝑧.𝑧) (𝜆𝑢.𝑢)) in let 𝑦 = 𝜆 𝑤.𝑤 in [·] and 𝑡 = (𝑥 𝑤)
• 𝑅 = let 𝑥 = ((𝜆𝑧.𝑧) (𝜆𝑢.𝑢)) in let 𝑦 = 𝜆 𝑤.𝑤 in ( [·] 𝑤) and 𝑡 = 𝑥
• 𝑅 = let 𝑥 = [·] in let 𝑦 = 𝜆 𝑤.𝑤 in (𝑥 𝑤) and 𝑡 = ((𝜆𝑧.𝑧) (𝜆𝑢.𝑢))
• 𝑅 = let 𝑥 = ( [·] (𝜆𝑢.𝑢)) in let 𝑦 = 𝜆 𝑤.𝑤 in (𝑥 𝑤) and 𝑡 = 𝜆𝑧.𝑧

Instead of (𝛽)-reduction, the following reduction rules are used. Each of these steps is a call-by-
need reduction step, denoted with

need−−−→.

(𝑙𝑏𝑒𝑡𝑎) 𝑅𝑛𝑒𝑒𝑑 [(𝜆𝑥.𝑠) 𝑡]
need−−−→ 𝑅𝑛𝑒𝑒𝑑 [let 𝑥 = 𝑡 in 𝑠]

(𝑐𝑝) 𝐿𝑅[let 𝑥 = 𝜆𝑦.𝑠 in 𝑅𝑛𝑒𝑒𝑑 [𝑥]]
need−−−→ 𝐿𝑅[let 𝑥 = 𝜆𝑦.𝑠 in 𝑅𝑛𝑒𝑒𝑑 [𝜆𝑦.𝑠]]

(𝑙𝑙𝑒𝑡) 𝐿𝑅[let 𝑥 = (let 𝑦 = 𝑠 in 𝑡) in 𝑅𝑛𝑒𝑒𝑑 [𝑥]]
need−−−→ 𝐿𝑅[let 𝑦 = 𝑠 in (let 𝑥 = 𝑡 in 𝑅𝑛𝑒𝑒𝑑 [𝑥])]

(𝑙𝑎𝑝𝑝) 𝑅𝑛𝑒𝑒𝑑 [(let 𝑥 = 𝑠 in 𝑡) 𝑟]
need−−−→ 𝑅𝑛𝑒𝑒𝑑 [let 𝑥 = 𝑠 in (𝑡 𝑟)]

1The name LR stands for “let right”
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Here 𝑅𝑛𝑒𝑒𝑑 is an R𝑛𝑒𝑒𝑑-context and 𝐿𝑅 is an LR-context.

We explain the rules: instead of a substituting (𝛽)-reduction, the (𝑙𝑏𝑒𝑡𝑎)-reduction is used,
which delays substitution: it shares the argument by a new binding. The (𝑐𝑝)-reduction then
copies such a binding, if it is needed by the evaluation, but first the right hand side must be
evaluated to a value (i.e. an abstraction). This avoids “work duplication”. Rules (𝑙𝑙𝑒𝑡) und
(𝑙𝑎𝑝𝑝) are used to reorder let-nestings.

Remark 3.6.3. The main difference between call-by-name and call-by-need evaluation is the
following idea: For 𝑅[(𝜆𝑥.𝑠) 𝑡], call-by-name evaluation substitutes all free occurrences of 𝑥 in
𝑠 by 𝑡. If an occurrence of 𝑥 is required for the result of evaluating 𝑠, then 𝑡 is evaluated for every
such occurrence. This duplicates work, for instance in (𝜆𝑥.((𝑥 𝑥) 𝑥)) 𝑡 where 𝑡 evaluates to the
identity 𝜆𝑧.𝑧, the work for evaluating 𝑡 is performed three times after substituting 𝑥 with 𝑡.

Call-by-need evaluation tries to avoid this kind of work duplication. Instead it delays the
evaluation of 𝑡 and if 𝑡 is evaluated (since it is required) its result is shared such that evaluation
is not repeated. Sharing is implemented by let-bindings.

A labeling algorithm to search the next redex of call-by-need evaluation is the following. For
expression 𝑠, start with 𝑠★. The algorithm uses further labels: ⋄ and ⊚, and the notation ★ ∨ ⋄
means that the label can be ★ or ⋄. The rules of the label shifting are as defined below, They
are applied exhaustively, where in case that rule (2) and rule (3) are applicable always rule (2) is
applied.

(1) (let 𝑥 = 𝑠 in 𝑡)★⇒ (let 𝑥 = 𝑠 in 𝑡★)
(2) (let 𝑥 = 𝐶1 [𝑦⋄] in 𝐶2 [𝑥⊚]) ⇒ (let 𝑥 = 𝐶1 [𝑦⋄] in 𝐶2 [𝑥])
(3) (let 𝑥 = 𝑠 in 𝐶 [𝑥★∨⋄]) ⇒ (let 𝑥 = 𝑠⋄ in 𝐶 [𝑥⊚])
(4) (𝑠 𝑡)★∨⋄ ⇒ (𝑠⋄ 𝑡)

We explain the rules: rule (1) visits the in-expression of let-expressions. The label★ is flipped
to ⋄ after the shifting visits a function position of an application or let-bindings. This prevents
from visiting other let-expressions using rule (1). Rule (3) introduces the label ⊚ to label
the copy target of a potential (𝑐𝑝)-reduction. Rule (2) moves the copy target, if a let-binding
𝑥 = 𝐶1 [𝑦] is found: in this case, copying will first replace 𝑦 in 𝐶1 [𝑦] instead of replacing 𝑥.

After the labeling is finished, the reduction rules are applied as follows (if possible): we only
mention the redex with labels (outer contexts may be present):

(𝑙𝑏𝑒𝑡𝑎) ((𝜆𝑥.𝑠)⋄ 𝑡) → let 𝑥 = 𝑡 in 𝑠
(𝑐𝑝) let 𝑥 = (𝜆𝑦.𝑠)⋄ in 𝐶 [𝑥⊚] → let 𝑥 = 𝜆𝑦.𝑠 in 𝐶 [𝜆𝑦.𝑠]
(𝑙𝑙𝑒𝑡) let 𝑥 = (let 𝑦 = 𝑠 in 𝑡)⋄ in 𝐶 [𝑥⊚] → let 𝑦 = 𝑠 in (let 𝑥 = 𝑡 in 𝐶 [𝑥])]
(𝑙𝑎𝑝𝑝) ((let 𝑥 = 𝑠 in 𝑡)⋄ 𝑟) → let 𝑥 = 𝑠 in (𝑡 𝑟)

Example 3.6.4. The call-by-need evaluation of expression let 𝑥 = (𝜆𝑢.𝑢) (𝜆𝑤.𝑤) in ((𝜆𝑦.𝑦) 𝑥)
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is as follows:

(let 𝑥 = (𝜆𝑢.𝑢) (𝜆𝑤.𝑤) in ((𝜆𝑦.𝑦) 𝑥))★

⇒(let 𝑥 = (𝜆𝑢.𝑢) (𝜆𝑤.𝑤) in ((𝜆𝑦.𝑦) 𝑥)★)
⇒(let 𝑥 = (𝜆𝑢.𝑢) (𝜆𝑤.𝑤) in ((𝜆𝑦.𝑦)⋄ 𝑥))

𝑛𝑒𝑒𝑑,𝑙𝑏𝑒𝑡𝑎−−−−−−−−−→(let 𝑥 = (𝜆𝑢.𝑢) (𝜆𝑤.𝑤) in (let 𝑦 = 𝑥 in 𝑦))★

⇒(let 𝑥 = (𝜆𝑢.𝑢) (𝜆𝑤.𝑤) in (let 𝑦 = 𝑥 in 𝑦)★)
⇒(let 𝑥 = (𝜆𝑢.𝑢) (𝜆𝑤.𝑤) in (let 𝑦 = 𝑥 in 𝑦★))
⇒(let 𝑥 = (𝜆𝑢.𝑢) (𝜆𝑤.𝑤) in (let 𝑦 = 𝑥⋄ in 𝑦⊚))
⇒(let 𝑥 = (𝜆𝑢.𝑢) (𝜆𝑤.𝑤) in (let 𝑦 = 𝑥⋄ in 𝑦))
⇒(let 𝑥 = ((𝜆𝑢.𝑢) (𝜆𝑤.𝑤))⋄ in (let 𝑦 = 𝑥⊚ in 𝑦))
⇒(let 𝑥 = ((𝜆𝑢.𝑢)⋄ (𝜆𝑤.𝑤)) in (let 𝑦 = 𝑥⊚ in 𝑦))

𝑛𝑒𝑒𝑑,𝑙𝑏𝑒𝑡𝑎−−−−−−−−−→(let 𝑥 = (let𝑢 = 𝜆𝑤.𝑤 in 𝑢) in (let 𝑦 = 𝑥 in 𝑦))★

⇒(let 𝑥 = (let𝑢 = 𝜆𝑤.𝑤 in 𝑢) in (let 𝑦 = 𝑥 in 𝑦)★)
⇒(let 𝑥 = (let𝑢 = 𝜆𝑤.𝑤 in 𝑢) in (let 𝑦 = 𝑥 in 𝑦★))
⇒(let 𝑥 = (let𝑢 = 𝜆𝑤.𝑤 in 𝑢) in (let 𝑦 = 𝑥⋄ in 𝑦⊚))
⇒(let 𝑥 = (let𝑢 = 𝜆𝑤.𝑤 in 𝑢) in (let 𝑦 = 𝑥⋄ in 𝑦))
⇒(let 𝑥 = (let𝑢 = 𝜆𝑤.𝑤 in 𝑢)⋄ in (let 𝑦 = 𝑥⊚ in 𝑦))

𝑛𝑒𝑒𝑑,𝑙𝑙𝑒𝑡−−−−−−−→(let 𝑢 = 𝜆𝑤.𝑤 in (let 𝑥 = 𝑢 in (let 𝑦 = 𝑥 in 𝑦)))★

⇒(let 𝑢 = 𝜆𝑤.𝑤 in (let 𝑥 = 𝑢 in (let 𝑦 = 𝑥 in 𝑦))★)
⇒(let 𝑢 = 𝜆𝑤.𝑤 in (let 𝑥 = 𝑢 in (let 𝑦 = 𝑥 in 𝑦)★))
⇒(let 𝑢 = 𝜆𝑤.𝑤 in (let 𝑥 = 𝑢 in (let 𝑦 = 𝑥 in 𝑦★)))
⇒(let 𝑢 = 𝜆𝑤.𝑤 in (let 𝑥 = 𝑢 in (let 𝑦 = 𝑥⋄ in 𝑦⊚)))
⇒(let 𝑢 = 𝜆𝑤.𝑤 in (let 𝑥 = 𝑢 in (let 𝑦 = 𝑥⋄ in 𝑦)))
⇒(let 𝑢 = 𝜆𝑤.𝑤 in (let 𝑥 = 𝑢⋄ in (let 𝑦 = 𝑥⊚ in 𝑦)))
⇒(let 𝑢 = 𝜆𝑤.𝑤 in (let 𝑥 = 𝑢⋄ in (let 𝑦 = 𝑥 in 𝑦)))
⇒(let 𝑢 = (𝜆𝑤.𝑤)⋄ in (let 𝑥 = 𝑢⊚ in (let 𝑦 = 𝑥 in 𝑦)))

𝑛𝑒𝑒𝑑,𝑐𝑝
−−−−−−−→(let 𝑢 = (𝜆𝑤.𝑤) in (let 𝑥 = (𝜆𝑤.𝑤) in (let 𝑦 = 𝑥 in 𝑦)))★

⇒(let 𝑢 = (𝜆𝑤.𝑤) in (let 𝑥 = (𝜆𝑤.𝑤) in (let 𝑦 = 𝑥 in 𝑦))★)
⇒(let 𝑢 = (𝜆𝑤.𝑤) in (let 𝑥 = (𝜆𝑤.𝑤) in (let 𝑦 = 𝑥 in 𝑦)★))
⇒(let 𝑢 = (𝜆𝑤.𝑤) in (let 𝑥 = (𝜆𝑤.𝑤) in (let 𝑦 = 𝑥 in 𝑦★)))
⇒(let 𝑢 = (𝜆𝑤.𝑤) in (let 𝑥 = (𝜆𝑤.𝑤) in (let 𝑦 = 𝑥⋄ in 𝑦⊚)))
⇒(let 𝑢 = (𝜆𝑤.𝑤) in (let 𝑥 = (𝜆𝑤.𝑤) in (let 𝑦 = 𝑥⋄ in 𝑦)))
⇒(let 𝑢 = (𝜆𝑤.𝑤) in (let 𝑥 = (𝜆𝑤.𝑤)⋄ in (let 𝑦 = 𝑥⊚ in 𝑦)))
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𝑛𝑒𝑒𝑑,𝑐𝑝
−−−−−−−→(let 𝑢 = (𝜆𝑤.𝑤) in (let 𝑥 = (𝜆𝑤.𝑤) in (let 𝑦 = (𝜆𝑤.𝑤) in 𝑦)))★

⇒(let 𝑢 = (𝜆𝑤.𝑤) in (let 𝑥 = (𝜆𝑤.𝑤) in (let 𝑦 = (𝜆𝑤.𝑤) in 𝑦))★)
⇒(let 𝑢 = (𝜆𝑤.𝑤) in (let 𝑥 = (𝜆𝑤.𝑤) in (let 𝑦 = (𝜆𝑤.𝑤) in 𝑦)★))
⇒(let 𝑢 = (𝜆𝑤.𝑤) in (let 𝑥 = (𝜆𝑤.𝑤) in (let 𝑦 = (𝜆𝑤.𝑤) in 𝑦★)))
⇒(let 𝑢 = (𝜆𝑤.𝑤) in (let 𝑥 = (𝜆𝑤.𝑤) in (let 𝑦 = (𝜆𝑤.𝑤)⋄ in 𝑦⊚)))

𝑛𝑒𝑒𝑑,𝑐𝑝
−−−−−−−→(let 𝑢 = (𝜆𝑤.𝑤) in (let 𝑥 = (𝜆𝑤.𝑤) in (let 𝑦 = (𝜆𝑤.𝑤) in (𝜆𝑤.𝑤))))

FWHNFs of call-by-need evaluation are expressions of the form 𝐿𝑅[𝜆𝑥.𝑠], i.e. abstractions that
are enclosed by a let-environment.

Definition 3.6.5. An expression 𝑠 converges for call-by-need evaluation (written as 𝑠↓𝑛𝑒𝑒𝑑) iff it
is call-by-need evaluated to an FWHNF, i.e.

𝑠↓𝑛𝑒𝑒𝑑 ⇐⇒ ∃ FWHNF 𝑣 : 𝑠
𝑛𝑒𝑒𝑑,∗−−−−−→ 𝑣

It is possible to show that convergence for call-by-need evaluation coincides with convergence
for call-by-name evaluation (we omit the proof):

Proposition 3.6.6. Let 𝑠 be (let-free) expression, then 𝑠↓ ⇐⇒ 𝑠↓𝑛𝑒𝑒𝑑 .

3.7. Semantic Equality: Contextual Equivalence

We defined different operational semantics of the lambda calculus, and also defined (or implicitly
used) three kinds of equality: Purely syntactic equality of expressions, equality up to 𝛼-renaming
(i.e. 𝛼-equivalence), and 𝛽-convertibility, i.e.

𝐶,𝛽,∗
←−−→. Of course,

𝐶,𝛽,∗
←−−→ equates more expressions

than =𝛼, which again equates more expressions that syntactic equivalence. However, all of them
are quite restricted and thus in this section we introduce a notion of semantic equivalence which
is based on the operational semantics. Such a notion of equality can for instance be used to check
whether the optimizations and transformations performed by a compiler are correct (i.e. if they
preserve equality).
Leibniz’ law of the identity of indiscernibles states that if objects 𝑜1 and 𝑜2 have the same
property for all properties, then 𝑜1 is identical to 𝑜2. In every context, we can exchange 𝑜1 by 𝑜2
but no difference is observable. For program calculi like the lambda calculus the principle can be
applied as follows: two expressions 𝑠 and 𝑡 are equal iff their behaviour cannot be distinguished
independently in which context they are used. More formally, 𝑠 and 𝑡 are equal iff for all contexts
𝐶: the observable behaviours of 𝐶 [𝑠] and 𝐶 [𝑡] are the same. For deterministic languages,
it is usually sufficient to observe the termination of programs (which we already defined as
convergence, see Definitions 3.4.5, 3.5.3 and 3.6.5).
We define the contextual equivalence following this pattern, where we first define a contextual
approximation and then the equivalence as symmetrization of the approximation.
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Definition 3.7.1 (Contextual Approximation and Equivalence). For the call-by-name lambda
calculus, we define the contextual approximation ≤𝑐 and contextual equivalence ∼𝑐 as:

• 𝑠 ≤𝑐 𝑡 iff ∀𝐶 : 𝐶 [𝑠]↓ =⇒ 𝐶 [𝑡]↓
• 𝑠 ∼𝑐 𝑡 iff 𝑠 ≤𝑐 𝑡 und 𝑡 ≤𝑐 𝑠

For the call-by-value lambda calculus, we define the contextual approximation ≤𝑐,𝑣𝑎𝑙𝑢𝑒 and
contextual equivalence ∼𝑐,𝑣𝑎𝑙𝑢𝑒 as:

• 𝑠 ≤𝑐,𝑣𝑎𝑙𝑢𝑒 𝑡 iff ∀𝐶 : If 𝐶 [𝑠], 𝐶 [𝑡] are closed and 𝐶 [𝑠]↓𝑣𝑎𝑙𝑢𝑒, then also 𝐶 [𝑡]↓𝑣𝑎𝑙𝑢𝑒
• 𝑠 ∼𝑐,𝑣𝑎𝑙𝑢𝑒 𝑡 iff 𝑠 ≤𝑐,𝑣𝑎𝑙𝑢𝑒 𝑡 and 𝑡 ≤𝑐,𝑣𝑎𝑙𝑢𝑒 𝑠

For the call-by-need lambda calculus, we could give a similar definition, but we omit it.

In call-by-value calculi it is a difference iff all contexts 𝐶 or only the closing contexts are used,
while in call-by-name and call-by-need there is no difference.

A justification to use the closing ones is that they are the programs which are executed. Another
one is that in call-by-value variables stand for values, while in call-by-name variables stand for
any expression. For instance, the equation 𝑥 ∼𝑐,𝑣𝑎𝑙𝑢𝑒 𝜆𝑦.(𝑥 𝑦) holds (we omit the proof), but it
would not hold if also non-closing contexts are used (consider the empty context: 𝑥⇑𝑣𝑎𝑙𝑢𝑒, but
𝜆𝑦.(𝑥 𝑦)↓𝑣𝑎𝑙𝑢𝑒). The equation 𝑥 ∼𝑐 𝜆𝑦.(𝑥 𝑦) does not hold, since the empty context distinguishes
both expressions, but also the closing context𝐶 := (𝜆𝑥.[·]) Ω distinguishes the expression under
call-by-name evaluation 𝐶 [𝑥] 𝑛𝑎𝑚𝑒−−−−→ Ω

𝑛𝑎𝑚𝑒−−−−→ Ω
𝑛𝑎𝑚𝑒−−−−→ · · · , but 𝐶 [𝜆𝑦.(𝑥 𝑦)] 𝑛𝑎𝑚𝑒−−−−→ 𝜆𝑦.(Ω 𝑦)

which is an FWHNF. In general, the transformation 𝑠 → 𝜆𝑥.(𝑠 𝑥) is called eta-expansion, or in
the other direction 𝜆𝑥.(𝑠 𝑥) → 𝑠 is called eta-reduction.

Contextual equivalence can be seen as the coarsest equivalence that distinguishes obviously
different expressions. An important property of contextual equivalence is the following:

Proposition 3.7.2. The contextual equivalences ∼𝑐 and ∼𝑐,𝑣𝑎𝑙𝑢𝑒 are congruences, i.e. they are
equivalence relations and compatible with contexts, i.e. 𝑠 ∼ 𝑡 =⇒ 𝐶 [𝑠] ∼ 𝐶 [𝑡].
The contextual approximations ≤𝑐 and ≤𝑐,𝑣𝑎𝑙𝑢𝑒 are precongruences, i.e. they are preorders and
compatible with contexts, i.e. 𝑠 ≤ 𝑡 =⇒ 𝐶 [𝑠] ≤ 𝐶 [𝑡].

Proof. We first consider the call-by-name calculus and ≤𝑐. Since 𝐶 [𝑠]↓ =⇒ 𝐶 [𝑠]↓, reflexivity
of ≤𝑐 holds. For transitivity, let 𝑟 ≤𝑐 𝑠 and 𝑠 ≤𝑐 𝑡 and 𝐶 be a context such that 𝐶 [𝑟]↓. Then
𝐶 [𝑠]↓ by 𝑟 ≤𝑐 𝑠 and from 𝑠 ≤𝑐 𝑡 we also have 𝐶 [𝑡]↓. For compatibility, let 𝑠 ≤𝑐 𝑡 and 𝐶 be a
context. Let 𝐶′ be an arbitrary context such that 𝐶′ [𝐶 [𝑠]]↓. Then 𝐶′ [𝐶 [𝑡]]↓, since 𝐶′ [𝐶 [·]] is
also a context.

The reasoning to show that ∼𝑐 is a congruence follows by symmetry.

For the call-by-value lambda calculus, reflexivity of ≤𝑐,𝑣𝑎𝑙𝑢𝑒 is straight-forward. For transitivity,
let 𝑟 ≤𝑐,𝑣𝑎𝑙𝑢𝑒 𝑠 and 𝑠 ≤𝑐,𝑣𝑎𝑙𝑢𝑒 𝑡, and 𝐶 be a context such that 𝐶 [𝑟] and 𝐶 [𝑡] are closed. If
𝐶 [𝑠] is also closed, the reasoning is straight-forward. Otherwise, assume that FV (𝐶 [𝑠]) =
{𝑥1, . . . , 𝑥𝑛}, let 𝑣1, . . . , 𝑣𝑛 be arbitrary closed values and 𝐷 = (𝜆𝑥1, . . . , 𝑥𝑛.[·]) 𝑣1 . . . 𝑣𝑛.
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Since 𝐶 [𝑟] and 𝐶 [𝑡] are closed, 𝐷 [𝐶 [𝑟]] 𝑣𝑎𝑙𝑢𝑒,∗−−−−−−→ 𝐶 [𝑟] and 𝐷 [𝐶 [𝑡]] 𝑣𝑎𝑙𝑢𝑒,∗−−−−−−→ 𝐶 [𝑡]. Thus,
𝐷 [𝐶 [𝑟]]↓𝑣𝑎𝑙𝑢𝑒 ⇐⇒ 𝐶 [𝑟]↓𝑣𝑎𝑙𝑢𝑒 and also 𝐷 [𝐶 [𝑡]]↓𝑣𝑎𝑙𝑢𝑒 ⇐⇒ 𝐶 [𝑡]↓𝑣𝑎𝑙𝑢𝑒.
Since 𝐶 [𝑟]↓𝑣𝑎𝑙𝑢𝑒 and 𝑟 ≤𝑐,𝑣𝑎𝑙𝑢𝑒 𝑠, we have 𝐷 [𝐶 [𝑠]]↓. From 𝑠 ≤𝑐,𝑣𝑎𝑙𝑢𝑒 𝑡, we have
𝐷 [𝐶 [𝑡]]↓𝑣𝑎𝑙𝑢𝑒, and thus also 𝐶 [𝑡]↓𝑣𝑎𝑙𝑢𝑒.
For compatibility, let 𝑠 ≤𝑐,𝑣𝑎𝑙𝑢𝑒 𝑡 and 𝐶 be a context. Let 𝐶′ be an arbitrary context such that
𝐶′ [𝐶 [𝑠]] and 𝐶′ [𝐶 [𝑡]] are closed and 𝐶′ [𝐶 [𝑠]]↓. Then 𝐶′ [𝐶 [𝑡]]↓, since 𝐶′ [𝐶 [·]] is also a
context and𝐶′ [𝐶 [𝑠]] and𝐶′ [𝐶 [𝑡]] are closed. Again,∼𝑐,𝑣𝑎𝑙𝑢𝑒 is a congruence by symmetry. □

The congruence property allows to correctly transform subexpressions of larger expressions with-
out considering the whole program: if the local transformation preserves contextual equivalence,
the global programs are also contextually equivalent.
Contextual equivalence is a common notion for program equivalence used for several program
calculi. A hurdle in using contextual equivalence is the universal quantification over all contexts.
Disproving equivalences is easier, since a single contexts acting as a counter example is sufficient.
However, deciding whether two expressions are not contextually equivalent is undecidable (for
instance, the question whether 𝑠 ≁𝑐 Ω is equivalent to the question if the program 𝑠 terminates,
and thus (since the lambda calculus is Turing complete) the halting problem is encodable, which
is undecidable.)

Proposition 3.7.3. In the call-by-name lambda calculus (𝛽) is a correct program transformation,
i.e. if 𝑠

𝛽
−→ 𝑡, then 𝑠 ∼𝑐 𝑡.

Proof. Let 𝑠
𝛽
−→ 𝑡 and 𝐶 be a context. If 𝐶 [𝑡]↓, i.e. 𝐶 [𝑡] 𝑛𝑎𝑚𝑒,∗−−−−−−→ 𝑣 where 𝑣 is an FWHNF, then

the sequence 𝐶 [𝑠]
𝐶,𝛽
−−−→ 𝐶 [𝑡] 𝑛𝑎𝑚𝑒,∗−−−−−−→ 𝑣 can be used in Theorem 3.4.13, which shows 𝐶 [𝑠]↓.

This can be depicted as follows where straight lines are the given reductions and transformations,
and the dotted ones follow from Theorem 3.4.13 and 𝑣, 𝑣′ are FWHNFs.

𝐶 [𝑠]
𝑛𝑎𝑚𝑒,∗

��

𝐶,𝛽 // 𝐶 [𝑡]
𝑛𝑎𝑚𝑒,∗
��

𝑣′ 𝑣

Now let 𝐶 [𝑠]↓, i.e. 𝐶 [𝑠] 𝑛𝑎𝑚𝑒,𝑛−−−−−−→ 𝑣 for some 𝑛 ∈ ℕ0 and an FWHNF 𝑣. This shows 𝑣
𝐶,𝛽
←−−−

𝐶 [𝑠]
𝐶,𝛽
−−−→ 𝐶 [𝑡], and thus Theorem 3.3.13 shows that there exists an expression 𝑟 , s.t. 𝑣

𝐶,𝛽,∗
−−−−→

𝑟
𝐶,𝛽,∗
←−−−− 𝐶 [𝑡]. Since 𝑣 is an FWHNF, 𝑟 must be an FWHNF too, since

𝐶,𝛽
−−−→-steps cannot

transform an abstraction into an expression that is not an abstraction. Thus, Theorem 3.4.13 can
be applied to 𝐶 [𝑡]

𝐶,𝛽,∗
−−−−→ 𝑟 which shows that 𝐶 [𝑡]↓.

This can be depicted as follows where straight lines are the given reductions and transformations,
the dashed ones follow from Theorem 3.3.13 and the dotted ones follow from Theorem 3.4.13
and 𝑣, 𝑟, 𝑣′ are FWHNFs.
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𝐶 [𝑠]
𝑛𝑎𝑚𝑒,∗
��

𝐶,𝛽 // 𝐶 [𝑡]

𝐶,𝛽,∗

��

𝑛𝑎𝑚𝑒,∗

~~

𝑣
𝐶,𝛽,∗

""
𝑟 𝑣′

□

3.8. The Context Lemma

To restrict the number of contexts that need to be considered for proving that two expressions are
contextually equal, one can try to prove a context lemma: the idea is to show that considering a
subset of the contexts is sufficient.
We only consider the call-by-name lambda calculus, for the call-by-value lambda calculus, similar
results can be obtained. For proving the context lemma, we require so-called multi-contexts:
these are expressions with several (or no) holes at expression position. We assume that the holes
are numbered and write 𝑀 [·1, . . . , ·𝑛] for a multi-context with 𝑛 holes and 𝑀 [𝑠1, . . . , 𝑠𝑛] for the
expression where hole ·𝑖 of 𝑀 is replaced by expression 𝑠𝑖 (for 𝑖 = 1, . . . , 𝑛).

Lemma 3.8.1 (Context Lemma). Let 𝑠 and 𝑡 be closed expressions. If for all reductions contexts
𝑅, the implication 𝑅[𝑠]↓ =⇒ 𝑅[𝑡]↓ holds, then also 𝑠 ≤𝑐 𝑡 holds.

Proof. We prove the more general claim using multi-contexts:
If for all closed expressions 𝑠𝑖 , 𝑡𝑖 and for 𝑖 = 1, . . . , 𝑛: for all reduction contexts 𝑅 the
implication 𝑅[𝑠𝑖]↓ =⇒ 𝑅[𝑡𝑖]↓ holds, then for all multi-contexts 𝑀 the implication
𝑀 [𝑠1, . . . , 𝑠𝑛]↓ =⇒ 𝑀 [𝑡1, . . . , 𝑡𝑛]↓ holds.

Assume that the preconditions hold, and that 𝑀 [𝑠1, . . . , 𝑠𝑛]↓, i.e. 𝑀 [𝑠1, . . . , 𝑠𝑛]
𝑛𝑎𝑚𝑒,𝑚−−−−−−→ 𝑣

where 𝑣 is an FWHNF. We use induction on the following pair, ordered lexicographically:
1. The number 𝑚 of call-by-name reductions from 𝑀 [𝑠1, . . . , 𝑠𝑛] to an FWHNF.
2. The number 𝑛 of holes of 𝑀 .

As a base case, consider the case that 𝑛 = 0 then 𝑀 is an expression and the claim holds (since
𝑀↓ independently of any expressions 𝑠𝑖 , 𝑡𝑖). This base case includes the case (𝑚, 𝑛) = (0, 0).
For the induction step, assume that 𝑛 > 0:
We make a case distinction:

• A hole of 𝑀 is a reduction context, i.e. 𝑀 [𝑠1, . . . , 𝑠𝑖−1, ·𝑖 , 𝑠𝑖+1, . . . , 𝑠𝑛]. Then there exists a
hole 𝑗 , such that𝑀 [𝑟1, . . . , 𝑟 𝑗−1, · 𝑗 , 𝑟 𝑗+1, . . . , 𝑟𝑛] is a reduction context for any expressions
𝑟1, . . . , 𝑟𝑛.
Let 𝑀 ′ = 𝑀 [·1, . . . , · 𝑗−1, 𝑠 𝑗 , · 𝑗+1, . . . , ·𝑛]. Since 𝑀 ′ [𝑠1, . . . , 𝑠 𝑗−1, 𝑠 𝑗+1, . . . , 𝑠𝑛] =

𝑀 [𝑠1, . . . , 𝑠𝑛], both expressions have the same call-by-name reduction. Since the
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number of holes of 𝑀 ′ is 𝑛 − 1, we can apply the induction hypothesis, i.e.
𝑀 ′ [𝑡1, . . . , 𝑡 𝑗−1, 𝑡 𝑗+1, 𝑡𝑛]↓. Since 𝐶𝑠 = 𝑀 [𝑠1, . . . , 𝑠 𝑗−1, · 𝑗 , 𝑠 𝑗+1, . . . , 𝑠𝑛] and 𝐶𝑡 =

𝑀 [𝑡1, . . . , 𝑡 𝑗−1, · 𝑗 , 𝑡 𝑗+1, . . . , 𝑡𝑛] are both reduction contexts and𝑀 ′ [𝑡1, . . . , 𝑡 𝑗−1, 𝑡 𝑗+1, 𝑡𝑛] =
𝐶𝑡 [𝑠 𝑗], 𝐶𝑡 [𝑠 𝑗]↓ and the precondition shows that 𝐶𝑡 [𝑡 𝑗]↓. Since 𝐶𝑡 [𝑡 𝑗] = 𝑀 [𝑡1, . . . , 𝑡𝑛]
this shows the claim.

• 𝑛 > 0 and no hole is a reduction context. If 𝑚 = 0, then 𝑀 [𝑠1, . . . , 𝑠𝑛] is an FWHNF and
𝑀 [𝑡1, . . . , 𝑠𝑛] must be an FWHNF too (in fact any 𝑀 [𝑟1, . . . , 𝑟𝑛] is an FWHNF for any
expressions 𝑟1, . . . , 𝑟𝑛).

Otherwise, consider the reduction sequence 𝑀 [𝑠1, . . . , 𝑠𝑛]
𝑛𝑎𝑚𝑒−−−−→ 𝑠′

𝑛𝑎𝑚𝑒,𝑚−1−−−−−−−−−→ 𝑣 and
inspect what can happen with the subexpressions 𝑠1, . . . , 𝑠𝑛 in 𝑀: Since no hole of
𝑀 is in a reduction context, they can only change their position and maybe duplicated or
removed (if they are part of an argument that is substituted by the (𝛽)-reduction). Since the
expressions 𝑠1, . . . , 𝑠𝑛 are closed no other expression can be copied inside any 𝑠𝑖 . Hence,
there exists a multicontext 𝑀 ′ with 𝑘 holes, such that 𝑠′ = 𝑀 ′ [𝑠 𝑓 (1) , . . . , 𝑠 𝑓 (𝑚) ] where
𝑓 : {1, . . . , 𝑚} → {1, . . . , 𝑛}. Moreover, 𝑀 [𝑟1, . . . , 𝑟𝑛]

𝑛𝑎𝑚𝑒−−−−→ 𝑀 ′ [𝑟 𝑓 (1) , . . . , 𝑟 𝑓 (𝑚) ] for
any expressions 𝑟1, . . . , 𝑟𝑛 and thus 𝑀 [𝑡1, . . . , 𝑡𝑛]

𝑛𝑎𝑚𝑒−−−−→ 𝑀 ′ [𝑡 𝑓 (1) , . . . , 𝑟𝑡 (𝑚) ] = 𝑡′. Since

𝑠′
𝑛𝑎𝑚𝑒,𝑚−1−−−−−−−−−→ 𝑣 and the precondition holds for all pairs 𝑠 𝑓 (𝑖) , 𝑡 𝑓 (𝑖) for 𝑖 = 1, . . . , 𝑚, we can

apply the induction hypothesis to 𝑠′ and 𝑡′ showing 𝑡′↓ and thus also 𝑡↓. □

To prove equivalences for open expressions, the following proposition is helpful:

Proposition 3.8.2. Let 𝑠 and 𝑡 be expressions with free variables 𝑥1, . . . , 𝑥𝑛 Then 𝑠 ≤𝑐 𝑡 iff for
all closed expressions 𝑡1, . . . , 𝑡𝑛: 𝑠[𝑡1/𝑥1, . . . , 𝑡𝑛/𝑥𝑛] ≤𝑐 𝑡 [𝑡1/𝑥1, . . . , 𝑡𝑛/𝑥𝑛]

Proof. If 𝑠 ≤𝑐 𝑡, then 𝐶 [𝑠] ≤𝑐 𝐶 [𝑡] for 𝐶 = 𝜆𝑥1, . . . , 𝑥𝑛.[·]. Since 𝐶 [𝑠]
𝐶,𝛽,∗
−−−−→

𝑠[𝑡1/𝑥1, . . . , 𝑡𝑛/𝑥𝑛], 𝐶 [𝑡] → 𝑡 [𝑡1/𝑥1, . . . , 𝑡𝑛/𝑥𝑛] and (𝛽) is correct (Proposition 3.7.3),
𝑠[𝑡1/𝑥1, . . . , 𝑡𝑛/𝑥𝑛] ≤𝑐 𝑡 [𝑡1/𝑥1, . . . , 𝑡𝑛/𝑥𝑛].
For the other direction, we use induction on the number 𝑛 of free variables of 𝑠 and 𝑡. It is
also clear, that it suffices to show that 𝜆𝑥1, . . . , 𝑥𝑛.𝑠 ≤𝑐 𝜆𝑥1, . . . , 𝑥𝑛.𝑡, since then the context
𝐶 := [·] 𝑥1 . . . 𝑥𝑛 shows 𝑠 ≤𝑐 𝑡.
If 𝑛 = 0, then the claim holds.
If 𝑛 > 0, we use the context lemma, and show 𝑅[𝜆𝑥1, . . . , 𝑥𝑛.𝑠]↓ =⇒ 𝑅[𝜆𝑥1, . . . , 𝑥𝑛.𝑡]↓: for all
reduction contexts 𝑅. Let 𝑅 be a reduction context, and 𝑅[𝜆𝑥1, . . . , 𝑥𝑛.𝑠]↓. If 𝑅 is the empty con-
text, then both expressions are FWHNFs and the claim holds. If 𝑅 = 𝑅′ [[·] 𝑟] for some reduction
context 𝑅′, then 𝑅[𝜆𝑥1, . . . , 𝑥𝑛.𝑠]

𝑛𝑎𝑚𝑒−−−−→ 𝑅′ [𝜆𝑥2, . . . , 𝑥𝑛.𝑠[𝑟/𝑥1]] and 𝑅[𝜆𝑥1, . . . , 𝑥𝑛.𝑡]
𝑛𝑎𝑚𝑒−−−−→

𝑅′ [𝜆𝑥2, . . . , 𝑥𝑛.𝑡 [𝑟/𝑥1]] Then from the given condition we have 𝑠[𝑟/𝑥1] [𝑡2/𝑥2, . . . , 𝑡𝑛/𝑥𝑛] ≤𝑐
𝑡 [𝑟/𝑥1] [𝑡2/𝑥2, . . . , 𝑡𝑛/𝑥𝑛] for all expressions 𝑡2, . . . , 𝑡𝑛. Since 𝑠[𝑟/𝑥1] and 𝑡 [𝑟/𝑥1] have only
𝑛−1 free variables, the induction hypothesis shows 𝜆𝑥2, . . . , 𝑥𝑛.𝑠[𝑟/𝑥1] ≤𝑐 𝜆𝑥2, . . . , 𝑥𝑛.𝑡 [𝑟/𝑥1].
Since ≤𝑐 is a precongruence, this shows 𝑅[𝜆𝑥2, . . . , 𝑥𝑛.𝑠[𝑟/𝑥1]] ≤𝑐 𝑅[𝜆𝑥2, . . . , 𝑥𝑛.𝑡 [𝑟/𝑥1]].
Applying correctness of (𝛽) shows 𝑅[𝜆𝑥1, . . . , 𝑥𝑛.𝑡]↓ □
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For the call-by-value lambda calculus, (𝛽𝑣𝑎𝑙𝑢𝑒) ⊆ ∼𝑐,𝑣𝑎𝑙𝑢𝑒 holds (we do not provide the proof),
but (𝛽) ⊈ ∼𝑐,𝑣𝑎𝑙𝑢𝑒: For example, ((𝜆𝑥.(𝜆𝑦.𝑦)) Ω)⇑𝑣𝑎𝑙𝑢𝑒 and 𝜆𝑦.𝑦↓𝑣𝑎𝑙𝑢𝑒, thus the expressions
are different (where the empty context is a counter-example).
The contextual equivalences w.r.t. call-by-name and call-by-value evaluation are not related,
i.e. ∼𝑐 ⊈ ∼𝑐,𝑣𝑎𝑙𝑢𝑒 and ∼𝑐,𝑣𝑎𝑙𝑢𝑒 ⊈ ∼𝑐. The first part follows from correctness of (𝛽), the
second part can be shown for instance by verifying that ((𝜆𝑥.(𝜆𝑦.𝑦)) Ω) ∼𝑐,𝑣𝑎𝑙𝑢𝑒 Ω but
((𝜆𝑥.(𝜆𝑦.𝑦)) Ω) ≁𝑐 Ω.
For the contextual approximation there are least and greatest elements in both lambda calculi:

Proposition 3.8.3. All closed diverging expressions are least elements w.r.t. ≤𝑐 and ≤𝑐,𝑣𝑎𝑙𝑢𝑒.
For instance Ω ≤𝑐 𝑠 and also Ω ≤𝑐,𝑣𝑎𝑙𝑢𝑒 𝑠 for all expressions 𝑠.
With 𝐾 := 𝜆𝑥.𝜆𝑦.𝑥, 𝑌 := 𝜆 𝑓 .(𝜆𝑥.( 𝑓 (𝑥 𝑥))) (𝜆𝑥.( 𝑓 (𝑥 𝑥))), and 𝑍 :=

𝜆 𝑓 .(𝜆𝑥.( 𝑓 𝜆𝑧.(𝑥 𝑥) 𝑧)) (𝜆𝑥.( 𝑓 𝜆𝑧.(𝑥 𝑥) 𝑧)) (see Example 3.1.3) the expression 𝑌 𝐾 is a greatest
element of ≤𝑐 and 𝑍 𝐾 is a greatest element of ≤𝑐,𝑣𝑎𝑙𝑢𝑒, i.e. 𝑠 ≤𝑐 𝑌 𝐾 and 𝑠 ≤𝑐 𝑍 𝐾 for all
expressions 𝑠.

Proof sketch. We omit the proofs for the call-by-value lambda calculus and only consider the
call-by-name part of the proposition. Let ⊥ be a closed diverging expression and 𝑠 be an
arbitrary closed expression. Let 𝑅 be an arbitrary reduction context, then 𝑅[⊥] cannot con-
verge, i.e. 𝑅[⊥]⇑. The context lemma now immediately shows ⊥ ≤𝑐 𝑠. Since ⊥ is closed,
Proposition 3.8.2 shows ⊥ ≤𝑐 𝑠 for any (perhaps also open) expression 𝑠

For analyzing (𝑌 𝐾), let 𝑟𝑦 = (𝜆𝑥.𝐾 (𝑥 𝑥)). Then 𝑌 𝐾
𝐶,𝛽
−−−→ 𝑟𝑦 𝑟𝑦

𝐶,𝛽
−−−→ 𝐾 (𝑟𝑦 𝑟𝑦) and thus

(𝑌 𝐾) 𝑠1 . . . 𝑠𝑛
𝐶,𝛽,∗
−−−−→ 𝐾 (𝑟𝑦 𝑟𝑦) 𝑠1 . . . 𝑠𝑛

𝐶,𝛽,∗
−−−−→ (𝑟𝑦 𝑟𝑦) 𝑠2 . . . 𝑠𝑛

𝐶,𝛽,∗
−−−−→ (𝑟𝑦 𝑟𝑦)

𝐶,𝛽
−−−→

𝐾 (𝑟𝑦 𝑟𝑦)
𝐶,𝛽
−−−→ 𝜆𝑥.(𝑟𝑦 𝑟𝑦)

Using Theorem 3.4.13, this shows that for every reduction context 𝑅: 𝑅[(𝑌 𝐾)]↓. Since (𝑌 𝐾)
is a closed expression, the context lemma shows that 𝑠 ≤𝑐 (𝑌 𝐾) for every closed expression 𝑠.
Since (𝑌 𝐾) is closed, Proposition 3.8.2 shows 𝑠 ≤𝑐 (𝑌 𝐾) for any (perhaps also open) expression
𝑠. □

Remark 3.8.4. We explain the call-by-value evaluation of (𝑍 𝐾): With 𝑟𝑧 = (𝜆𝑥.(𝐾 𝜆𝑧.(𝑥 𝑥) 𝑧)),
one can verify that 𝑍 𝐾

𝑣𝑎𝑙𝑢𝑒−−−−→ 𝑟𝑧 𝑟𝑧
𝑣𝑎𝑙𝑢𝑒−−−−→ 𝐾 𝜆𝑧.((𝑟𝑧 𝑟𝑧) 𝑧)

𝑣𝑎𝑙𝑢𝑒−−−−→ 𝜆𝑦.𝜆𝑧.(𝑟𝑧 𝑟𝑧) 𝑧
and thus for values 𝑣1, . . . , 𝑣𝑛: (𝑍 𝐾) 𝑣1 . . . 𝑣𝑛

𝑣𝑎𝑙𝑢𝑒,∗−−−−−−→ (𝑟𝑧 𝑟𝑧) 𝑣1 . . . 𝑣𝑛
𝑣𝑎𝑙𝑢𝑒,∗−−−−−−→

(𝜆𝑦.𝜆𝑧.(𝑟𝑧 𝑟𝑧) 𝑧) 𝑣1 . . . 𝑣𝑛
𝑣𝑎𝑙𝑢𝑒−−−−→ (𝜆𝑧.(𝑟𝑧 𝑟𝑧) 𝑧) 𝑣2 . . . 𝑣𝑛

𝑣𝑎𝑙𝑢𝑒−−−−→ (𝑟𝑧 𝑟𝑧) 𝑣2 𝑣3 . . . 𝑣𝑛
𝑣𝑎𝑙𝑢𝑒,∗−−−−−−→

(𝑟𝑧 𝑟𝑧)
𝑣𝑎𝑙𝑢𝑒,∗−−−−−−→ 𝜆𝑦.𝜆𝑧.(𝑟𝑧 𝑟𝑧) 𝑧

3.9. Turing Completeness of the Lambda-Calculus

Instead of providing a formal proof of the Turing completeness of the lambda calculus, we only
argue that it is Turing complete. A formal proof can be found in (Hankin, 2004), where it is shown

D. Sabel, Programming Language Foundations, Winter 2024/25 35 Last update: January 8, 2025



3. The Lambda Calculus

that 𝜇-recursive functions can be expressed in the lambda calculus. For instance, in (Schöning,
2008) a proof can be found that 𝜇-recursive functions are expressive as Turing machines (i.e. are
Turing complete).
A direct proof to show Turing completeness is by simulating a Turing machine in the lambda cal-
culus. In Appendix A we provide a simulation of Turing machines in the functional programming
language Haskell. This shows that Haskell is Turing complete. We compare the used constructs
in Haskell and the lambda calculus to see what is missing and how this could be resolved in a
proof of Turing completeness of the lambda calculus.

Named function definitions: A Haskell-function

𝑓 𝑥1 . . . 𝑥𝑛 = 𝑒

can be represented by the lambda abstraction

𝜆𝑥1, . . . , 𝑥𝑛.𝑒

as long as 𝑒 does not call 𝑓 (or other functions that again call 𝑓 ), i.e. 𝑓 must not be recursive
for this approach. For recursive functions the fixpoint combinator can be used to represent
recursion. For simplicity, let us assume¸ that 𝑒 only calls 𝑓 , but no other functions. Then
𝑓 can be encoded by

𝑌 (𝜆 𝑓 .𝜆𝑥1, . . . , 𝑥𝑛.𝑒).

We inspect the behaviour: Let 𝐹 = (𝜆 𝑓 .𝜆𝑥1, . . . , 𝑥𝑛.𝑒) and 𝑟𝑦 = (𝜆𝑥.𝐹 (𝑥 𝑥)). Then

𝑌 𝐹
𝐶,𝛽
−−−→ 𝑟𝑦 𝑟𝑦 = (𝜆𝑥.𝐹 (𝑥 𝑥)) 𝑟𝑦

𝐶,𝛽
−−−→ 𝐹 (𝑟𝑦 𝑟𝑦)

𝐶,𝛽
←−−− 𝐹 (𝑌 𝐹),

i.e. 𝑌 𝐹 ∼𝑐 𝐹 (𝑌 𝐹). This shows 𝑌 𝐹 ∼𝑐 𝐹𝑖 (𝑌 𝐹) where 𝐹𝑖 is the 𝑖-fold application of
𝐹, and also 𝑌 𝐹 ∼𝑐 𝐹 (𝑌 𝐹) ∼𝑐 𝜆𝑥1, . . . , 𝑥𝑛.𝑒[(𝑌 𝐹)/ 𝑓 ]. For mutual recursive functions,
the encoding is a bit more complicated, but still possible.

Data: Besides some syntactic sugar (like the record syntax), the Haskell-program uses data, data
types and constructors and selectors to construct and deconstruct data. It is quite obvious,
that it should be sufficient to represent booleans, tuples, lists of arbitrary length and natural
numbers to encode the program (together with selectors to e.g. select the first component
of a pair). However, the lambda calculus has none of these constructs. But, they can be
encoded as lambda expressions (there are different encodings). The following encoding
sketches the so-called Church-encoding of numbers, booleans, pairs and lists:
The idea is that number 𝑖 is represented by the 𝑖-fold function composition, i.e. for any
unary function 𝑓 , 𝑓 represents 1, 𝑓 ◦ 𝑓 represents 2, 𝑓 ◦ 𝑓 ◦ 𝑓 represents 3 and so on, 0 is
represented by the identity.
Each number is a lambda expression that takes 2 parameters. The encoding is 0 := 𝜆 𝑓 .𝜆𝑥.𝑥

and for 𝑖 > 0: 𝑖 := 𝜆 𝑓 .𝜆𝑥. 𝑓 𝑖 𝑥
The addition for instance takes two such functions and combines them to a new one, using
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the identity 𝑓 𝑚 ◦ 𝑓 𝑛 = 𝑓 𝑚+𝑛:

plus = 𝜆𝑚.𝜆𝑛.𝜆 𝑓 .𝜆𝑥.𝑚 𝑓 (𝑛 𝑓 𝑥).

The successor of a number can be computed in the same way where 𝑚 is 1:

succ = 𝜆𝑛.𝜆 𝑓 .𝜆𝑥. 𝑓 (𝑛 𝑓 𝑥).

The predecessor is complicated, we do not explain the encoding, but provide it (it behaves
as follows pred 0 = 0 and pred 𝑖 = 𝑖 − 1 for 𝑖 > 0). The encoding is

pred = 𝜆𝑛.𝜆 𝑓 .𝜆𝑥.𝑛 (𝜆𝑔.𝜆ℎ.ℎ (𝑔 𝑓 )) (𝜆𝑧.𝑥) (𝜆𝑢.𝑢).

Booleans are defined as true = 𝜆𝑥.𝜆𝑦.𝑥 and false = 𝜆𝑥.𝜆𝑦.𝑦. Note that 𝑏 𝑠 𝑡 for
𝑏 ∈ {true , false} behaves like if 𝑏 then 𝑠 else 𝑡.

Pairs can be encoded as
pair = 𝜆𝑥.𝜆𝑦.𝜆𝑧.𝑧 𝑥 𝑦.

The first two arguments are the arguments of the pair, the third one is for the selector.
Selector function can be defined as

first = 𝜆𝑝.𝑝 𝐾

second = 𝜆𝑝.𝑝 𝐾2

With these definitions first (pair 𝑠 𝑡) ∼𝑐 𝑠 and second (pair 𝑠 𝑡) ∼𝑐 𝑡.

Non-empty lists can be encoded by pairs 𝑝 where the first component of 𝑝 is the head
element of the list, and the second component of 𝑝 is the remaining list (i.e. the tail of the
list). However, the empty list cannot be encoded in this way. This can be corrected by
using pairs pair flag 𝑝 where flag is true or false and pair true 𝑠 means the empty list
(independent of 𝑠) and pair false 𝑠 is a non-empty list. Then we can use the encodings:

nil = pair true true

cons = 𝜆ℎ.𝜆𝑡.pair false (pair ℎ 𝑡)

Then we may define a test for emptiness and selector functions:

isNil = first

head = 𝜆𝑙.first (second 𝑙)
tail = 𝜆𝑙.second (second 𝑙)

This shows that data can be encoded using pure lambda expressions. Disadvantages are that
one cannot distinguish between data and functions (and in case of the provided encoding
also not between different data types, since e.g. the encoding of 0 and the encoding of
false is the same.)
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Types: Haskell only permits well-typed programs, while the lambda calculus has no types. But
this is not a restriction for showing Turing completeness, since the typed encoding (in form
of a Haskell program) can also be used as an untyped one (doing it in the other way, would
be problem).

However, even we now know that the lambda calculus is Turing complete and thus it could be used
to reason about functional programs as a core language, it is very difficult to express everything
with abstractions and applications and without types. Moreover, since different Haskell-programs
would be mapped to the same lambda expression (e.g. 0 and False), equivalences proved in the
lambda calculus would not necessarily hold for Haskell-programs.
One more difference is, that Haskell has a seq-operator which mimics strict (i.e. call-by-value)
evaluation, which is not expressible in the pure lambda calculus with call-by-name evaluation.
For all these reasons we will consider extended core languages which fit better as a core language
for Haskell and other functional programming languages.

3.10. Conclusion and References

We introduced the lambda calculus, different evaluation strategies and the concept of contextual
semantics. A lot of resources on the lambda calculus exist, we mention some of them. A
standard reference (often not easy to understand) is (Barendregt, 1984). A good introduction can
be found in (Hankin, 2004). Call-by-need lambda calculi with let were introduced in (Ariola
et al., 1995; Ariola & Felleisen, 1997) and (Maraist et al., 1998). Non-deterministic extensions
are in (Kutzner & Schmidt-Schauß, 1998; Kutzner, 2000; Mann, 2005b; Mann, 2005a). The
call-by-need reduction in this chapter is mainly taken from (Mann, 2005a). We did non consider
call-by-need lambda calculi with recursive let, they are treated for instance in (Schmidt-Schauß
et al., 2008; Schmidt-Schauß et al., 2010). The notion of contextual equivalence dates back to
(Morris, 1968). In the context of the lambda calculus it was for instance investigated in (Plotkin,
1975). A lot of references and discussions on the context lemma can be found in (Schmidt-Schauß
& Sabel, 2010).
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In this chapter we modularly extend the call-by-name lambda calculus with constructs that
better match the core language of non-strict functional programming languages such as Haskell.
We always compare our core language with Haskell and see what is missing. First we add
data constructors and case expressions, then we add recursive function definitions, and before
considering polymorphic typing, we add Haskell’s seq-operator. In this way, we introduce
several core languages. These core languages are mainly from (Schmidt-Schauß, 2009).

4.1. The Core Language KFPT

4.1.1. Syntax of KFPT

As a first extension we add data to the lambda calculus. We do this by adding data constructors
𝑐𝑖 that, if applied to arguments, represent data (for example, 𝑐𝑖 might be a 𝑝𝑎𝑖𝑟 that is applied
to two arguments, and thus 𝑝𝑎𝑖𝑟 𝑠 𝑡 is a pair.) To have a common mechanism and notion
for selecting parts of the data (e.g. the first argument of a pair), we use case-expressions. To
overload the notation, we introduce a very weak form of typing: We assume that the set of all
data constructors is partitioned into subsets, where each subset represents a type and the set has
a name: for example, such sets are Bool, List, Pair, . . . . All sets are finite, so each type 𝑇 has
a finite number of data constructors, each written as 𝑐𝑖 for some number 𝑖. Each constructor 𝑐𝑖
has a fixed arity ar(𝑐) ∈ ℕ0. For some types, we use some better names for the constructor to
match the Haskell wording and notation: The type Bool has constructors True and False both
of arity 0. The type Pair has a single constructor Pair of arity 2, sometimes we write (𝑠, 𝑡)
instead of Pair 𝑠 𝑡. The type List has constructors Nil (of arity 0) and Cons of arity 2. The
constructor Nil represents the empty list, and for example, a list consisting of boolean values
true, false, true is written as Cons True (Cons False (Cons True Nil)). We also use Haskell
notation for lists and write : instead of Cons (and written infix instead of prefix) and [] instead of
Nil, e.g. we write True:False:True: []1. As syntactic sugar we also write [True,False,True]
for the same list.

We assume that data constructors only occur fully saturated, i.e. if ar(𝑐𝑖) = 𝑛, then 𝑐𝑖 only occurs
with 𝑛 arguments.

1The list constructor : is right-associative, i.e. 𝑎1 : 𝑎2 : 𝑎3 : [] means 𝑎1 : (𝑎2 : (𝑎3 : [])).
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Definition 4.1.1. The syntax of the core language KFPT is generated by the following grammar
(and side-conditions) with start non-terminal Expr, where 𝑉,𝑉𝑖 are variables.

Expr ::= 𝑉 | 𝜆𝑉.Expr | (Expr1 Expr2)
| (𝑐𝑖 Expr1 . . . Exprar(𝑐𝑖 ) )
| (case𝑇 Expr of {Pat1 → Expr1; . . . ;Pat𝑛 → Expr𝑛})

Here Pat𝑖 is a pattern for constructor 𝑐𝑖 ,
Pat𝑖 → Expr𝑖 is called a case-alternative.
For every constructor of type 𝑇 , there
is exactly one case-alternative.

Pat𝑖 ::= (𝑐𝑖 𝑉1 . . . 𝑉ar (𝑐𝑖 ) ) where the variables 𝑉𝑖 are pairwise distinct.

Note that the case is labeled with the type as a subscript and the side conditions ensure that for
each constructor of the corresponding type, there is exactly one case-alternative in the set of
alternatives.

Except for the weak typing by labeling the case and partitioning the data constructors, there
is no typing for KFPT. So KFPT is weakly typed, extends the lambda calculus by constructor
applications (𝑐𝑖 𝑠1 . . . 𝑠ar(𝑐𝑖 ) ) and case-expressions.
Compared to Haskell, the case-expressions of KFPT are more restrictive, since for all construc-
tors there must be an alternative (in Haskell a missing alternative can lead to a runtime error),
patterns are flat (nested patterns like (𝑥 : (𝑦 : 𝑦𝑠)) are not allowed in KFPT), and there are no
default alternatives like in Haskell (they match if no other alternative matches).
However, a complex Haskell case-expression can be transformed into multiple case-expressions
that match the syntax of KFPT: Nested patterns are translated into nested case-expressions and
missing alternatives are added, where the right-hand side is a closed non-terminating expression
such as Ω.
As an abbreviation we sometimes write (case𝑇 𝑠 of 𝐴𝑙𝑡𝑠) where 𝐴𝑙𝑡𝑠 is a placeholder for
(syntactically correct) case-alternatives.

Example 4.1.2. Projections fst and snd , which compute the first or the second component of a
pair, can be implemented in KFPT as abstractions:

fst := 𝜆𝑥.casePair 𝑥 of {(Pair 𝑎 𝑏) → 𝑎}
snd := 𝜆𝑥.casePair 𝑥 of {(Pair 𝑎 𝑏) → 𝑏}

A function that computes the first element of a list can be expressed in KFPT as:

𝜆𝑥𝑠.caseList 𝑥𝑠 of {Nil→ ⊥; (Cons 𝑦 𝑦𝑠) → 𝑦}

Similarly, the following function computes the tail of a list:

𝜆𝑥𝑠.caseList 𝑥𝑠 of {Nil→ ⊥; (Cons 𝑦 𝑦𝑠) → 𝑦𝑠}
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Testing whether a list is empty or not, can be programmed as follows:

𝜆𝑥𝑠.caseList 𝑥𝑠 of {Nil→ True; (Cons 𝑦 𝑦𝑠) → False}

In Haskell there are if-then-else-expressions of the form if 𝑒 then 𝑠 else 𝑡. In KFPT they
can be simulated by:

caseBool 𝑒 of {True→ 𝑠; False→ 𝑡}

Compared to the lambda calculus, KFPT has one new construct that binds variables: in a
case-alternative (𝑐𝑖 𝑥1 . . . 𝑥ar(𝑐𝑖 ) ) → 𝑠, the variables 𝑥1, . . . , 𝑥ar(𝑐𝑖 ) are bound with scope 𝑠.
Formally, the sets of free variables FV (𝑠) and bound variables BV (𝑠) for an expression 𝑠 are
defined as:

FV (𝑥) = 𝑥

FV (𝜆𝑥.𝑠) =FV (𝑠) \ {𝑥}
FV (𝑠 𝑡) =FV (𝑠) ∪ FV (𝑡)
FV (𝑐 𝑠1 . . . 𝑠ar(𝑐) ) =FV (𝑠1) ∪ . . . ∪ FV (𝑠ar(𝑐𝑖 ) )
FV (case𝑇 𝑡 of
{(𝑐1 𝑥1,1 . . . 𝑥1,ar(𝑐1 ) ) → 𝑠1;

. . .

(𝑐𝑛 𝑥𝑛,1 . . . 𝑥𝑛,ar(𝑐𝑛 ) ) → 𝑠𝑛})

=FV (𝑡) ∪ (
𝑛⋃
𝑖=1
(FV (𝑠𝑖) \ {𝑥𝑖,1, . . . , 𝑥𝑖,ar(𝑐𝑖 ) }))

BV (𝑥) = ∅
BV (𝜆𝑥.𝑠) =BV (𝑠) ∪ {𝑥}
BV (𝑠 𝑡) =BV (𝑠) ∪ BV (𝑡)
BV (𝑐 𝑠1 . . . 𝑠ar(𝑐) ) =BV (𝑠1) ∪ . . . ∪ BV (𝑠ar(𝑐𝑖 ) )
BV (case𝑇 𝑡 of
{(𝑐1 𝑥1,1 . . . 𝑥1,ar(𝑐1 ) ) → 𝑠1;

. . .

(𝑐𝑛 𝑥𝑛,1 . . . 𝑥𝑛,ar(𝑐𝑛 ) ) → 𝑠𝑛})

=BV (𝑡) ∪ (
𝑛⋃
𝑖=1
(BV (𝑠𝑖) ∪ {𝑥𝑖,1, . . . , 𝑥𝑖,ar(𝑐𝑖 ) }))

As in the lambda calculus, an expression 𝑠 is closed, if FV (𝑠) = ∅, and otherwise it is open.
Renaming of bound variables is called 𝛼-renaming, which allows variables to be consistently
renamed at binders and in their scope. We omit the formal definition. As in the lambda calculus
we use the distinct variable convention (see Definition 3.2.1) and 𝛼-renaming can be used to
follow the convention.

Example 4.1.3. For the KFPT-expression

𝑠 := ((𝜆𝑥.caseList 𝑥 of {Nil→ 𝑥; Cons 𝑥 𝑥𝑠 → 𝜆𝑢.(𝑥 𝜆𝑥.(𝑥 𝑢))}) 𝑥)
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we have

FV (𝑠)
=(FV (𝜆𝑥.caseList 𝑥 of {Nil→ 𝑥; Cons 𝑥 𝑥𝑠 → 𝜆𝑢.(𝑥 𝜆𝑥.(𝑥 𝑢)))) ∪ FV (𝑥)
=(FV (𝜆𝑥.caseList 𝑥 of {Nil→ 𝑥; Cons 𝑥 𝑥𝑠 → 𝜆𝑢.(𝑥 𝜆𝑥.(𝑥 𝑢)))) ∪ {𝑥}
=(FV (caseList 𝑥 of {Nil→ 𝑥; Cons 𝑥 𝑥𝑠 → 𝜆𝑢.(𝑥 𝜆𝑥.(𝑥 𝑢))) \ {𝑥}) ∪ {𝑥}
=((FV (𝑥) ∪ (FV (𝑥) \ ∅) ∪ (FV (𝜆𝑢.(𝑥 𝜆𝑥.(𝑥 𝑢))) \ {𝑥, 𝑥𝑠})) \ {𝑥}) ∪ {𝑥}
=(({𝑥} ∪ ({𝑥} \ ∅) ∪ (FV (𝜆𝑢.(𝑥 𝜆𝑥.(𝑥 𝑢))) \ {𝑥, 𝑥𝑠})) \ {𝑥}) ∪ {𝑥}
=(({𝑥} ∪ (FV (𝜆𝑢.(𝑥 𝜆𝑥.(𝑥 𝑢))) \ {𝑥, 𝑥𝑠})) \ {𝑥}) ∪ {𝑥}
=(({𝑥} ∪ ((FV (𝑥 𝜆𝑥.(𝑥 𝑢)) \ {𝑢}) \ {𝑥, 𝑥𝑠})) \ {𝑥}) ∪ {𝑥}
=(({𝑥} ∪ ((FV (𝑥) ∪ FV (𝜆𝑥.(𝑥 𝑢)) \ {𝑢}) \ {𝑥, 𝑥𝑠})) \ {𝑥}) ∪ {𝑥}
=(({𝑥} ∪ (({𝑥} ∪ FV (𝜆𝑥.(𝑥 𝑢)) \ {𝑢}) \ {𝑥, 𝑥𝑠})) \ {𝑥}) ∪ {𝑥}
=(({𝑥} ∪ (({𝑥} ∪ (FV (𝑥 𝑢) \ {𝑥}) \ {𝑢}) \ {𝑥, 𝑥𝑠})) \ {𝑥}) ∪ {𝑥}
=(({𝑥} ∪ (({𝑥} ∪ (FV (𝑥) ∪ FV (𝑢)) \ {𝑥}) \ {𝑢}) \ {𝑥, 𝑥𝑠})) \ {𝑥}) ∪ {𝑥}
=(({𝑥} ∪ (({𝑥} ∪ ({𝑥} ∪ {𝑢}) \ {𝑥}) \ {𝑢}) \ {𝑥, 𝑥𝑠})) \ {𝑥}) ∪ {𝑥}
=(({𝑥} ∪ (({𝑥} ∪ ({𝑥, 𝑢} \ {𝑥}) \ {𝑢}) \ {𝑥, 𝑥𝑠})) \ {𝑥}) ∪ {𝑥}
=(({𝑥} ∪ (({𝑥} ∪ {𝑢} \ {𝑢}) \ {𝑥, 𝑥𝑠})) \ {𝑥}) ∪ {𝑥}
=(({𝑥} ∪ ({𝑥} \ {𝑥, 𝑥𝑠})) \ {𝑥}) ∪ {𝑥}
=(({𝑥} ∪ ∅) \ {𝑥}) ∪ {𝑥}
={𝑥}.

and BV (𝑠) = {𝑥, 𝑥𝑠, 𝑢} (we omit the computation), i.e. variable 𝑥 occurs both bound and free
and thus 𝑠 violates the distinct variable convention. After 𝛼-renaming of all bound variables, we
derive

𝑠′ := ((𝜆𝑥1.caseList 𝑥1 of {Nil→ 𝑥1; Cons 𝑥2 𝑥𝑠 → 𝜆𝑢.(𝑥2 𝜆𝑥3.(𝑥3 𝑢))}) 𝑥)

Now, the expression 𝑠′ fulfills the distinct variable convention and FV (𝑠′) = {𝑥} and BV (𝑠′) =
{𝑥1, 𝑥2, 𝑥𝑠, 𝑥3, 𝑢}.

4.1.2. Operational Semantics of KFPT

We define call-by-name evaluation for KFPT, where 𝑠[𝑡/𝑥] is the expression 𝑠 where all free
occurrences of 𝑥 are replaced by 𝑡, and 𝑠[𝑡1/𝑥1, . . . , 𝑡𝑛/𝑥𝑛] is the parallel substitution of 𝑥𝑖 by 𝑡𝑖
(for 𝑖 = 1, . . . , 𝑛) in expression 𝑠.
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Definition 4.1.4. The reduction rules (𝛽) and (case) in KFPT are defined as:

(𝛽) (𝜆𝑥.𝑠) 𝑡
𝛽
−→ 𝑠[𝑡/𝑥]

(case) case𝑇 (𝑐 𝑠1 . . . 𝑠ar(𝑐) ) of {. . . ; (𝑐 𝑥1 . . . 𝑥ar(𝑐) ) → 𝑡; . . .}
𝑐𝑎𝑠𝑒−−−−→ 𝑡 [𝑠1/𝑥1, . . . , 𝑠ar(𝑐)/𝑥ar(𝑐) ]

The (𝛽)-rule is the same as in the lambda calculus. The (case)-rule evaluates a case-expression:
if the first argument is a constructor application of the correct type, then the right-hand side of
the matching alternative is used, with the given arguments replacing the formal parameters of
the pattern.

Example 4.1.5. The expression

(𝜆𝑥.casePair 𝑥 of {(Pair 𝑎 𝑏 → 𝑎})) (Pair True False)

can be transformed into True by (𝛽) and (case) reductions:

(𝜆𝑥.casePair 𝑥 of {(Pair 𝑎 𝑏) → 𝑎}) (Pair True False)
𝛽
−→ casePair (Pair True False) of {(Pair 𝑎 𝑏) → 𝑎}
𝑐𝑎𝑠𝑒−−−−→ True

If 𝑟1 → 𝑟2 using (𝛽)- or (case)-reductions, then 𝑟1 directly reduces to 𝑟2. Contexts are KFPT-
expressions that have a hole [·] at expression position, i.e. they are defined by the following
grammar:

Ctxt ::= [·] | 𝜆𝑉.Ctxt | (Ctxt Expr) | (Expr Ctxt)
| (𝑐𝑖 Expr1 . . .Expr𝑖−1 Ctxt Expr𝑖+1 Exprar(𝑐𝑖 ) )
| (case𝑇 Ctxt of {Pat1 → Expr1; . . . ;Pat𝑛 → Expr𝑛})
| (case𝑇 Expr of {Pat1 → Expr1; . . . ;Pat𝑖 → Ctxt; . . . ,Pat𝑛 → Expr𝑛})

As before, 𝐶 [𝑠] is the expression derived by replacing the hole of 𝐶 with the expression 𝑠. If a
(𝛽)- or a (case)-reduction is applied in a context 𝐶, i.e. 𝐶 [𝑠] → 𝐶 [𝑡] where 𝑠 directly reduces
to 𝑡, then the subexpression 𝑠 in 𝐶 [𝑠] (with its position at the hole of 𝐶) is called the redex
(reducible expression) of the reduction step 𝐶 [𝑠] → 𝐶 [𝑡].
To define the call-by-name evaluation, we define reduction contexts:

Definition 4.1.6. Reduction contexts 𝑅 in KFPT are built by the following grammar with start
symbol RCtxt:

RCtxt ::= [·] | (RCtxt Expr) | (case𝑇 RCtxt of 𝐴𝑙𝑡𝑠)

Call-by-name-reduction in KFPT is defined as follows:;
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Definition 4.1.7. If 𝑠 reduces directly to 𝑡 and 𝑅 is a reduction context, then 𝑅[𝑠] 𝑛𝑎𝑚𝑒−−−−→ 𝑅[𝑡] is
a call-by-name reduction in KFPT.

To denote the reduction rule used, we also write
𝑛𝑎𝑚𝑒,𝛽
−−−−−−→ or

𝑛𝑎𝑚𝑒,𝑐𝑎𝑠𝑒−−−−−−−−−→, respectively. We also
write

𝑛𝑎𝑚𝑒,+−−−−−−→ for the transitive and
𝑛𝑎𝑚𝑒,∗−−−−−−→ for the reflexive-transitive closure of 𝑛𝑎𝑚𝑒−−−−→.

Example 4.1.8. The reduction (𝜆𝑥.𝑥) ((𝜆𝑦.𝑦) (𝜆𝑧.𝑧)) 𝑛𝑎𝑚𝑒−−−−→ (𝜆𝑦.𝑦) (𝜆𝑧.𝑧) is a call-by-name re-
duction. The reduction (𝜆𝑥.𝑥) ((𝜆𝑦.𝑦) (𝜆𝑧.𝑧)) → (𝜆𝑥.𝑥) (𝜆𝑧.𝑧) is not a call-by-name reduction,
because the context (𝜆𝑥.𝑥) [·] is not a reduction context.

The call-by-name evaluation is a sequence of call-by-name reduction steps. It ends successfully
if a WHNF (weak head normal form) is reached. Let us define some kinds of normal forms

Definition 4.1.9. A KFPT-expression 𝑠 is a
• normal form (NF), if 𝑠 does not contain any (𝛽)- or (case)-redex.
• head normal form (HNF), if 𝑠 is a constructor application or an abstraction 𝜆𝑥1, . . . 𝑥𝑛.𝑠′

where 𝑠′ is either a variable, a constructor application or of the form (𝑥 𝑠′′) is (where 𝑥 is
a variable).

• functional weak head normal form (FWHNF) if 𝑠 is an abstraction.
• constructor weak head normal form (CWHNF) if 𝑠 is a constructor application
(𝑐 𝑠1 . . . 𝑠ar(𝑐) ).

• weak head normal form (WHNF), if 𝑠 is an FWHNF or a CWHNF.

Note that every normal form is also head normal form, but a head normal form is not always a
normal form, since in the arguments (of constructors or applications (𝑥 𝑠)) a head normal form
may contain redexes. Every HNF is also a WHNF (but not vice versa). We are mainly interested
in WHNFs.

Definition 4.1.10 (Convergence). A KFPT-expression 𝑠 converges (or terminates, written as 𝑠↓)
iff it can be evaluated using call-by-name evaluation to a WHNF, i.e.

𝑠↓ ⇐⇒ ∃ WHNF 𝑡 : 𝑠
𝑛𝑎𝑚𝑒,∗−−−−−−→ 𝑡

If 𝑠 does not converge, then we say 𝑠 diverges and write 𝑠⇑.

We also say that 𝑠 has a WHNF (FWHNF, CWHNF, resp.) if 𝑠 can be evaluated to a WHNF
(FWHNF, CWHNF, resp.) using a finite number of call-by-name reductions.

4.1.3. Dynamic Typing

Call-by-name evaluation may stop (get stuck, i.e. no more
𝑛𝑎𝑚𝑒−−−−→-reduction is applicable) without

reaching a WHNF. As in the lambda calculus this can happen if a free variable occurs at reduction
position, i.e. the expression is of the form 𝑅[𝑥] where 𝑅 is a reduction contexts and 𝑥 is a variable.
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However, unlike the lambda calculus, evaluation may get stuck, because a type error has been
detected (because abstractions are detected at a position where data is required, or because the
data given is of a different type than the required type). Since type errors are detected during
evaluation, this is called a dynamic type error.

Definition 4.1.11 (Dynamic Typing Rules for KFPT). Let 𝑠 be a KFPT-expression. We say that
𝑠 is directly dynamically untyped, if 𝑠 is of one of the following forms (where 𝑅 is a reduction
context):

• 𝑅[case𝑇 (𝑐 𝑠1 . . . 𝑠𝑛) of 𝐴𝑙𝑡𝑠] and 𝑐 is not of type 𝑇 .
• 𝑅[case𝑇 𝜆𝑥.𝑡 of 𝐴𝑙𝑡𝑠].
• 𝑅[(𝑐 𝑠1 . . . 𝑠ar(𝑐) ) 𝑡]

A KFPT-expression 𝑠 is dynamically untyped if it can be evaluated to a directly dynamically
untyped expression using call-by-name evaluation, i.e.

𝑠 is dynamically untyped
⇐⇒

∃𝑡 : 𝑠 𝑛𝑎𝑚𝑒,∗−−−−−−→ 𝑡 ∧ 𝑡 is directly dynamically untyped

Note that dynamically untyped expressions diverge. The following proposition is true:

Proposition 4.1.12. A closed KFPT-expression 𝑠 is irreducible (w.r.t. call-by-name evaluation)
iff one of the following conditions is true:

• 𝑠 is WHNF or
• 𝑠 is directly dynamically untyped.

The proposition considers only closed expressions. Note also that not all divergent closed
expressions are dynamically untyped, since Ω := (𝜆𝑥.𝑥) (𝜆𝑥.𝑥) diverges: Ω

𝑛𝑎𝑚𝑒−−−−→ Ω
𝑛𝑎𝑚𝑒−−−−→

Ω . . ..
In Haskell dynamically untyped expressions are discovered at compile time, because Haskell has
a strong and static type system. A drawback is that there are KFPT-expressions that are not
dynamically untyped, but are not typeable in Haskell (an example is the expression Ω, or the
expression caseBool True of {True→ True; False→ Nil}). We will discuss this again when
we consider polymorphic typing of expressions.

4.1.4. Searching the Call-by-Name-Redex

As for the lambda calculus, we provide an alternative way to find the call-by-name redex by
using a labeling algorithm. In compilers and interpreters of functional languages, expressions
are represented as term graphs and they use a similar method, which is called graph-unwinding.
For KFPT-expression 𝑠, the labeling algorithm starts with 𝑠★. The the following label shifting
rules are applied exhaustively.
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• (𝑠 𝑡)★⇒ (𝑠★ 𝑡)

• (case𝑇 𝑠 of 𝐴𝑙𝑡𝑠)★⇒ (case𝑇 𝑠★ of 𝐴𝑙𝑡𝑠)

After executing the labeling algorithm, the following cases can occur:

• The label is at an abstraction. Then there are three subcases:

– 𝑠 is the labeled abstraction. Then an FWHNF is found and no call-by-name reduction
is applicable.

– The direct superterm of the abstraction is an application, i.e. 𝑠 is of the form
𝐶 [(𝜆𝑥.𝑠′)★ 𝑡]. Then the call-by-name reduction is 𝐶 [(𝜆𝑥.𝑠′) 𝑡]

𝑛𝑎𝑚𝑒,𝛽
−−−−−−→ 𝐶 [𝑠′ [𝑡/𝑥]].

– The direct superterm of the abstraction is a case-expression, i.e. 𝑠 is of the form
𝐶 [case𝑇 (𝜆𝑥.𝑠′)★ of 𝐴𝑙𝑡𝑠]. Then 𝑠 is directly dynamically untyped and no call-by-
name reduction is applicable to 𝑠.

• The label is at an constructor application. Then there are the following subcases:

– 𝑠 is the labeled constructor application. Then a CWHNF is found and thus no
call-by-name reduction is applicable

– The direct superterm of the constructor application is a case-expression, i.e. 𝑠 is of
the form 𝐶 [case𝑇 (𝑐 𝑠1 . . . 𝑠𝑛) of 𝐴𝑙𝑡𝑠]. There are two cases:

∗ 𝑐 belongs to type 𝑇 . Then there is a matching case-alternative for 𝑐. Then
reduce:

𝐶 [case𝑇 (𝑐 𝑠1 . . . 𝑠𝑛) of {. . . ; (𝑐 𝑥1 . . . 𝑥𝑛) → 𝑡 ; . . .}]
𝑛𝑎𝑚𝑒,𝑐𝑎𝑠𝑒−−−−−−−−−→ 𝐶 [𝑡 [𝑠1/𝑥1, . . . , 𝑠𝑛/𝑥𝑛]]

∗ 𝑐 does not belong to type 𝑇 . Then no call-by-name reduction is applicable to 𝑠
and 𝑠 is directly dynamically untyped.

– The direct superterm is an application, i.e. 𝑠 is of the form𝐶 [(𝑐 𝑠1 . . . 𝑠𝑛)★ 𝑡]. Then
no call-by-name reduction is applicable to 𝑠 and 𝑠 is directly dynamically untyped.

• The label is at a variable. Then 𝑠 is of the form 𝐶 [𝑥★]. Then no call-by-name reduction is
applicable to 𝑠, since a free variable was discovered (at reduction position). In this case 𝑠
is not a WHNF, but also not directly dynamically untyped.

Example 4.1.13. The call-by-name evaluation of the expression

(((𝜆𝑥.𝜆𝑦.(
©«
caseList 𝑦 of {
Nil→ Nil;
(Cons 𝑧 𝑧𝑠) → (𝑥 𝑧)}

ª®®¬ True)) (𝜆𝑢, 𝑣.𝑣)) (Cons (𝜆𝑤.𝑤) Nil))
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is as follows (where all labeling steps of the labeling algorithm are written explicitly);

(((𝜆𝑥.𝜆𝑦.(
©«
caseList 𝑦 of {
Nil→ Nil;
(Cons 𝑧 𝑧𝑠) → (𝑥 𝑧)}

ª®®¬ True)) (𝜆𝑢, 𝑣.𝑣)) (Cons (𝜆𝑤.𝑤) Nil))★

⇒(((𝜆𝑥.𝜆𝑦.(
©«
caseList 𝑦 of {
Nil→ Nil;
(Cons 𝑧 𝑧𝑠) → (𝑥 𝑧)}

ª®®¬ True)) (𝜆𝑢, 𝑣.𝑣))★ (Cons (𝜆𝑤.𝑤) Nil))

⇒(((𝜆𝑥.𝜆𝑦.(
©«
caseList 𝑦 of {
Nil→ Nil;
(Cons 𝑧 𝑧𝑠) → (𝑥 𝑧)}

ª®®¬ True))★ (𝜆𝑢, 𝑣.𝑣)) (Cons (𝜆𝑤.𝑤) Nil))
𝑛𝑎𝑚𝑒,𝛽
−−−−−−→((𝜆𝑦.(

©«
caseList 𝑦 of {
Nil→ Nil;
(Cons 𝑧 𝑧𝑠) → ((𝜆𝑢, 𝑣.𝑣) 𝑧)}

ª®®¬ True)) (Cons (𝜆𝑤.𝑤) Nil))★

⇒((𝜆𝑦.(
©«
caseList 𝑦 of {
Nil→ Nil;
(Cons 𝑧 𝑧𝑠) → ((𝜆𝑢, 𝑣.𝑣) 𝑧)}

ª®®¬ True))★ (Cons (𝜆𝑤.𝑤) Nil))
𝑛𝑎𝑚𝑒,𝛽
−−−−−−→(

©«
caseList (Cons (𝜆𝑤.𝑤) Nil) of {
Nil→ Nil;
(Cons 𝑧 𝑧𝑠) → ((𝜆𝑢, 𝑣.𝑣) 𝑧)}

ª®®¬ True)★

⇒(
©«
caseList (Cons (𝜆𝑤.𝑤) Nil) of {
Nil→ Nil;
(Cons 𝑧 𝑧𝑠) → ((𝜆𝑢, 𝑣.𝑣) 𝑧)}

ª®®¬
★

True)

⇒(
©«
caseList (Cons (𝜆𝑤.𝑤) Nil)★ of {
Nil→ Nil;
(Cons 𝑧 𝑧𝑠) → ((𝜆𝑢, 𝑣.𝑣) 𝑧)}

ª®®¬ True)
𝑛𝑎𝑚𝑒,𝑐𝑎𝑠𝑒−−−−−−−−−→(((𝜆𝑢, 𝑣.𝑣) (𝜆𝑤.𝑤)) True)★
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⇒(((𝜆𝑢, 𝑣.𝑣) (𝜆𝑤.𝑤))★ True)
⇒(((𝜆𝑢, 𝑣.𝑣)★ (𝜆𝑤.𝑤)) True)

𝑛𝑎𝑚𝑒,𝛽
−−−−−−→((𝜆𝑣.𝑣) True)★

⇒((𝜆𝑣.𝑣)★ True)
𝑛𝑎𝑚𝑒,𝛽
−−−−−−→True

We explain the representation of KFPT-expressions as (syntax) trees: Every node of the tree
represents a syntactic construct of the expression (starting with the root).

• variables are represented by nodes labeled with the variable.

• abstractions are represented by a node labeled with “𝜆” that has two children: the left child
is the term representing the variable that is bound by the node and the right child is the
term representing the body of the abstraction.

𝜆

�� ��
𝑥 𝑠

where 𝑠 is the tree of 𝑠.

• applications are represented by a node labeled with “@” that has two children: one for the
expression in function position and one for the argument. I.e., (𝑠 𝑡) is represented by

@

�� ��
𝑠 𝑡

where 𝑠 and 𝑡 are the trees for 𝑠 and 𝑡.

• constructor applications have a node labeled with the constructor name 𝑐 that has ar(𝑐)
children, one for each argument of the constructor application. I.e., (𝑐 𝑠1 . . . 𝑠𝑛) is
represented by

𝑐

vv ((~~   
𝑠1 . . . . . . . . . 𝑠𝑛

where 𝑠𝑖 are the trees for 𝑠𝑖 .

• case-expressions are represented by a node labeled with case𝑇 and having 𝑛 + 1

children, if 𝑛 is the number of alternatives. The first child is for the first argu-
ment of the case-expression and the other children represent the alternatives. I.e.,
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case𝑇 𝑠 of {𝐴𝑙𝑡1; . . . ; 𝐴𝑙𝑡𝑛} is represented by

case𝑇

uu ((zz
""

𝑠 𝐴𝑙𝑡1 . . . . . . 𝐴𝑙𝑡𝑛

where 𝑠 is the tree for 𝑠 and 𝐴𝑙𝑡𝑖 is the tree of the 𝑖-th alternative.
• a case-alternative “pattern”→ “expression” is represented by a node labeled with→ that

has two children: one for the pattern and one for the expression on the right-hand side.
I.e., 𝑃𝑎𝑡 → 𝑡 is represented by

→

||   
𝑃𝑎𝑡 𝑡

where 𝑃𝑎𝑡 is the tree of 𝑃𝑎𝑡 and 𝑡 is the tree for 𝑡.

Example 4.1.14. The tree for expression

©«
©«
𝜆𝑥.𝜆𝑦.caseList (Cons 𝑥 Nil) of {

(Cons 𝑧 𝑧𝑠) → False;
Nil→ True}

ª®®¬ True
ª®®¬ (Cons True Nil)

is:
@

uu ((
@

uu %%

Cons

  }}
𝜆

  ~~

True True Nil

𝑥 𝜆

$$~~
𝑦 caseList

��ss ++Cons

��   

→
%%zz

→
!!~~

𝑥 Nil Cons

~~ $$

False Nil True

𝑧 𝑧𝑠

Searching for the call-by-name redex can be summarized in the tree representation as follows:
Walk along the left-most path until a node is found, that
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• is labeled with a variable 𝑥, or
• is labeled with a constructor 𝑐, or
• is labeled with 𝜆.

The direct superterm (or supertree) is the call-by-name redex, if a call-by-name reduction is
applicable.
For the example tree, the search walks along the left-most path until it finds the first 𝜆. The
call-by-name-redex is the direct superterm, i.e. the application (𝜆𝑥. . . .) True. We show the
complete evaluation of the example:

©«
©«
𝜆𝑥.𝜆𝑦.caseList (Cons 𝑥 Nil) of {

(Cons 𝑧 𝑧𝑠) → False;
Nil→ True}

ª®®¬ True
ª®®¬ (Cons True Nil)

𝑛𝑎𝑚𝑒,𝛽
−−−−−−→

©«
𝜆𝑦.caseList (Cons True Nil) of {

(Cons 𝑧 𝑧𝑠) → False;
Nil→ True}

ª®®¬ (Cons True Nil)
𝑛𝑎𝑚𝑒,𝛽
−−−−−−→ caseList (Cons True Nil) of {(Cons 𝑧 𝑧𝑠) → False; Nil→ True}
𝑛𝑎𝑚𝑒,𝑐𝑎𝑠𝑒−−−−−−−−−→ False

4.1.5. Properties of the Call-by-Name Reduction

For the call-by-name reduction the following can be proved by checking the possible cases:
• The call-by-name reduction is deterministic, i.e. for every KFPT-expression 𝑠, there is at

most one expression 𝑡 with 𝑠
𝑛𝑎𝑚𝑒−−−−→ 𝑡.

• A WHNF is irreducible w.r.t. call-by-name evaluation.
As in the lambda calculus, call-by-name evaluation is standardising (the proof is similar to the
proof in the lambda calculus, but would require to adapt the notion of parallel reduction to the
new syntax and including (case)-reduction, we omit it).

Theorem 4.1.15. Let 𝑠 be a KFPT-expression. If 𝑠 ∗−→ 𝑡 with (𝛽)- and (case)-reductions (applied
in arbitrary contexts), where 𝑡 is a WHNF, then there exists a WHNF 𝑡′, such that 𝑠

𝑛𝑎𝑚𝑒,∗−−−−−−→ 𝑡′ and
𝑡′
∗−→ 𝑡 (modulo 𝛼-equivalence). I.e., the following diagram illustrates the claim where straight

lines are given reductions and dashed lines are existentially quantified reductions:

𝑠

∗
��

𝑛𝑎𝑚𝑒,∗

��
𝑡

WHNF
𝑡′

WHNF
∗

oo
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A consequence of the theorem is, that (𝛽)- and (case)-steps (applied at arbitrary positions) do
not change the convergence of the expressions (in fact, they are correct program transformations
w.r.t. the obvious definition of contextual equivalence for KFPT).

4.2. The Core Language KFPTS

We now extend KFPT to KFPTS. The “S” means supercombinators, which are names (or
constants) that denote (recursive) functions.

4.2.1. Syntax

We assume that there is a set of supercombinator names SC.

Definition 4.2.1. Expressions of the language KFPTS are built by the following grammar where
the side conditions on case-expressions must hold as in KFPT:

Expr ::= 𝑉 | 𝜆𝑉.Expr | (Expr1 Expr2)
| (𝑐𝑖 Expr1 . . . Exprar(𝑐𝑖 ) )
| (case𝑇 Expr of {Pat1 → Expr1; . . . ;Pat𝑛 → Expr𝑛})
| 𝑆𝐶 where 𝑆𝐶 ∈ SC

Pat𝑖 ::= (𝑐𝑖 𝑉1 . . . 𝑉ar (𝑐𝑖 ) ) where variables 𝑉𝑖 are pairwise distinct.

For every supercombinator, there must exist exactly one supercombinator definition:

Definition 4.2.2. A supercombinator definition is an equation

𝑆𝐶 𝑉1 . . . 𝑉𝑛 = Expr

where𝑉𝑖 are pairwise distinct variables andExpr is a KFPTS-expression such thatFV (Expr) ⊆
{𝑉1, . . . , 𝑉𝑛}, i.e. only 𝑉1, . . . , 𝑉𝑛 can occur free in Expr. We write ar(𝑆𝐶) = 𝑛 to denote the
arity of the supercombinator 𝑆𝐶.

We assume that names of supercombinators, of variables, and of constructors do not overlap (all
sets are disjoint).

Definition 4.2.3. A KFPTS-program consists of
• a set of types and data constructors,
• a set of supercombinator definitions,
• and a KFPTS-expression 𝑠 (we could also define it as a special supercombinator named
main with definition main = 𝑠.).

As a side condition it is required that the supercombinators that occur in the right-hand sides of
the definitions and in 𝑠 are all defined.
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4.2.2. Call-by-Name Evaluation of KFPTS-Expressions

The KFPT-Call-by-Name evaluation has to be extended, to evaluate supercombinator applica-
tions. Reduction contexts in KFPTS are defined analogously to KFPT as:

RCtxt ::= [·] | (RCtxt Expr) | case𝑇 RCtxt of 𝐴𝑙𝑡𝑠

The reduction rules are extended by one rule:

Definition 4.2.4. The reduction rules (𝛽), (case) and (SC-𝛽) are defined in KFPTS as:

(𝛽) (𝜆𝑥.𝑠) 𝑡
𝛽
−→ 𝑠[𝑡/𝑥]

(case) case𝑇 (𝑐 𝑠1 . . . 𝑠ar(𝑐) ) of {. . . ; (𝑐 𝑥1 . . . 𝑥ar(𝑐) ) → 𝑡; . . .}
𝑐𝑎𝑠𝑒−−−−→ 𝑡 [𝑠1/𝑥1, . . . , 𝑠ar(𝑐)/𝑥ar(𝑐) ]

(SC-𝛽) (𝑆𝐶 𝑠1 . . . 𝑠𝑛)
𝑆𝐶-𝛽
−−−−→ 𝑒[𝑠1/𝑥1, . . . , 𝑠𝑛/𝑥𝑛],

if 𝑆𝐶 𝑥1 . . . 𝑥𝑛 = 𝑒 is the definition of 𝑆𝐶

The call-by-name reduction in KFPTS applies one of the three rules:

Definition 4.2.5. If 𝑟1 → 𝑟2 with a (𝛽)-, (case)- or (SC-𝛽)-reduction, then for any reduction
context 𝑅, 𝑅[𝑟1]

𝑛𝑎𝑚𝑒−−−−→ 𝑅[𝑟2] is a (KFPTS)-call-by-name reduction.

The definition of WHNFs has to be slightly adapted, since we allow occurrences of supercombi-
nators that are not fully saturated, i.e. expressions of the form 𝑆𝐶 𝑠1 . . . 𝑠𝑚 where ar(𝑆𝐶) > 𝑚.
They behave like abstractions 𝜆𝑥𝑚+1, . . . , 𝑥ar(𝑆𝐶 ) .𝑆𝐶 𝑠1 . . . 𝑠𝑚 𝑥𝑚+1 . . . 𝑥ar(𝑆𝐶 ) and thus they
belong to the FWHNFs in KFPTS. The definition of CWHNFs is the same as in KFPT.
For the dynamic typing rules, the following case is added

• 𝑅[case𝑇 𝑆𝐶 𝑠1 . . . 𝑠𝑚 of 𝐴𝑙𝑡𝑠] is directly dynamically untyped if ar(𝑆𝐶) > 𝑚.
The labeling algorithm for searching the redex, uses the same shifting rules as in KFPT, but after
labeling, there are new cases:

• The labeled subexpression is a supercombinator, i.e. the labeled expression is of the form
𝐶 [𝑆𝐶★]. Then there are three subcases:

– 𝐶 = 𝐶′ [[·] 𝑠1 . . . 𝑠𝑛] and ar(𝑆𝐶) = 𝑛. Then apply the (SC-𝛽)-reduction:
𝐶′ [𝑆𝐶 𝑠1 . . . 𝑠𝑛]

𝑛𝑎𝑚𝑒,𝑆𝐶-𝛽
−−−−−−−−−→ 𝐶′ [𝑒[𝑠1/𝑥1, . . . , 𝑠𝑛/𝑥𝑛]] (if 𝑆𝐶 𝑥1 . . . 𝑥𝑛 = 𝑒 is

the definition of 𝑆𝐶).
– 𝐶 = [[·] 𝑠1 . . . 𝑠𝑚] und ar(𝑆𝐶) > 𝑚. Then the expression is an FWHNF.
– 𝐶 = 𝐶′ [case𝑇 [·] 𝑠1 . . . 𝑠𝑚 of 𝐴𝑙𝑡𝑠] and ar(𝑆𝐶) > 𝑚. Then the expression is

directly dynamically untyped.

Example 4.2.6. Assume that the supercombinators map and not are defined as:

map 𝑓 𝑥𝑠 = caseList 𝑥𝑠 of {Nil→ Nil; (Cons 𝑦 𝑦𝑠) → Cons ( 𝑓 𝑦) (map 𝑓 𝑦𝑠)}
not 𝑥 = caseBool 𝑥 of {True→ False; False→ True}
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Call-by-name evaluation of expression map not (Cons True (Cons False Nil)) is:

map not (Cons True (Cons False Nil))
𝑛𝑎𝑚𝑒,SC-𝛽
−−−−−−−−−→ caseList (Cons True (Cons False Nil)) of {

Nil→ Nil;
(Cons 𝑦 𝑦𝑠) → Cons (not 𝑦) (map not 𝑦𝑠)}

𝑛𝑎𝑚𝑒,case−−−−−−−−→ Cons (not True) (map not (Cons False Nil))

The obtained expression is a WHNF. To evaluate the full list, one has to wrap the expression into
a context that forces the evaluation.

4.3. Extension by seq

Haskell has the binary operator seq which has the following semantics:

(seq 𝑎 𝑏) =
{
𝑏 if 𝑎↓
⊥ if 𝑎⇑

Operationally, for the evaluation of an expression (seq 𝑎 𝑏), first 𝑎 is evaluated to a WHNF 𝑣,
and after obtaining seq 𝑣 𝑏 the reduction is (seq 𝑣 𝑏) → 𝑏. Using seq, one can define the
operator $! as

𝑓 $! 𝑥 = seq 𝑥 ( 𝑓 𝑥)

which makes a function strict in its argument: Let 𝑓 𝑥 = 𝑡 be a supercombinator definition,
then 𝑓 $! 𝑠 only returns 𝑓 [𝑠/𝑥] if 𝑠↓, otherwise ( 𝑓 𝑠)⇑. Operationally, this can be implemented
by evaluating first 𝑠 and thereafter performing an

𝑆𝐶-𝛽
−−−−→-step when the argument is a value (i.e. it

mimics call-by-value instead of call-by-name evaluation for 𝑓 ).

Note that the implementation of $! using seq makes more sense, if sharing (or call-by-need) is
used in the evaluation, since it the expression replaced for 𝑥 should be evaluated once and not
twice. Semantically, it makes no difference, but for efficiency it makes sense.

The operators seq and $! are helpful, to enforce strict evaluation which is sometimes advanta-
geous to optimize the space-behavior during evaluation. Let us consider a function to compute
the factorial of a natural number (we assume an implementation of numbers and operations on
it). A naive implementation is

fac 𝑥 = if 𝑥 = 0 then 1 else 𝑥 ∗ (fac (𝑥 − 1))

The call-by-name evaluation of fac 𝑛 will generate an expression of the form 𝑛 ∗ (𝑛−1) ∗ . . . ∗1,
and thereafter computing all the multiplications. Thus, representing this intermediate expression
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will require space that is linear in 𝑛. A first approach is to use an end-recursive variant:

fac 𝑥 = facER 𝑥 1

facER 𝑥 𝑦 = if 𝑥 = 0 then 𝑦 else facER (𝑥 − 1) (𝑥 ∗ 𝑦)

However, the space problem is not solved, since the second argument of facER still requires
linear space in 𝑛. Using sharing and seq, the following definition in Haskell only requires
constant space:

fac x = facER x 1

where facER 0 y = y

facER x y = let x’ = x-1

y’ = x*y

in seq x’ (seq y’ (facER x’ y’))

The languages KFPT and KFPTS do not have seq and it cannot be encoded in them. Thus,
we introduce KFPT+seq and KFPTS+seq as the calculi that extend KFPT or KFPTS with the
operator seq. We leave the definition of the extended syntax and reduction contexts as an
exercise. The new required reduction rule is

seq 𝑣 𝑡 → 𝑡, if 𝑣 is a WHNF

4.4. Polymorphic Types

All considered languages are untyped or very weakly typed. Haskell uses a strong static and
polymorphic type system. With KFPTSP (KFPTSP+seq, resp.) we denote the core language
KFPTS (KFPTS+seq, resp.) where the set of expressions and programs are restricted to expres-
sions and programs that are well-typed. We will investigate the polymorphic typing in the next
chapter, but we already introduce the syntax for types:

Definition 4.4.1. The syntax of polymorphic types is given by the following grammar:

T ::= 𝑇𝑉 | 𝑇𝐶 T1 . . . T𝑛 | T1 → T2

where 𝑇𝑉 is a non-terminal generating a type variable and 𝑇𝐶 is a type constructor of arity 𝑛.

Type constructors are names like Bool, List, Pair, etc. Type constructors may require types
as arguments, for instance, the type constructor List requires an argument type, which fixes the
type of the elements of the list, e.g. List Bool is the type of a list of booleans. We sometimes use
Haskell-notation and write [Bool] instead of List Bool. The number of required arguments
is the arity of the type constructor, sometimes written as ar(𝑇𝐶).
Type type 𝑇1 → 𝑇2 is a function type, for a function that receives an argument of type 𝑇1 and
returns a result of type 𝑇2. For instance, the test whether a number is even has type Int →
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Bool. The→ in types is right-associative, i.e. 𝑇1 → 𝑇2 → 𝑇3 means 𝑇1 → (𝑇2 → 𝑇3) and not
(𝑇1 → 𝑇2) → 𝑇3 (which is different type).

Type-constructors of arity 0, are called base types. Types that do not contain type variables are
called monomorphic types, and types that may contain type variables are called polymorphic
types. If a type variable occurs in a type, then this type represents a set of monomorphic types,
since the variable may be substituted by any type. For example, the identity function has type
𝑎 → 𝑎 where 𝑎 is a type variable. It represents all types where 𝑎 is replaced a type (such a
replacement is called a type substitution). For example, the substitution 𝜎 = {𝑎 ↦→ List Bool}
applied to 𝑎 → 𝑎 results in 𝜎(𝑎 → 𝑎) = List Bool→ List Bool

In Haskell, one writes 𝑒 :: 𝑇 if expression 𝑒 is of type 𝑇 . We also use this notation.

Some examples are:
True :: Bool
False :: Bool
not :: Bool→ Bool
map :: (𝑎 → 𝑏) → [𝑎] → [𝑏]
(𝜆𝑥.𝑥) :: (𝑎 → 𝑎)

We will discuss type checking and type inference in detail in the next chapter, but introduce some
simplified typing rules now, to get a first impression. The notation of the rules is

premises

conclusion
,

i.e. to derive the conclusion, the premises have to be satisfied. The simplified rules are:

• For the application:
𝑠 :: 𝑇1 → 𝑇2, 𝑡 :: 𝑇1

(𝑠 𝑡) :: 𝑇2

• Instantiation:
𝑠 :: 𝑇

𝑠 :: 𝑇 ′
if 𝑇 ′ = 𝜎(𝑇) for type substitution 𝜎,
that replaces type variables with types.

• For case-expressions:

𝑠 :: 𝑇1, ∀𝑖 : 𝑃𝑎𝑡𝑖 :: 𝑇1, ∀𝑖 : 𝑡𝑖 :: 𝑇2
(case𝑇 𝑠 of {𝑃𝑎𝑡1 → 𝑡1; . . . ; 𝑃𝑎𝑡𝑛 → 𝑡𝑛}) :: 𝑇2

Example 4.4.2. The boolean connectives and and or can be defined in KFPTS as:

and := 𝜆𝑥, 𝑦.caseBool 𝑥 of {True→ 𝑦; False→ False}
or := 𝜆𝑥.𝑦.caseBool 𝑥 of {True→ True; False→ 𝑦}
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The expression and True False can be typed by applying the rule for the application twice:

and :: Bool→ Bool→ Bool, True :: Bool

(and True) :: Bool→ Bool
, False :: Bool

(and True False) :: Bool

Example 4.4.3. The expression

caseBool True of {True→ (Cons True Nil); False→ Nil}

can be typed as follows:

True :: Bool,
False :: Bool

,

Cons :: 𝑎 → [𝑎] → [𝑎]
Cons :: Bool→ [Bool] → [Bool]

, True :: Bool

(Cons True) :: [Bool] → [Bool]
,

Nil :: [𝑎]
Nil :: [Bool]

(Cons True Nil) :: [Bool]
,

Nil :: [𝑎]
Nil :: [Bool]

caseBool True of {True→ (Cons True Nil); False→ Nil} :: [Bool]

Example 4.4.4. The operator seq is of type 𝑎 → 𝑏 → 𝑏, since it ignores the first argument in
the result.

Example 4.4.5. If types of map and not are already given, then (map not) can be typed as
follows:

map :: (𝑎 → 𝑏) → [𝑎] → [𝑏]
map :: (Bool→ Bool) → [Bool] → [Bool]

, not :: Bool→ Bool

(map not) :: [Bool] → [Bool]

Note that it is not deterministic when and how to apply the instantiation rule, here we did it
by guessing the right position and the substitution. Later we will provide an algorithm which
removes this guessing.

We did not provide a typing rule for abstractions and the rule for case is not precise, since it
ignores the correspondence between the types of the variables in patterns and right-hand sides
of alternatives. Additionally, we are not able to type recursive supercombinators, since there is
no rule. All this will be done in the next chapter.

4.5. Conclusion and References

We summarize the introduced core languages (which extend the call-by-name lambda calculus)
in a table:
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Core Language Description
KFPT Extension of the call-by-name lambda calculus with weakly typed

case and data constructors seq is not encodable.
KFPTS Extension of KFPT by recursive supercombinators
KFPTSP Restriction of KFPTS to well-typed expressions using a polymorphic

type system
KFPT+seq Extension of KFPT with the seq-operator
KFPTS+seq Extension of KFPTS with the seq-operator
KFPTSP+seq Restriction of KFPTS+seq to well-typed expressions using a polymor-

phic type system

The core languages can be found in (Schmidt-Schauß, 2009), similar core languages can for
instance be found in (Peyton Jones, 1987).
We view the language KFPTSP+seq as a core language of Haskell.
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In this chapter we will introduce two algorithms for polymorphic type inference for recursive
functional programs, i.e. we will consider the core language KFPTSP+seq. Before introducing
the algorithms, we motivate why a type system should be used, in particular, we discuss the
advantages over dynamic typing. We then explain the task of unification for types which
is necessary for the type inference algorithms. We then introduce typing of KFPTS+seq-
expressions and at the end we consider the typing of (recursive) supercombinators, where we
consider iterative typing and Hindley-Damas-Milner typing. While iterative typing computes
most general polymorphic types, the decision problem of whether a program is iteratively
typeable is undecidable. In contrast, Hindley-Damas-Milner-typing is decidable, but it computes
less general types.

5.1. Motivation

Since KFPTS+seq-programs are not typed, dynamic type errors can occur at runtime. Such type
errors are programming errors, i.e. a programmer does not assume that a program has type errors.
A strong and static type system prevents from such type errors and thus helps the programmer to
detect errors at compile time when type checking is performed.
Types can also be used to document the program. Often the type of a function gives a good
idea of what the function does or does not do. Therefore, a good type system should meet the
following requirements:

• Type checking should be performed at compile time.
• Typed programs do not lead to type errors at runtime.

Other desirable properties for a strong static type system are
• The type system should not be such restrictive that well-typed programs are difficult to

write, i.e. useful programs should not be rejected because of the type system.
• Ideally, the type system should not require the programmer to write down all the types,

i.e. instead of just checking the types, the type system should ideally be able to compute
the type itself (this is called type inference). If type inference is supported, the system
should compute general types (ideally the most general types).

There are type systems that do not satisfy all the desired properties. For example, the simply
typed lambda calculus is very restrictive: typing is decidable at compile time, but the set of typed
programs is no longer Turing complete, since all simply typed programs terminate (this can be
proved!). In extensions of Haskell’s type system, type inference is no longer possible, i.e. there
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are cases where types must be provided by the programmer. There are also extensions where
type checking is undecidable, which can lead to the problem that the compiler may not terminate
during type check.
A first approach to a general type system for KFPTSP+seq would be to set:

A KFPTSP+seq-program is well-typed, if it cannot lead to a dynamic type error
during runtime.

This restricts the set of well-typed programs, to those that are not directly dynamically untyped.
Unfortunately this notion is not usable, since the question whether an arbitrary KFPTS-program
is dynamically untyped is undecidable. We sketch the proof. Let tmEncode be a KFPTS+seq-
supercombinator that behaves like a universal Turing machine (see Appendix A for a Haskell-
function tmEncode), i.e. it receives an encoding of a Turing machine and an input and simulates
the TM on the input. It returns True, if the TM halts on the input. We assume that tmEncode
is not dynamically untyped (this holds for the Haskell-program in the Appendix A, since it is
Haskell-typeable, which implies that it is not dynamically untyped).
For TM encoding 𝑒𝑛𝑐 and an input 𝑖𝑛𝑝, let the expression 𝑠 be defined as

𝑠 := if tmEncode 𝑒𝑛𝑐 𝑖𝑛𝑝

then caseBool Nil of {True→ True; False→ False}
else caseBool Nil of {True→ True; False→ False}

Since (tmEncode 𝑒𝑛𝑐 𝑖𝑛𝑝) is not dynamically untyped, the following holds: 𝑠 is dynamically
untyped if, and only if, the evaluation of tmEncode 𝑒𝑛𝑐 𝑖𝑛𝑝) ends with True. So: if we
could decide whether 𝑠 is dynamically untyped, we could decide the halting problem, which is
impossible. This shows:

Proposition 5.1.1. The dynamic typing of KFPTS+seq-programs is undecidable.

Hence, we consider type systems that restrict the programs and the programming. For both type
systems that we consider, the following will hold:

• A well-typed expression is not dynamically untyped (otherwise the type system would not
be of much help).

• There are expressions, that are not dynamically untyped, but are also not well-typed.

5.2. Types: Definitions, Notation and Unification

In this section we introduce definitions and notations for types. We recall the syntax of polymor-
phic types:

T ::= 𝑇𝑉 | 𝑇𝐶 T1 . . . T𝑛 | T1 → T2

where 𝑇𝑉 is a type variable and 𝑇𝐶 is a type constructor1.
1We remind that the list type is represented in Haskell as [a]. This more or less means that the type constructor

is [] applied to the variable a. A special syntax is also used for tuple types: (,...,) is the type constructor,
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As a reminder: A base type is a type of the form 𝑇𝐶, where 𝑇𝐶 is of arity 0. A monomorphic
type) is a type that does not contain any type variables.

Example 5.2.1. The types Int, Bool and Char are base types. The types [Int] and
Char -> Int are not base types, but monomorphic types. The types [a] and a -> a are
neither base types nor monomorphic types.

We write Vars (𝑇) for the set of variables that occur in the polymorphic type 𝑇 .
We also use universally quantified types as a new notation. Let 𝜏 be a polymorphic type with
occurrences of the type variables 𝛼1, . . . , 𝛼𝑛, then ∀𝛼1, . . . , 𝛼𝑛.𝜏 is the universally quantified
type for 𝜏. Polymorphic types can be considered as universally quantified, since the type variables
represent any type. We use the quantifier syntax to distinguish (in the typing procedure) between
types that can be ‘copied’ (i.e. renamed), and types that we cannot rename in the typing procedure.
The order of the quantified type variables in the quantifier is irrelevant. Therefore, we also use
the notation ∀X.𝜏, where X is a set of type variables.

Definition 5.2.2. A type substitution is a mapping {𝛼1 ↦→ 𝜏1, . . . , 𝛼𝑛 ↦→ 𝜏𝑛} of a finite set of
type variables to types. Let 𝜎 be a type substitution. The homomorphic extension 𝜎𝐸 of 𝜎 is the
extension of type substitution as a mapping from types to types, which is defined by:

𝜎𝐸 (𝑇𝑉) := 𝜎(𝑇𝑉), if 𝜎 maps the variable 𝑇𝑉
𝜎𝐸 (𝑇𝑉) := 𝑇𝑉, if 𝜎 does not represent the variable 𝑇𝑉

𝜎𝐸 (𝑇𝐶 𝑇1 . . . 𝑇𝑛) := 𝑇𝐶 𝜎𝐸 (𝑇1) . . . 𝜎𝐸 (𝑇𝑛)
𝜎𝐸 (𝑇1 → 𝑇2) := 𝜎𝐸 (𝑇1) → 𝜎𝐸 (𝑇2)

In the following, we do not distinguish between 𝜎 and the extension 𝜎𝐸 .
A type substitution is a ground substitution for a type 𝜏 if and only if 𝜎 maps to monomorphic
types and all type variables that occur in 𝜏 are mapped to monomorphic types by 𝜎.

Using ground substitutions, we can define a semantics of polymorphic types that uses monomor-
phic types: Let 𝜏 be a polymorphic type, the ground type semantics sem(𝜏) of 𝜏 is the of all
monomorphic types, that can be generated from 𝜏 by applying ground substitutions, i.e.

sem(𝜏) := {𝜎(𝜏) | 𝜎 is a ground substitution for 𝜏}

This corresponds to the intuition of type schemas: a polymorphic type describes the schema of
a set of monomorphic types.
We introduced some simple typing rules in Section 4.4. Let us reconsider the rule for the
application:

𝑠 :: 𝑇1 → 𝑇2, 𝑡 :: 𝑇1

(𝑠 𝑡) :: 𝑇2

e.g. (a,b) is the type for pairs. We will use this syntax in the following.
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This rule requires that the argument type of 𝑠 already matches the type of 𝑡. As an example, let
us assume that we know the most general types of map and not as:

map :: (a -> b) -> [a] -> [b]

not :: Bool -> Bool

To type map not using the application rule, we have to instantiate the type of map. The required
substitution is 𝜎 = {a ↦→ Bool, b ↦→ Bool}, however, we do not want to guess the right
substitution, we want to compute it. A (general) procedure to “search for a substitution that
makes types (or also terms) equal” is unification. We define this now:

Definition 5.2.3. A unification problem on types is a set 𝐸 of equations of the form 𝜏1
·
= 𝜏2 where

𝜏1 and 𝜏2 are polymorphic types. A solution to a unification problem on types is a substitution
𝜎 (called unifier), such that 𝜎(𝜏1) = 𝜎(𝜏2) for all equations 𝜏1

·
= 𝜏2 of 𝐸 .

A most general solution (most general unifier, mgu) of 𝐸 is a unifier 𝜎 such that for every unifier
𝜌 of 𝐸 there is a substitution 𝛾 such that 𝜌(𝑥) = 𝛾 ◦ 𝜎(𝑥) for all 𝑥 ∈ Vars (𝐸).

One can verify that most general unifiers are unique up to the renaming of variables.

Example 5.2.4. For the unification problem {𝛼 ·
= 𝛽}, the substitutions 𝜎 = {𝛼 ↦→ 𝛽} and

𝜎′ = {𝛽 ↦→ 𝛼} are most general unifiers. The substitution 𝜎′′ = {𝛼 ↦→ Bool, 𝛽 ↦→ Bool} is a
unifier, but not a most general unifier.

Algorithm 1 computes a most general unifier, if it exists. The data structure it uses, is a multi-set
of equations to be unified (multi-sets are analogous to sets, but multiple occurrences of elements
are allowed). We use 𝐸 for such multisets and 𝐸 ∪ 𝐸 ′ means the disjoint union of two multisets.
The notation 𝐸 [𝜏/𝛼] means that in all equations of 𝐸 the type variable 𝛼 is replaced by type 𝜏
(i.e. on all left and right-hand sides of the equations the substitution {𝛼 ↦→ 𝜏} is applied).
The unification algorithm has the following properties (for a proof see e.g. (Baader & Nipkow,
1998)):

• The algorithm stops with Fail iff the input has no solution.
• The algorithm stops with success iff the input has a unifier. The equation system 𝐸 then

has the form {𝛼1
·
= 𝜏1, . . . , 𝛼𝑛

·
= 𝜏𝑛}, where 𝛼𝑖 are pairwise distinct type variables, each

𝛼𝑖 does not occur in any 𝜏𝑗 . The unifier is 𝜎 = {𝛼1 ↦→ 𝜏1, . . . , 𝛼𝑛 ↦→ 𝜏𝑛}.
• If the algorithm computes a unifier, then it is a most general unifier.
• Rules can be applied in any order, no backtracking is necessary, i.e. the algorithm can be

implemented in a deterministic way.
• The algorithm terminates for every input.
• Types in the resulting substitution can grow exponentially with the size of the input
• The unification algorithm can be implemented with time complexity 𝑂 (𝑛 log 𝑛). This

requires to use sharing (to avoid the exponentially large types) and a different solve rule.
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Algorithm 1: Unification Algorithm for Types
The unification algorithm starts with the unification problem and then applies the following
rules exhaustively, where no order of the rule application is necessary, i.e. rule application is
non-deterministic. It stops if no rule can be applied, or Fail occurs.

(Fail1)
𝐸 ∪ {(𝑇𝐶1 𝜏1 . . . 𝜏𝑛)

·
= (𝑇𝐶2 𝜏

′
1 . . . 𝜏

′
𝑚)}

Fail
if 𝑇𝐶1 ≠ 𝑇𝐶2

(Fail2)
𝐸 ∪ {(𝑇𝐶1 𝜏1 . . . 𝜏𝑛)

·
= (𝜏′1 → 𝜏′2)}

Fail
(Fail3)

𝐸 ∪ {(𝜏′1 → 𝜏′2)
·
= (𝑇𝐶1 𝜏1 . . . 𝜏𝑛)}
Fail

(Decompose1)
𝐸 ∪ {𝑇𝐶 𝜏1 . . . 𝜏𝑛

·
= 𝑇𝐶 𝜏′1 . . . 𝜏

′
𝑛}

𝐸 ∪ {𝜏1
·
= 𝜏′1, . . . , 𝜏𝑛

·
= 𝜏′𝑛}

(Decompose2)
𝐸 ∪ {𝜏1 → 𝜏2

·
= 𝜏′1 → 𝜏′2}

𝐸 ∪ {𝜏1
·
= 𝜏′1, 𝜏2

·
= 𝜏′2}

(Orient)
𝐸 ∪ {𝜏1

·
= 𝛼}

𝐸 ∪ {𝛼 ·= 𝜏1}
if 𝜏1 is not a type variable
and 𝛼 is a type variable (Elim)

𝐸 ∪ {𝛼 ·= 𝛼}
𝐸

where 𝛼 is a type variable

(Solve)
𝐸 ∪ {𝛼 ·= 𝜏}

𝐸 [𝜏/𝛼] ∪ {𝛼 ·= 𝜏}

if type variable 𝛼 does
not occur in 𝜏, but oc-
curs in 𝐸

(OccursCheck)
𝐸 ∪ {𝛼 ·= 𝜏}

Fail

if 𝜏 ≠ 𝛼 and type
variable 𝛼 occurs
in 𝜏

• The unification problem (i.e. the question whether a set of type equations is unifiable) is
P-complete, i.e. roughly speaking all PTIME-problems can be represented as unification
problem. As a consequence, unification is not efficiently parallelizable.

We sketch the termination proof: Let 𝐸 be a unification problem and
• Var (𝐸) be the number of unsolved type variables in 𝐸 , where a variable 𝛼 is solved iff

it occurs once in 𝐸 as the left hand side of an equation (i.e. 𝐸 = 𝐸 ′ ∪ {𝛼 ·
= 𝜏} where

𝛼 ∉ Vars (𝐸 ′) ∪Vars (𝜏)).
• Size (𝐸) is the sum of all sizes of the types on right-hand and left sides of equations in 𝐸 ,

where the size of a type is tsize defined as: tsize(𝑇𝑉) = 1, tsize(𝑇𝐶 𝑇1 . . . 𝑇𝑛) =
1 +∑𝑛

𝑖=1 tsize(𝑇𝑖) and tsize(𝑇1 → 𝑇2) = 1 + tsize(𝑇1) + tsize(𝑇2)
• OEq (𝐸) is the number of not oriented equations in 𝐸 , where an equation is oriented, if it

is of the form 𝛼
·
= 𝜏 where 𝛼 is a type variable.

• M (𝐸) = (Var (𝐸), Size (𝐸),OEq (𝐸)), where 𝑀 (Fail) := (−1,−1,−1).

For the termination proof, we show that for each rule
𝐸

𝐸 ′
we have 𝑀 (𝐸 ′) <𝑙𝑒𝑥 𝑀 (𝐸), where

<𝑙𝑒𝑥 is the lexicographic order on triples. This is sufficient since the measure 𝑀 is well-founded.
The Fail-rules and rule (OccursCheck) always strictly decrease the measure. The Decompose-
rules do not increase Var (.), but strictly decrease Size (.) (and may increase OEq (.)). The rule
(Orient) does not increase Var (.), does not change Size (.), but strictly decreases OEq (.). The
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(Elim)-rule does not increase Var (.), but strictly decreases Size (.). The (Solve)-rule strictly
decreases Var (.) (and may increase Size (.)).

Example 5.2.5. The unification problem {(𝑎 → 𝑏) ·= Bool→ Bool} is solved by the unification
algorithm in one step:

(Decompose2)
{(𝑎 → 𝑏) ·= Bool→ Bool}
{𝑎 ·= Bool, 𝑏 ·= Bool}

Example 5.2.6. Consider the unification problem {𝑎 → [𝑎] ·= Bool → 𝑐, [𝑑] ·= 𝑐}. An
execution of unification algorithm is:

(Decompose1)

(Solve)

(Solve)

(Orient)

(Decompose2)
{[𝑑] ·= 𝑐, 𝑎 → [𝑎] ·= Bool→ 𝑐}
{[𝑑] ·= 𝑐, 𝑎 ·= Bool, [𝑎] ·= 𝑐}
{[𝑑] ·= 𝑐, 𝑎 ·= Bool, 𝑐 ·= [𝑎]}
{[𝑑] ·= [𝑎], 𝑎 ·= Bool, 𝑐 ·= [𝑎]}

{[𝑑] ·= [Bool], 𝑎 ·= Bool, 𝑐 ·= [Bool]}
{𝑑 ·= Bool, 𝑎 ·= Bool, 𝑐 ·= [Bool]}

The unifier is {𝑑 ↦→ Bool, 𝑎 ↦→ Bool, 𝑐 ↦→ [Bool]}.

Example 5.2.7. The unification problem {𝑎 ·= [𝑏], 𝑏 ·= [𝑎]} has no solution:

(OccursCheck)

(Solve)
{𝑎 ·= [𝑏], 𝑏 ·= [𝑎]}
{𝑎 ·= [[𝑎]], 𝑏 ·= [𝑎]}

Fail

The unification problem {𝑎 → [𝑏] ·= 𝑎 → 𝑐 → 𝑑} also has no solution:

(Fail2)

(Elim)

(Decompose2)
{𝑎 → [𝑏] ·= 𝑎 → 𝑐 → 𝑑}
{𝑎 ·= 𝑎, [𝑏] ·= 𝑐 → 𝑑}
{[𝑏] ·= 𝑐 → 𝑑}

Fail

Exercise 5.2.8. Solve the unification problems:

• {BTree 𝑎 ·= BTree (𝑏 → 𝑐), [𝑏] ·= [[𝑐]], 𝑑 → 𝑒 → 𝑓 = Bool→ 𝑐}
• {𝑎 → 𝑔 → (𝑏 → 𝑐) → (𝑑 → 𝑒) ·= 𝑎 → 𝑓 , ( [𝑏] → [𝑐] → [𝑑] → ([𝑒] → [𝑔])) → ℎ

·
= 𝑓 → ℎ}

We will now often use unification without providing the calculation of the unifier.
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5.3. Polymorphic Typing of KFPTSP+seq-Expressions

First we will consider the typing of expressions, later we will consider supercombinators. For
now we will assume that the supercombinators are already typed.
Since we have introduced unification, we can generalize the rule for typing the application:

𝑠 :: 𝜏1, 𝑡 :: 𝜏2

(𝑠 𝑡) :: 𝜎(𝛼)
if 𝜎 is a mgu of 𝜏1

·
= 𝜏2 → 𝛼 and 𝛼 is a

fresh type variable

However, this rule is not sufficient for typing expressions with binders: consider the typing of an
abstraction 𝜆𝑥.𝑠. To type 𝜆𝑥.𝑠, first the body 𝑠 must be typed, and then a corresponding function
type must be constructed. For example, in 𝜆𝑥.True the body True can be typed with Bool and
then the abstraction is typed with type 𝛼 → True. But this case is too simple, because 𝑥 does
not occur in the body. A better rule is:

Typing of 𝑠 with assumption 𝑥 is of type 𝜏 results in 𝑠 :: 𝜏′

𝜆𝑥.𝑠 :: 𝜏 → 𝜏′

But now the correct type 𝜏 of 𝑥 has to be guessed what does not lead to a deterministic algorithm.
For this reason, one starts with a most general type for 𝑥 and then computes the correct type
by solving type equations using unification. To make this more efficient, we can do all typing
steps, collect the necessary type equations and try to solve them all at once at the end using the
unification algorithm.
The data structure of the typing has to be adapted to keep the equation. Besides the type, we also
have equations 𝐸 . The schema of the abstraction rule also shows that we need type assumptions,
so they will also be part of our data structure. The used notation (also called a typing judgement)
is:

Γ ⊢ 𝑠 :: 𝜏, 𝐸.

Its meaning is: Given the assumptions Γ, the type 𝜏 with unification equations 𝐸 can be derived
for expression 𝑠.
The assumption Γ can contain already known types: these are types for supercombinators
and for data constructors. We use universally quantified types for these types to express that
these types can be renamed. For example, for map, we could include the assumption: map ::

∀𝑎, 𝑏.(𝑎 → 𝑏) → [𝑎] → [𝑏]. Constructor applications are typed like nested applications
(e.g. Cons True Nil is treated as ((Cons True) Nil). So data constructors are treated like
constants. The type assumption for Cons is Cons :: ∀𝑎.𝑎 → [𝑎] → [𝑎].
We now list all the typing rules for KFPTSP+seq-expressions, where types of supercombinators
must be included in the assumptions.
Axiom for variables:

(AxV)
Γ ∪ {𝑥 :: 𝜏} ⊢ 𝑥 :: 𝜏, ∅

Last update: January 8, 2025 64 D. Sabel, Programming Language Foundations, Winter 2024/25



5.3. Polymorphic Typing of KFPTSP+seq-Expressions

Axiom for constructors:

(AxC)
Γ ∪ {𝑐 :: ∀𝛼1 . . . 𝛼𝑛.𝜏} ⊢ 𝑐 :: 𝜏[𝛽1/𝛼1, . . . , 𝛽𝑛/𝛼𝑛], ∅

where 𝛽𝑖 are fresh type variables

Axiom for supercombinators:

(AxSC)
Γ ∪ {𝑆𝐶 :: ∀𝛼1 . . . 𝛼𝑛.𝜏} ⊢ 𝑆𝐶 :: 𝜏[𝛽1/𝛼1, . . . , 𝛽𝑛/𝛼𝑛], ∅

where 𝛽𝑖 is a fresh type variable

Rule for applications:

(RApp)
Γ ⊢ 𝑠 :: 𝜏1, 𝐸1 and Γ ⊢ 𝑡 :: 𝜏2, 𝐸2

Γ ⊢ (𝑠 𝑡) :: 𝛼, 𝐸1 ∪ 𝐸2 ∪ {𝜏1
·
= 𝜏2 → 𝛼}

where 𝛼 is a fresh type variable

Rule for seq:

(RSeq)
Γ ⊢ 𝑠 :: 𝜏1, 𝐸1 and Γ ⊢ 𝑡 :: 𝜏2, 𝐸2

Γ ⊢ (seq 𝑠 𝑡) :: 𝜏2, 𝐸1 ∪ 𝐸2

Rule for abstractions:

(RAbs)
Γ ∪ {𝑥 :: 𝛼} ⊢ 𝑠 :: 𝜏, 𝐸
Γ ⊢ 𝜆𝑥.𝑠 :: 𝛼→ 𝜏, 𝐸

where 𝛼 is a fresh type variable

Rule for case:

(RCase)

Γ ⊢ 𝑠 :: 𝜏, 𝐸
for all 𝑖 = 1, . . . , 𝑚:

Γ ∪ {𝑥𝑖,1 :: 𝛼𝑖,1, . . . , 𝑥𝑖,ar(𝑐𝑖 ) :: 𝛼𝑖,ar(𝑐𝑖 ) } ⊢ (𝑐𝑖 𝑥𝑖,1 . . . 𝑥𝑖,ar(𝑐𝑖) ) :: 𝜏𝑖 , 𝐸𝑖

for all 𝑖 = 1, . . . , 𝑚:
Γ ∪ {𝑥𝑖,1 :: 𝛼𝑖,1, . . . , 𝑥𝑖,ar(𝑐𝑖 ) :: 𝛼𝑖,ar(𝑐𝑖 ) } ⊢ 𝑡𝑖 :: 𝜏′𝑖 , 𝐸 ′𝑖

Γ ⊢
©«
case𝑇 𝑠 of{
(𝑐1 𝑥1,1 . . . 𝑥1,ar(𝑐1 ) ) → 𝑡1;

. . . ;

(𝑐𝑚 𝑥𝑚,1 . . . 𝑥𝑚,ar(𝑐𝑚 ) ) → 𝑡𝑚}

ª®®®®¬
:: 𝛼, 𝐸 ′

where 𝐸 ′ = 𝐸 ∪
𝑚⋃
𝑖=1
𝐸𝑖 ∪

𝑚⋃
𝑖=1
𝐸 ′
𝑖
∪

𝑚⋃
𝑖=1
{𝜏 ·= 𝜏𝑖} ∪

𝑚⋃
𝑖=1
{𝛼 ·= 𝜏′

𝑖
}

and 𝛼𝑖, 𝑗 , 𝛼 are fresh type variables

Algorithm 2 explains how these typing rules are used to type a given expression 𝑠.
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Algorithm 2: Type Inference of KFPTS+seq-Expressions
Let 𝑠 be a closed KFPTS+seq-expression, where the types of all supercombinators and
all constructors occurring in 𝑠 are known.

1. Start with assumption Γ that contains types for the constructors and the
supercombinators.

2. Derive Γ ⊢ 𝑠 :: 𝜏, 𝐸 with the typing rules.

3. Solve 𝐸 with unification.

4. If unification ends with Fail, then 𝑠 is not typeable; otherwise let 𝜎 be an mgu of 𝐸 .
Then the type of 𝑠 is 𝑠 :: 𝜎(𝜏).

To optimize the type inference algorithm, the following rule can be added which allows unification
to be performed as an intermediate step.
Type computation:

(RUnif)
Γ ⊢ 𝑠 :: 𝜏, 𝐸

Γ ⊢ 𝑠 :: 𝜎(𝜏), 𝐸𝜎

where 𝐸𝜎 is the solved equation system 𝐸 and 𝜎 is the unifier extracted from 𝐸𝜎

Definition 5.3.1. A KFPTSP+seq-expression 𝑠 is well-typed iff it can be typed by Algorithm 2.

We consider some examples.

Example 5.3.2. Consider the constructor application Cons True Nil. The assumption contains
the types of Cons, Nil and True:

Γ0 = {Cons :: ∀𝑎.𝑎 → [𝑎] → [𝑎], Nil :: ∀𝑎.[𝑎], True :: Bool}.

Typing of Cons True Nil constructs the derivation tree bottom-up. The first step is

(RApp)
Γ0 ⊢ (Cons True) :: 𝜏1, 𝐸1, Γ0 ⊢ Nil :: 𝜏2, 𝐸2

Γ0 ⊢ Cons True Nil :: 𝛼4, 𝐸1 ∪ 𝐸2 ∪ {𝜏1
·
= 𝜏2 → 𝛼4}

The exact types 𝜏1, 𝜏2 and the equation systems 𝐸1, 𝐸2 will be computed in the next step. In total
the rule for applications has to be applied twice and the axiom for constants has to be applied
three times. The complete derivation tree is:

(RApp)

(RApp)

(AxC)
Γ0 ⊢ Cons :: 𝛼1 → [𝛼1] → [𝛼1], ∅ ,

(AxC)
Γ0 ⊢ True :: Bool, ∅

Γ0 ⊢ (Cons True) :: 𝛼2, {𝛼1 → [𝛼1] → [𝛼1]
·
= Bool→ 𝛼2} ,

(AxC)
Γ0 ⊢ Nil :: [𝛼3], ∅

Γ0 ⊢ (Cons True Nil) :: 𝛼4, {𝛼1 → [𝛼1] → [𝛼1]
·
= Bool→ 𝛼2, 𝛼2

·
= [𝛼3] → 𝛼4}
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To compute the type of (Cons True Nil), the equations have to unified. This results in:

𝜎 = {𝛼1 ↦→ Bool, 𝛼2 ↦→ [Bool] → [Bool], 𝛼3 ↦→ Bool, 𝛼4 ↦→ [Bool]}

and thus (Cons True Nil) :: 𝜎(𝛼4) = [Bool].

Example 5.3.3. The expression Ω := (𝜆𝑥.(𝑥 𝑥)) (𝜆𝑦.(𝑦 𝑦)) is not well-typed. The assumption is
empty, since no constructors or supercombinators occur. The derivation tree is:

¸

(RApp)

(RAbs)

(RApp)

(AxV)
{𝑥 :: 𝛼2} ⊢ 𝑥 :: 𝛼2, ∅ ,

(AxV)
{𝑥 :: 𝛼2} ⊢ 𝑥 :: 𝛼2, ∅

{𝑥 :: 𝛼2} ⊢ (𝑥 𝑥) :: 𝛼4, {𝛼2
·
= 𝛼2 → 𝛼4}

∅ ⊢ (𝜆𝑥.(𝑥 𝑥)) :: 𝛼2 → 𝛼4, {𝛼2
·
= 𝛼2 → 𝛼4} ,

(RAbs)

(RApp)

(AxV)
{𝑦 :: 𝛼3} ⊢ 𝑦 :: 𝛼3, ∅ ,

(AxV)
{𝑦 :: 𝛼3} ⊢ 𝑦 :: 𝛼3, ∅

{𝑦 :: 𝛼3} ⊢ (𝑦 𝑦) :: 𝛼5, {𝛼3
·
= 𝛼3 → 𝛼5}

∅ ⊢ (𝜆𝑦.(𝑦 𝑦)) :: 𝛼3 → 𝛼5, {𝛼3
·
= 𝛼3 → 𝛼5}

∅ ⊢ (𝜆𝑥.(𝑥 𝑥)) (𝜆𝑦.(𝑦 𝑦)) :: 𝛼1, {𝛼2
·
= 𝛼2 → 𝛼4, 𝛼3

·
= 𝛼3 → 𝛼5, 𝛼2 → 𝛼4

·
= (𝛼3 → 𝛼5) → 𝛼1}

Unification fails, since:

(OccursCheck)
{𝛼2

·
= 𝛼2 → 𝛼4, . . .}

Fail

Exercise 5.3.4. Show that the fixpoint supercombinator

𝑌 := 𝜆 𝑓 .(𝜆𝑥. 𝑓 (𝑥 𝑥)) (𝜆𝑥. 𝑓 (𝑥 𝑥))

is not well-typed.

Example 5.3.5. Suppose that supercombinators map and length are already typed. We type
the expression

𝑡 := 𝜆𝑥𝑠.caseList 𝑥𝑠 of {Nil→ Nil; (Cons 𝑦 𝑦𝑠) → map length 𝑦𝑠}

We start with the assumption

Γ0 = {map :: ∀𝑎, 𝑏.(𝑎 → 𝑏) → [𝑎] → [𝑏],
length :: ∀𝑎.[𝑎] → Int,
Nil :: ∀𝑎.[𝑎]
Cons :: ∀𝑎.𝑎 → [𝑎] → [𝑎]}

To construct the derivation tree, we start at the bottom of the tree and build it from the bottom
up. So the first rule (at the bottom of the derivation tree) is (RAbs), since 𝑡 is an abstraction:

(RAbs)
Γ0 ∪ {𝑥𝑠 :: 𝛼1} ⊢ caseList 𝑥𝑠 of {Nil→ 1; (Cons 𝑦 𝑦𝑠) → map length 𝑦𝑠} :: 𝜏, 𝐸

Γ0 ⊢ 𝛼1 → 𝜏, 𝐸

At this point type 𝜏 and type equations 𝐸 are not known. They will be filled in during the
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construction of the tree. The next step is to show the premises, i.e. rule (RCase) has to be
applied. For space reasons we separate the derivation tree and its labeling:

(RAbs)

(RCase)

(AxV)
𝐵3 ,

(AxC)
𝐵4 ,

(RApp)

(RApp)

(AxC)
𝐵8 ,

(AxV)
𝐵9

𝐵6 ,
(AxV)

𝐵7

𝐵5 ,
(AxC)

𝐵10 ,
(RApp)

(RApp)

(AxSC)
𝐵14 ,

(AxSC)
𝐵15

𝐵12 ,
(AxV)

𝐵13

𝐵11

𝐵2

𝐵1

The labels are:

𝐵1 =Γ0 ⊢ 𝑡 :: 𝛼1 → 𝛼13,

{𝛼5 → [𝛼5] → [𝛼5]
·
= 𝛼3 → 𝛼6, 𝛼6

·
= 𝛼4 → 𝛼7,

(𝛼8 → 𝛼9) → [𝛼8] → [𝛼9]
·
= ( [𝛼10] → Int) → 𝛼11, 𝛼11

·
= 𝛼4 → 𝛼12,

𝛼1
·
= [𝛼2], 𝛼1 = 𝛼7, 𝛼13

·
= [𝛼14], 𝛼13 = 𝛼12, }

𝐵2 =Γ0 ∪ {𝑥𝑠 :: 𝛼1} ⊢
caseList 𝑥𝑠 of {Nil→ Nil; (Cons 𝑦 𝑦𝑠) → map length 𝑦𝑠} :: 𝛼13,

{𝛼5 → [𝛼5] → [𝛼5]
·
= 𝛼3 → 𝛼6, 𝛼6

·
= 𝛼4 → 𝛼7,

(𝛼8 → 𝛼9) → [𝛼8] → [𝛼9]
·
= ( [𝛼10] → Int) → 𝛼11, 𝛼11

·
= 𝛼4 → 𝛼12,

𝛼1
·
= [𝛼2], 𝛼1 = 𝛼7, 𝛼13

·
= [𝛼14], 𝛼13 = 𝛼12, }

𝐵3 =Γ0 ∪ {𝑥𝑠 :: 𝛼1} ⊢ 𝑥𝑠 :: 𝛼1, ∅
𝐵4 =Γ0 ∪ {𝑥𝑠 :: 𝛼1} ⊢ Nil :: [𝛼2], ∅
𝐵5 =Γ0 ∪ {𝑥𝑠 :: 𝛼1, 𝑦 :: 𝛼3, 𝑦𝑠 :: 𝛼4} ⊢ (Cons 𝑦 𝑦𝑠) :: 𝛼7,

{𝛼5 → [𝛼5] → [𝛼5]
·
= 𝛼3 → 𝛼6, 𝛼6

·
= 𝛼4 → 𝛼7}

𝐵6 =Γ0 ∪ {𝑥𝑠 :: 𝛼1, 𝑦 :: 𝛼3, 𝑦𝑠 :: 𝛼4} ⊢ (Cons 𝑦) :: 𝛼6,
{𝛼5 → [𝛼5] → [𝛼5]

·
= 𝛼3 → 𝛼6}

𝐵7 =Γ0 ∪ {𝑥𝑠 :: 𝛼1, 𝑦 :: 𝛼3, 𝑦𝑠 :: 𝛼4} ⊢ 𝑦𝑠 :: 𝛼4, ∅
𝐵8 =Γ0 ∪ {𝑥𝑠 :: 𝛼1, 𝑦 :: 𝛼3, 𝑦𝑠 :: 𝛼4} ⊢ Cons :: 𝛼5 → [𝛼5] → [𝛼5], ∅
𝐵9 =Γ0 ∪ {𝑥𝑠 :: 𝛼1, 𝑦 :: 𝛼3, 𝑦𝑠 :: 𝛼4} ⊢ 𝑦 :: 𝛼3, ∅
𝐵10 =Γ0 ∪ {𝑥𝑠 :: 𝛼1} ⊢ Nil :: [𝛼14], ∅
𝐵11 =Γ0 ∪ {𝑥𝑠 :: 𝛼1, 𝑦 :: 𝛼3, 𝑦𝑠 :: 𝛼4} ⊢ (map length) 𝑦𝑠 :: 𝛼12,

{(𝛼8 → 𝛼9) → [𝛼8] → [𝛼9]
·
= ( [𝛼10] → Int) → 𝛼11, 𝛼11

·
= 𝛼4 → 𝛼12}

𝐵12 =Γ0 ∪ {𝑥𝑠 :: 𝛼1, 𝑦 :: 𝛼3, 𝑦𝑠 :: 𝛼4} ⊢ (map length) :: 𝛼11,
{(𝛼8 → 𝛼9) → [𝛼8] → [𝛼9]

·
= ( [𝛼10] → Int) → 𝛼11}

𝐵13 =Γ0 ∪ {𝑥𝑠 :: 𝛼1, 𝑦 :: 𝛼3, 𝑦𝑠 :: 𝛼4} ⊢ 𝑦𝑠 :: 𝛼4, ∅
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𝐵14 =Γ0 ∪ {𝑥𝑠 :: 𝛼1, 𝑦 :: 𝛼3, 𝑦𝑠 :: 𝛼4} ⊢ map :: (𝛼8 → 𝛼9) → [𝛼8] → [𝛼9], ∅
𝐵15 =Γ0 ∪ {𝑥𝑠 :: 𝛼1, 𝑦 :: 𝛼3, 𝑦𝑠 :: 𝛼4} ⊢ length :: [𝛼10] → Int, ∅

To compute the type of 𝑡, the type equations

{𝛼5 → [𝛼5] → [𝛼5]
·
= 𝛼3 → 𝛼6, 𝛼6

·
= 𝛼4 → 𝛼7,

(𝛼8 → 𝛼9) → [𝛼8] → [𝛼9]
·
= ( [𝛼10] → Int) → 𝛼11, 𝛼11

·
= 𝛼4 → 𝛼12,

𝛼1
·
= [𝛼2], 𝛼1 = 𝛼7, 𝛼13

·
= [𝛼14], 𝛼13 = 𝛼12}

have to be unified. This results in the mgu:

𝜎 = {𝛼1 ↦→ [[𝛼10]], 𝛼2 ↦→ [𝛼10], 𝛼3 ↦→ [𝛼10], 𝛼4 ↦→ [[𝛼10]], 𝛼5 ↦→ [𝛼10],
𝛼6 ↦→ [[𝛼10]] → [[𝛼10]], 𝛼7 ↦→ [[𝛼10]], 𝛼8 ↦→ [𝛼10], 𝛼9 ↦→ Int,
𝛼11 ↦→ [[𝛼10]] → [Int], 𝛼12 ↦→ [Int], 𝛼13 ↦→ [Int], 𝛼14 ↦→ Int}

Finally, we derive 𝑡 :: 𝜎(𝛼1 → 𝛼13) = [[𝛼10]] → [Int].

Example 5.3.6. The supercombinator const is defined as:

const :: a -> b -> a

const x y = x

The expression 𝜆𝑥.const (𝑥 True) (𝑥 ’A’) is not well-typed: Let

Γ0 = {const :: ∀𝑎, 𝑏.𝑎 → 𝑏 → 𝑎, True :: Bool, ’A’ :: Char}

and Γ1 = Γ0 ∪ {𝑥 :: 𝛼1}. The derivation tree is:

(RAbs)

(RApp)

(RApp)

(AxSC)
Γ1 ⊢ const :: 𝛼2 → 𝛼3 → 𝛼2, ∅ ,

(RApp)

(AxV)
Γ1 ⊢ 𝑥 :: 𝛼1 ,

(AxC)
Γ1 ⊢ True :: Bool

Γ1 ⊢ (𝑥 True) :: 𝛼4, 𝐸1

Γ1 ⊢ const (𝑥 True) :: 𝛼5, 𝐸2 ,
(RApp)

(AxV)
Γ1 ⊢ 𝑥 :: 𝛼1 ,

(AxC)
Γ1 ⊢ ’A’ :: Char

Γ1 ⊢ (𝑥 ’A’) :: 𝛼6, 𝐸3

Γ1 ⊢ const (𝑥 True) (𝑥 ’A’) :: 𝛼7, 𝐸4

Γ0 ⊢ 𝜆𝑥.const (𝑥 True) (𝑥 ’A’) :: 𝛼1 → 𝛼7, 𝐸4

with

𝐸1 = {𝛼1
·
= Bool→ 𝛼4}

𝐸2 = {𝛼1
·
= Bool→ 𝛼4, 𝛼2 → 𝛼3 → 𝛼2

·
= 𝛼4 → 𝛼5}

𝐸3 = {𝛼1
·
= Char→ 𝛼6}

𝐸4 = {𝛼1
·
= Bool→ 𝛼4, 𝛼2 → 𝛼3 → 𝛼2

·
= 𝛼4 → 𝛼5, 𝛼1

·
= Char→ 𝛼6, 𝛼5

·
= 𝛼6 → 𝛼7}

Unification fails, since the two equations for 𝛼1 are not unifiable (Bool cannot match Char).

The last example shows, that the type inference algorithm treats lambda-bound variables as
monomorphically typed: For an abstraction 𝜆𝑥.𝑠, all occurrences of 𝑥 in 𝑠 must be of the same
(monomorphic) type. Note that the expression 𝜆𝑥.const (𝑥 True) (𝑥 ’A’) can be applied to
useful arguments, like a function that ignores its argument and returns a constant value

D. Sabel, Programming Language Foundations, Winter 2024/25 69 Last update: January 8, 2025



5. Polymorphic Type Inference

Since lambda-bound variables are monomorphically typed (also pattern variables in case-
alternatives), in programming languages like Haskell one speaks of let-polymorphism , since
only let-bound variables are allowed to be polymorphically typed. In KFPTSP+seq there is no
let, but the supercombinators play a similar role.
Attempting to adapt the type system so that the expression from above is typeable, would require
expressing that for 𝑥 only such abstractions are allowed that return the same result type for arbitrary
argument types. Our type system cannot express such conditions, since they do not conform to
the set semantics sem(·). Our type system uses so-called predicative polymorphism, since type
variables represent monomorphic types, in type systems with impredicative polymorphism type
variables can represent polymorphic types.
In extended type systems the above expression could be typed as:

(\x -> const (x True) (x ’A’))::(forall b.(forall a. a -> b) -> b)

The inner universal quantifier is not allowed in our type syntax.

5.4. Typing of Non-Recursive Supercombinators

We consider the typing of non-recursive supercombinators, i.e. supercombinators that do not
call themselves (also not through a chain of calls). Let SC be a set of supercombinators. For
𝑆𝐶𝑖 , 𝑆𝐶 𝑗 ∈ SC, let 𝑆𝐶𝑖 ⪯ 𝑆𝐶 𝑗 iff the right-hand side of the definition of 𝑆𝐶 𝑗 contains the
supercombinator 𝑆𝐶𝑖 . Let ⪯+ be the transitive closure of ⪯ (and ⪯∗ be the reflexive-transitive
closure).
A supercombinator 𝑆𝐶𝑖 is directly recursive iff 𝑆𝐶𝑖 ⪯ 𝑆𝐶𝑖 holds, it is recursive iff 𝑆𝐶𝑖 ⪯+ 𝑆𝐶𝑖

holds. A subset {𝑆𝐶1, . . . , 𝑆𝐶𝑚} ⊆ SC of supercombinators is mutually recursive if 𝑆𝐶𝑖 ⪯+ 𝑆𝐶 𝑗

for all 𝑖, 𝑗 ∈ {1, . . . , 𝑚}.
Non-recursive supercombinators can be typed analogously to abstractions (other supercombi-
nators in the right-hand side of the defining equation have to be typed already). We write
Γ ⊢𝑇 𝑆𝐶 :: 𝜏, if supercombinator 𝑆𝐶 can be typed 𝜏 under the assumption Γ. The rule for
non-recursive supercombinators is

(RSC1)
Γ ∪ {𝑥1 :: 𝛼1, . . . , 𝑥𝑛 :: 𝛼𝑛} ⊢ 𝑠 :: 𝜏, 𝐸
Γ ⊢𝑇 𝑆𝐶 :: ∀X.𝜎(𝛼1 → . . .→ 𝛼𝑛 → 𝜏)

if 𝜎 is the solution of 𝐸 , 𝑆𝐶 𝑥1 . . . 𝑥𝑛 = 𝑠 is
the definition of 𝑆𝐶, 𝑆𝐶 is non-recursive, and
X = Vars (𝜎(𝛼1 → . . .→ 𝛼𝑛 → 𝜏))

Example 5.4.1. We type the composition, defined as

(.) f g x = f (g x)

The assumption Γ0 is empty, since in the right-hand side of the definition of (.) no constructors
or other supercombinators occur. Let Γ1 = { 𝑓 :: 𝛼1, 𝑔 :: 𝛼2, 𝑥 :: 𝛼3}. A type derivation for (.)
is:
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(RSC1)

(RApp)

(AxV)
Γ1 ⊢ 𝑓 :: 𝛼1, ∅ ,

(RApp)

(AxV)
Γ1 ⊢ 𝑔 :: 𝛼2, ∅ ,

(AxV)
Γ1 ⊢ 𝑥 :: 𝛼3, ∅

Γ1 ⊢ (𝑔 𝑥) :: 𝛼5, {𝛼2
·
= 𝛼3 → 𝛼5}

Γ1 ⊢ ( 𝑓 (𝑔 𝑥)) :: 𝛼4, {𝛼2
·
= 𝛼3 → 𝛼5, 𝛼1 = 𝛼5 → 𝛼4}

∅ ⊢𝑇 (.) :: 𝜎(𝛼1 → 𝛼2 → 𝛼3 → 𝛼4) = (𝛼5 → 𝛼4) → (𝛼3 → 𝛼5) → 𝛼3 → 𝛼4

Here 𝜎 = {𝛼2 ↦→ 𝛼3 → 𝛼5, 𝛼1 ↦→ 𝛼5 → 𝛼4}. The derived type can now be universally
quantified and be used for typing other supercombinator that use the it.

(.) :: ∀𝑎, 𝑏, 𝑐.(𝑎 → 𝑏) → (𝑐 → 𝑎) → 𝑐 → 𝑏

5.5. Typing of Recursive Supercombinators

To type recursive supercombinators (or a group of mutually recursive supercombinators) the
obstacle is, that for typing the right-hand side of the supercombinator definition, the type of the
to-be-typed supercombinator would be required (but it is not available at this point of time). The
solution is to add (a most general) assumption about the type of the to-be-typed supercombinators
and then use type derivation and unification to refine the type. This is iterated until a so-called
consistent type assumption is found.

5.5.1. The Iterative Type Inference Algorithm

The iterative type inference algorithm starts with most general assumption, computes new as-
sumptions using the type derivation rules, and then compares the derived assumptions with the
used ones. If they are changed, then the new assumptions are used and a new iteration starts. If
the derived assumptions coincides with the used ones, then the assumptions are consistent. The
algorithm has found a type and stops.

The typing rule for supercombinators is similar to the non-recursive case:

(SCRec)
Γ ∪ {𝑥1 :: 𝛼1, . . . , 𝑥𝑛 :: 𝛼𝑛} ⊢ 𝑠 :: 𝜏, 𝐸

Γ ⊢𝑇 𝑆𝐶 :: 𝜎(𝛼1 → . . . 𝛼𝑛 → 𝜏)
if 𝑆𝐶 𝑥1 . . . 𝑥𝑛 = 𝑠 is the definition
of 𝑆𝐶, 𝜎 solution of 𝐸

The difference is that the assumption Γ already contains a type assumption for 𝑆𝐶 (or all
supercombinators of a mutually recursive set of supercombinators, resp.) (see Algorithm 3).

Given a whole program with a set of supercombinator definitions, one starts with a dependency
analysis that computes the strongly connected components in the call graph. If≃ is the equivalence
relation corresponding to ⪯∗, then the strongly connected components of the call graph are the
equivalence classes of ≃. In a next step the smallest equivalence classes w.r.t. ≃ are typed (they
do not depend on other supercombinators) and then the supercombinators are typed along the
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dependency graph. Of course, all supercombinators of the same equivalence class are mutually
recursive and they must be typed together.

Let the supercombinators 𝑓 , 𝑔, ℎ, 𝑘 be defined as:

𝑓 𝑥 𝑦 = if 𝑥 ≤ 1 then 𝑦 else 𝑓 (𝑥 − 𝑦) (𝑦 + (𝑔 𝑥))
𝑔 𝑥 = if 𝑥 = 0 then ( 𝑓 1 𝑥) + (ℎ 2) else 10

ℎ 𝑥 = if 𝑥 = 1 then 0 else ℎ (𝑥 − 1)
𝑘 𝑥 𝑦 = if 𝑥 = 1 then 𝑦 else 𝑘 (𝑥 − 1) (𝑦 + ( 𝑓 𝑥 𝑦))

The call graph is:
𝑔

����
ℎ-- 𝑓

^^

ff

𝑘

@@

%%

The equivalence classes (ordered) are {ℎ} ⪯+ { 𝑓 , 𝑔} ⪯+ {𝑘}. Thus, first ℎ has to be typed, then
𝑓 and 𝑔 are typed together, and finally 𝑘 is typed.

The iterative type inference algorithm is given in Algorithm 3.

The assumption at the beginning in step (2) is the most general assumption that can be made, since
the polymorphic type ∀𝑎.𝑎 represents any arbitrary type (sem(𝑎) is the set of all monomorphic
types).

The following properties hold for the iterative type inference algorithm:

• The computed types are unique up to renaming for each iteration and thus: if the algorithm
terminates, then the types of the supercombinators are unique.

• In each step the newly computed types are more specific or remains the same (in terms of
the semantics, the set of monomorphic types is contained in the previous one).

• If the algorithm does not terminate, then no polymorphic type for the supercombinators
exists. This holds, since the types become more specific in each step and the algorithm
starts with the full set.

• The iterative type inference algorithm computes the greatest fixpoint w.r.t. sem: the algo-
rithm starts with the full set and restricts the set until there is no change. Mathematically,
suppose that 𝐹 is the operator that performs one iteration of the algorithm on the set of
monomorphic types. If the algorithm stops with set 𝑆, then 𝐹 (𝑆) = 𝑆 (so 𝑆 is a fixpoint)
and 𝑆 is the largest set𝑀 such that 𝐹 (𝑀) = 𝑀 . This shows, that the iterative type inference
algorithm computes the most general polymorphic type.
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Algorithm 3: Iterative Type Inference Algorithm
The input is a set of mutually recursive supercombinators 𝑆𝐶1, . . . , 𝑆𝐶𝑚, where all
other used supercombinators are already typed.

1. The start assumption Γ consists of the types of the constructor and the already typed
supercombinators.

2. Γ0 := Γ ∪ {𝑆𝐶1 :: ∀𝛼1.𝛼1, . . . , 𝑆𝐶𝑚 :: ∀𝛼𝑚.𝛼𝑚} and 𝑗 = 0.

3. For each supercombinator 𝑆𝐶𝑖 (with 𝑖 = 1, . . . , 𝑚) apply the rule (SCRec) and
assumption Γ 𝑗 top type 𝑆𝐶𝑖 .

4. If all 𝑚 type derivations were successful, then

Γ 𝑗 ⊢𝑇 𝑆𝐶1 :: 𝜏1, . . . , Γ 𝑗 ⊢𝑇 𝑆𝐶𝑚 :: 𝜏𝑚.

Now universally quantify all the types 𝜏𝑖 by quantifying all type variables. W.l.o.g.
assume this gives 𝑆𝐶1 :: ∀X1.𝜏1, . . . , 𝑆𝐶𝑚 :: ∀X𝑚.𝜏𝑚. Let

Γ 𝑗+1 := Γ ∪ {𝑆𝐶1 :: ∀X1.𝜏1, . . . , 𝑆𝐶𝑚 :: ∀X𝑚.𝜏𝑚}

5. If Γ 𝑗 ≠ Γ 𝑗+1 (where equality up to renaming of type variables is meant), then set
𝑗 := 𝑗 + 1 and proceed with step (3). Otherwise (Γ 𝑗 = Γ 𝑗+1) the assumptions Γ 𝑗 are
consistent. The types of 𝑆𝐶𝑖 are in Γ 𝑗 .

If a Fail occurs in any unification, then 𝑆𝐶1, . . . , 𝑆𝐶𝑚 are not typeable.

5.5.2. Examples and Properties

Example 5.5.1. We type the supercombinator length with definition:

length 𝑥𝑠 = caseList 𝑥𝑠 of {Nil→ 0; (𝑦 : 𝑦𝑠) → 1 + length 𝑦𝑠}

The type assumption for the constructors and (+) is:

Γ = {Nil :: ∀𝑎.[𝑎], (:) :: ∀𝑎.𝑎 → [𝑎] → [𝑎], 0 :: Int, 1 :: Int, (+) :: Int→ Int→ Int}.

The iterative type inference algorithm (for 𝑗 = 0) assumes the most general type for length,
i.e. Γ0 = Γ ∪ {length :: ∀𝛼.𝛼} and applies rule (SCRec) to type length in the first iteration:
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(SCRec)

(RCase)

(𝑎) Γ0 ∪ {𝑥𝑠 :: 𝛼1} ⊢ 𝑥𝑠 :: 𝜏1, 𝐸1

(𝑏) Γ0 ∪ {𝑥𝑠 :: 𝛼1} ⊢ Nil :: 𝜏2, 𝐸2

(𝑐) Γ0 ∪ {𝑥𝑠 :: 𝛼1, 𝑦 :: 𝛼4, 𝑦𝑠 :: 𝛼5} ⊢ (𝑦 : 𝑦𝑠) :: 𝜏3, 𝐸3

(𝑑) Γ0 ∪ {𝑥𝑠 :: 𝛼1} ⊢ 0 :: 𝜏4, 𝐸4

(𝑒) Γ0 ∪ {𝑥𝑠 :: 𝛼1, 𝑦 :: 𝛼4, 𝑦𝑠 :: 𝛼5}} ⊢ (1 + length 𝑦𝑠) :: 𝜏5, 𝐸5

Γ0 ∪ {𝑥𝑠 :: 𝛼1} ⊢ (caseList 𝑥𝑠 of {Nil→ 0; (𝑦 : 𝑦𝑠) → 1 + length 𝑥𝑠}) :: 𝛼3,
𝐸1 ∪ 𝐸2 ∪ 𝐸3 ∪ 𝐸4 ∪ 𝐸5 ∪ {𝜏1

·
= 𝜏2, 𝜏1

·
= 𝜏3, 𝛼3

·
= 𝜏4, 𝛼3

·
= 𝜏5}

Γ0 ⊢𝑇 length :: 𝜎(𝛼1 → 𝛼3)
where 𝜎 is the solution of 𝐸1 ∪ 𝐸2 ∪ 𝐸3 ∪ 𝐸4 ∪ 𝐸5 ∪ {𝜏1

·
= 𝜏2, 𝜏1

·
= 𝜏3, 𝛼3

·
= 𝜏4, 𝛼3

·
= 𝜏5}

We show the premises (𝑎) to (𝑒) separately (types 𝜏1, . . . , 𝜏5 and equation 𝐸1, . . . , 𝐸5 are
computed in these derivations):

(a):
(AxV)

Γ0 ∪ {𝑥𝑠 :: 𝛼1} ⊢ 𝑥𝑠 :: 𝛼1, ∅
I.e, 𝜏1 = 𝛼1 and 𝐸1 = ∅

(b):
(AxC)

Γ0 ∪ {𝑥𝑠 :: 𝛼1} ⊢ Nil :: [𝛼6], ∅
I.e., 𝜏2 = [𝛼6] and 𝐸2 = ∅

(c)

(RApp)

(RApp)

(AxC)
Γ′0 ⊢ (:) :: 𝛼9 → [𝛼9] → [𝛼9], ∅ ,

(AxV)
Γ′0 ⊢ 𝑦 :: 𝛼4, ∅

Γ′0 ⊢ ((:) 𝑦) :: 𝛼8, {𝛼9 → [𝛼9] → [𝛼9]
·
= 𝛼4 → 𝛼8} ,

(AxV)
Γ′0 ⊢ 𝑦𝑠 :: 𝛼5, ∅

Γ′0 ⊢ (𝑦 : 𝑦𝑠) :: 𝛼7, {𝛼9 → [𝛼9] → [𝛼9]
·
= 𝛼4 → 𝛼8, 𝛼8

·
= 𝛼5 → 𝛼7}

where Γ0 = Γ0 ∪ {𝑥𝑠 :: 𝛼1, 𝑦 :: 𝛼4, 𝑦𝑠 :: 𝛼5}
I.e., 𝜏3 = 𝛼7 and 𝐸3 = {𝛼9 → [𝛼9] → [𝛼9]

·
= 𝛼4 → 𝛼8, 𝛼8

·
= 𝛼5 → 𝛼7}

(d)
(AxC)

Γ0 ∪ {𝑥𝑠 :: 𝛼1} ⊢ 0 :: Int, ∅
I.e., 𝜏4 = Int and 𝐸4 = ∅

(e)
(RApp)

(RApp)

(AxC)
Γ′0 ⊢ (+) :: Int→ Int→ Int, ∅ ,

(AxC)
Γ′0 ⊢ 1 :: Int, ∅

Γ′0 ⊢ ((+) 1) :: 𝛼11, {Int→ Int→ Int
·
= Int→ 𝛼11} ,

(RApp)

(AxSC)
Γ′0 ⊢ length :: 𝛼13, ∅ ,

(AxV)
Γ′0 ⊢ (𝑦𝑠) :: 𝛼5, ∅

Γ′0 ⊢ (length 𝑦𝑠) :: 𝛼12, {𝛼13
·
= 𝛼5 → 𝛼12}

Γ′0 ⊢ (1 + length 𝑦𝑠) :: 𝛼10, {Int→ Int→ Int
·
= Int→ 𝛼11, 𝛼13

·
= 𝛼5 → 𝛼12, 𝛼11

·
= 𝛼12 → 𝛼10}

where Γ′0 = Γ0 ∪ {𝑥𝑠 :: 𝛼1, 𝑦 :: 𝛼4, 𝑦𝑠 :: 𝛼5}
I.e., 𝜏5 = 𝛼10 and 𝐸5 = {Int→ Int→ Int

·
= Int→ 𝛼11, 𝛼13

·
= 𝛼5 → 𝛼12, 𝛼11

·
= 𝛼12 → 𝛼10}

Substituting the values, the application of rule (SCRec) is:
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(SCRec)

Γ0 ∪ {𝑥𝑠 :: 𝛼1} ⊢ (caseList 𝑥𝑠 of {Nil→ 0; (𝑦 : 𝑦𝑠) → 1 + length 𝑥𝑠}) :: 𝛼3,
{𝛼9 → [𝛼9] → [𝛼9]

·
= 𝛼4 → 𝛼8, 𝛼8

·
= 𝛼5 → 𝛼7}

∪{Int→ Int→ Int ·= Int→ 𝛼11, 𝛼13
·
= 𝛼5 → 𝛼12, 𝛼11

·
= 𝛼12 → 𝛼10}

∪{𝛼1
·
= [𝛼6], 𝛼1

·
= 𝛼7, 𝛼3

·
= Int, 𝛼3

·
= 𝛼10}

Γ0 ⊢𝑇 length :: 𝜎(𝛼1 → 𝛼3)
where 𝜎 is the solution of

{𝛼9 → [𝛼9] → [𝛼9]
·
= 𝛼4 → 𝛼8, 𝛼8

·
= 𝛼5 → 𝛼7,

Int→ Int→ Int ·= Int→ 𝛼11, 𝛼13
·
= 𝛼5 → 𝛼12, 𝛼11

·
= 𝛼12 → 𝛼10,

𝛼1
·
= [𝛼6], 𝛼1

·
= 𝛼7, 𝛼3

·
= Int, 𝛼3

·
= 𝛼10}

Unification is successful and computes the unifier

{𝛼1 ↦→ [𝛼9], 𝛼3 ↦→ Int, 𝛼4 ↦→ 𝛼9, 𝛼5 ↦→ [𝛼9], 𝛼6 ↦→ 𝛼9, 𝛼7 ↦→ [𝛼9], 𝛼8 ↦→ [𝛼9] → [𝛼9],
𝛼10 ↦→ Int, 𝛼11 ↦→ Int→ Int, 𝛼12 ↦→ Int, 𝛼13 ↦→ [𝛼9] → Int}

The newly computed type of length is 𝜎(𝛼1 → 𝛼3} = [𝛼9] → Int and

Γ1 = Γ ∪ {length :: ∀𝛼.[𝛼] → Int}.

Since Γ0 ≠ Γ1, the next iteration using Γ1 has to started.

To shorten the presentation, we list only the substep that is different from the first iteration: The
difference is in part (𝑒): instead of

(AxSC)
Γ′0 ⊢ length :: 𝛼13, ∅

now

(AxSC)
Γ′1 ⊢ length :: [𝛼13] → Int, ∅

is derived. Adjusting all equation systems and replacing Γ0 with Γ1 results in the following use
of rule (SCRec):
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(SCRec)

Γ1 ∪ {𝑥𝑠 :: 𝛼1} ⊢ (caseList 𝑥𝑠 of {Nil→ 0; (𝑦 : 𝑦𝑠) → 1 + length 𝑥𝑠}) :: 𝛼3,
{𝛼9 → [𝛼9] → [𝛼9]

·
= 𝛼4 → 𝛼8, 𝛼8

·
= 𝛼5 → 𝛼7}

∪{Int→ Int→ Int ·= Int→ 𝛼11, : [𝛼13] → Int
·
= 𝛼5 → 𝛼12, 𝛼11

·
= 𝛼12 → 𝛼10}

∪{𝛼1
·
= [𝛼6], 𝛼1

·
= 𝛼7, 𝛼3

·
= Int, 𝛼3

·
= 𝛼10}

Γ1 ⊢𝑇 length :: 𝜎(𝛼1 → 𝛼3)
where 𝜎 is the solution of

{𝛼9 → [𝛼9] → [𝛼9]
·
= 𝛼4 → 𝛼8, 𝛼8

·
= 𝛼5 → 𝛼7,

Int→ Int→ Int ·= Int→ 𝛼11, [𝛼13] → Int
·
= 𝛼5 → 𝛼12, 𝛼11

·
= 𝛼12 → 𝛼10,

𝛼1
·
= [𝛼6], 𝛼1

·
= 𝛼7, 𝛼3

·
= Int, 𝛼3

·
= 𝛼10}

Unification computes the unifier 𝜎:

{𝛼1 ↦→ [𝛼9], 𝛼3 ↦→ Int, 𝛼4 ↦→ 𝛼9, 𝛼5 ↦→ [𝛼9], 𝛼6 ↦→ 𝛼9, 𝛼7 ↦→ [𝛼9], 𝛼8 ↦→ [𝛼9] → [𝛼9],
𝛼10 ↦→ Int, 𝛼11 ↦→ Int→ Int, 𝛼12 ↦→ Int, 𝛼12 ↦→ Int, 𝛼13 ↦→ 𝛼9}

Thus length :: 𝜎(𝛼1 → 𝛼3) = [𝛼9] → Int and Γ2 = Γ ∪ {length :: ∀𝛼.[𝛼] → Int}. Since
Γ1 = Γ2, assumption Γ1 is consistent and [𝛼] → Int is the iterative type of length.

5.5.2.1. Iterative Typing is More General than Haskell

Example 5.5.2. We type the supercombinator g with definition

g x = 1 : (g (g ’c’))

The assumptions on the constructors are Γ = {1 :: Int, Cons :: ∀𝑎.𝑎 → [𝑎] → [𝑎], ’c’ ::

Char}. The iterative type inference algorithm starts with Γ0 = Γ ∪ {g :: ∀𝛼.𝛼} and types g with
rule (SCRec) (let Γ′0 = Γ0 ∪ {𝑥 :: 𝛼1}):

(SCRec)

(RApp)

(RApp)

(AxC)
Γ′0 ⊢ Cons :: 𝛼5 → [𝛼5] → [𝛼5], ∅ ,

(AxC)
Γ′0 ⊢ 1 :: Int, ∅

Γ′0 ⊢ (Cons 1) :: 𝛼3, 𝛼5 → [𝛼5] → [𝛼5]
·
= Int→ 𝛼3 ,

(RApp)

(AxSC)
Γ′0 ⊢ g :: 𝛼6, ∅ ,

(RApp)

(AxSC)
Γ′0 ⊢ g :: 𝛼8, ∅ ,

(AxC)
Γ′0 ⊢ ’c’ :: Char, ∅ ,

Γ′0 ⊢ (g ’c’) :: 𝛼7, {𝛼8
·
= Char→ 𝛼7}

Γ′0 ⊢ (g (g ’c’)) :: 𝛼4, {𝛼8
·
= Char→ 𝛼7, 𝛼6

·
= 𝛼7 → 𝛼4}

Γ′0 ⊢ Cons 1 (g (g ’c’)) :: 𝛼2, {𝛼8
·
= Char→ 𝛼7, 𝛼6

·
= 𝛼7 → 𝛼4𝛼5 → [𝛼5] → [𝛼5]

·
= Int→ 𝛼3, 𝛼3

·
= 𝛼4 → 𝛼2}

Γ0 ⊢𝑇 g :: 𝜎(𝛼1 → 𝛼2) = 𝛼1 → [Int]
where 𝜎 = {𝛼2 ↦→ [Int], 𝛼3 ↦→ [Int] → [Int], 𝛼4 ↦→ [Int], 𝛼5 ↦→ Int, 𝛼6 ↦→ 𝛼7 → [Int], 𝛼8 ↦→ Char→ 𝛼7} is the unifier of

{𝛼8
·
= Char→ 𝛼7, 𝛼6

·
= 𝛼7 → 𝛼4, 𝛼5 → [𝛼5] → [𝛼5]

·
= Int→ 𝛼3, 𝛼3

·
= 𝛼4 → 𝛼2}

Hence, we have Γ1 = Γ ∪ {g :: ∀𝛼.𝛼 → [Int]}. The next iteration shows that Γ1 is consis-
tent (we omit the iteration). However, in Haskell, the interpreter cannot infer a type for the
supercombinator g:
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Prelude> let g x = 1:(g(g ’c’))

<interactive>:1:13:

Couldn’t match expected type ‘[t]’ against inferred type ‘Char’

Expected type: Char -> [t]

Inferred type: Char -> Char

In the second argument of ‘(:)’, namely ‘(g (g ’c’))’

In the expression: 1 : (g (g ’c’))

But, the Haskell-interpreter can verify the type if it is provided by the programmer:

let g::a -> [Int]; g x = 1:(g(g ’c’))

Prelude> :t g

g :: a -> [Int]

The reason is that in the latter case, the Haskell-interpreter only performs type checking, but no
type inference, and uses the provided type of g as universally quantified.

5.5.2.2. Multiple Iterations are Required

Example 5.5.3. We type the supercombinator g with definition

g x = x : (g (g ’c’))

The assumption for the constructors is Γ = {Cons :: ∀𝑎.𝑎 → [𝑎] → [𝑎], ’c’ :: Char}. Iterative
typing starts with Γ0 = Γ ∪ {g :: ∀𝛼.𝛼} and types g with rule (SCRec) (let Γ′0 = Γ0 ∪ {𝑥 :: 𝛼1}):

(SCRec)

(RApp)

(RApp)

(AxC)
Γ′0 ⊢ Cons :: 𝛼5 → [𝛼5] → [𝛼5], ∅ ,

(AxV)
Γ′0 ⊢ 𝑥 :: 𝛼1, ∅

Γ′0 ⊢ (Cons 𝑥) :: 𝛼3, 𝛼5 → [𝛼5] → [𝛼5]
·
= 𝛼1 → 𝛼3 ,

(RApp)

(AxSC)
Γ′0 ⊢ g :: 𝛼6, ∅ ,

(RApp)

(AxSC)
Γ′0 ⊢ g :: 𝛼8, ∅ ,

(AxC)
Γ′0 ⊢ ’c’ :: Char, ∅ ,

Γ′0 ⊢ (g ’c’) :: 𝛼7, {𝛼8
·
= Char→ 𝛼7}

Γ′0 ⊢ (g (g ’c’)) :: 𝛼4, {𝛼8
·
= Char→ 𝛼7, 𝛼6

·
= 𝛼7 → 𝛼4}

Γ′0 ⊢ Cons 𝑥 (g (g ’c’)) :: 𝛼2, {𝛼8
·
= Char→ 𝛼7, 𝛼6

·
= 𝛼7 → 𝛼4𝛼5 → [𝛼5] → [𝛼5]

·
= 𝛼1 → 𝛼3, 𝛼3

·
= 𝛼4 → 𝛼2}

Γ0 ⊢𝑇 g :: 𝜎(𝛼1 → 𝛼2) = 𝛼5 → [𝛼5]
where 𝜎 = {𝛼1 ↦→ 𝛼5, 𝛼2 ↦→ [𝛼5], 𝛼3 ↦→ [𝛼5] → [𝛼5], 𝛼4 ↦→ [𝛼5], 𝛼6 ↦→ 𝛼7 → [𝛼5], 𝛼8 ↦→ Char→ 𝛼7} is the solution of

{𝛼8
·
= Char→ 𝛼7, 𝛼6

·
= 𝛼7 → 𝛼4, 𝛼5 → [𝛼5] → [𝛼5]

·
= 𝛼1 → 𝛼3, 𝛼3

·
= 𝛼4 → 𝛼2}

Thus, we get Γ1 = Γ ∪ {g :: ∀𝛼.𝛼 → [𝛼]}. Since Γ0 ≠ Γ1, another iteration is necessary. Let
Γ′1 = Γ1 ∪ {𝑥 :: 𝛼1}:

(SCRec)

(RApp)

(RApp)

(AxC)
Γ′1 ⊢ Cons :: 𝛼5 → [𝛼5] → [𝛼5], ∅ ,

(AxV)
Γ′1 ⊢ 𝑥 :: 𝛼1, ∅

Γ′1 ⊢ (Cons 𝑥) :: 𝛼3, 𝛼5 → [𝛼5] → [𝛼5]
·
= 𝛼1 → 𝛼3 ,

(RApp)

(AxSC)
Γ′1 ⊢ g :: 𝛼6 → [𝛼6], ∅ ,

(RApp)

(AxSC)
Γ′1 ⊢ g :: 𝛼8 → [𝛼8], ∅ ,

(AxC)
Γ′1 ⊢ ’c’ :: Char, ∅ ,

Γ′1 ⊢ (g ’c’) :: 𝛼7, {𝛼8 → [𝛼8]
·
= Char→ 𝛼7}

Γ′1 ⊢ (g (g ’c’)) :: 𝛼4, {𝛼8 → [𝛼8]
·
= Char→ 𝛼7, 𝛼6 → [𝛼6]

·
= 𝛼7 → 𝛼4}

Γ′1 ⊢ Cons 𝑥 (g (g ’c’)) :: 𝛼2, {𝛼8 → [𝛼8]
·
= Char→ 𝛼7, 𝛼6 → [𝛼6]

·
= 𝛼7 → 𝛼4𝛼5 → [𝛼5] → [𝛼5]

·
= 𝛼1 → 𝛼3, 𝛼3

·
= 𝛼4 → 𝛼2}

Γ1 ⊢𝑇 g :: 𝜎(𝛼1 → 𝛼2) = [Char] → [[Char]]
where 𝜎 = {𝛼1 ↦→ [Char], 𝛼2 ↦→ [[Char]], 𝛼3 ↦→ [[Char]] → [[Char]], 𝛼4 ↦→ [[Char]], 𝛼5 ↦→ [Char], 𝛼6 ↦→ [Char], 𝛼7 ↦→ [Char], 𝛼8 ↦→ Char}

is the solution of {𝛼8 → [𝛼8]
·
= Char→ 𝛼7, 𝛼6 → [𝛼6]

·
= 𝛼7 → 𝛼4, 𝛼5 → [𝛼5] → [𝛼5]

·
= 𝛼1 → 𝛼3, 𝛼3

·
= 𝛼4 → 𝛼2}
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Thus, we get Γ2 = Γ∪{g :: [Char] → [[Char]]}. Since Γ1 ≠ Γ2, another iteration is necessary:
Let Γ′2 = Γ2 ∪ {𝑥 :: 𝛼1}:

(SCRec)

(RApp)

(RApp)

(AxC)
Γ′2 ⊢ Cons :: 𝛼5 → [𝛼5] → [𝛼5], ∅ ,

(AxV)
Γ′2 ⊢ 𝑥 :: 𝛼1, ∅

Γ′2 ⊢ (Cons 𝑥) :: 𝛼3, {𝛼5 → [𝛼5] → [𝛼5]
·
= 𝛼1 → 𝛼3} ,

(RApp)

(AxSC)
Γ′2 ⊢ g :: [Char] → [[Char]], ∅ ,

(RApp)

(AxSC)
Γ′2 ⊢ g :: [Char] → [[Char]], ∅ ,

(AxC)
Γ′2 ⊢ ’c’ :: Char, ∅ ,

Γ′2 ⊢ (g ’c’) :: 𝛼7, {[Char] → [[Char]]
·
= Char→ 𝛼7}

Γ′2 ⊢ (g (g ’c’)) :: 𝛼4, {[Char] → [[Char]]
·
= Char→ 𝛼7, [Char] → [[Char]]

·
= 𝛼7 → 𝛼4}

Γ′2 ⊢ Cons 𝑥 (g (g ’c’)) :: 𝛼2, { [Char] → [[Char]]
·
= Char→ 𝛼7,

[Char] → [[Char]] ·= 𝛼7 → 𝛼4,

𝛼5 → [𝛼5] → [𝛼5]
·
= 𝛼1 → 𝛼3,

𝛼3
·
= 𝛼4 → 𝛼2

}

Γ2 ⊢𝑇 g :: 𝜎(𝛼1 → 𝛼2)
where 𝜎 is the solution of

{[Char] → [[Char]] ·= Char→ 𝛼7, [Char] → [[Char]]
·
= 𝛼7 → 𝛼4, 𝛼5 → [𝛼5] → [𝛼5]

·
= 𝛼1 → 𝛼3, 𝛼3

·
= 𝛼4 → 𝛼2}

Unification of the equation fails and thus g is not typeable.

Proposition 5.5.4. The iterative type inference algorithm sometimes requires multiple iterations
until a result (untyped / consistent assumption) is found.

Proof. Example 5.5.3 provides an example showing that three iterations are necessary to derive
that a supercombinator is untyped. An example that is typed and requires more iterations is given
in Exercise 5.5.5). □

Exercise 5.5.5. Apply the iterative type inference algorithm to the supercombinator fix with
definition:

fix f = f (fix f)

Show that the iterative type inference algorithm requires several iterations until a consistent
assumption is derived.

5.5.2.3. Non-Termination of the Iterative Type Inference Algorithm

Example 5.5.6. Let f and g be supercombinators with definitions:

f = [g]

g = [f]

The supercombinators are mutually recursive (i.e. f ≃ g) and thus the iterative type inference
algorithm types them together.
The assumption for the constructors is Γ = {Cons :: ∀𝑎.𝑎 → [𝑎] → [𝑎], Nil : ∀𝑎.𝑎}. The
iterative type inference algorithm starts with Γ0 = Γ ∪ {f :: ∀𝛼.𝛼, g :: ∀𝛼.𝛼} and applies the
rule (SCRec) for f and g:
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(SCRec)

(RApp)

(RApp)

(AxC)
Γ0 ⊢ Cons :: 𝛼4 → [𝛼4] → [𝛼4], ∅ ,

(AxSC)
Γ0 ⊢ g :: 𝛼5

Γ0 ⊢ (Cons g) :: 𝛼3, {𝛼4 → [𝛼4] → [𝛼4]
·
= 𝛼5 → 𝛼3} ,

(AxC)
Γ0 ⊢ Nil :: [𝛼2], ∅

Γ0 ⊢ [g] :: 𝛼1, {𝛼4 → [𝛼4] → [𝛼4]
·
= 𝛼5 → 𝛼3, 𝛼3

·
= [𝛼2] → 𝛼1}

Γ0 ⊢𝑇 f :: 𝜎(𝛼1) = [𝛼5]
𝜎 = {𝛼1 ↦→ [𝛼5], 𝛼2 ↦→ 𝛼5, 𝛼3 ↦→ [𝛼5] → [𝛼5], 𝛼4 ↦→ 𝛼5} is a
solution of {𝛼4 → [𝛼4] → [𝛼4]

·
= 𝛼5 → 𝛼3, 𝛼3

·
= [𝛼2] → 𝛼1}

(SCRec)

(RApp)

(RApp)

(AxC)
Γ0 ⊢ Cons :: 𝛼4 → [𝛼4] → [𝛼4], ∅ ,

(AxSC)
Γ0 ⊢ f :: 𝛼5

Γ0 ⊢ (Cons f) :: 𝛼3, {𝛼4 → [𝛼4] → [𝛼4]
·
= 𝛼5 → 𝛼3} ,

(AxC)
Γ0 ⊢ Nil :: [𝛼2], ∅

Γ0 ⊢ [f] :: 𝛼1, {𝛼4 → [𝛼4] → [𝛼4]
·
= 𝛼5 → 𝛼3, 𝛼3

·
= [𝛼2] → 𝛼1}

Γ0 ⊢𝑇 g :: 𝜎(𝛼1) = [𝛼5]
𝜎 = {𝛼1 ↦→ [𝛼5], 𝛼2 ↦→ 𝛼5, 𝛼3 ↦→ [𝛼5] → [𝛼5], 𝛼4 ↦→ 𝛼5} is a
solution of {𝛼4 → [𝛼4] → [𝛼4]

·
= 𝛼5 → 𝛼3, 𝛼3

·
= [𝛼2] → 𝛼1}

Hence, we get Γ1 = Γ ∪ {f :: ∀𝑎.[𝑎], g :: ∀𝑎.[𝑎]}. Since Γ1 ≠ Γ0 a next iteration is required.

(SCRec)

(RApp)

(RApp)

(AxC)
Γ1 ⊢ Cons :: 𝛼4 → [𝛼4] → [𝛼4], ∅ ,

(AxSC)
Γ1 ⊢ g :: [𝛼5]

Γ1 ⊢ (Cons g) :: 𝛼3, {𝛼4 → [𝛼4] → [𝛼4]
·
= [𝛼5] → 𝛼3} ,

(AxC)
Γ1 ⊢ Nil :: [𝛼2], ∅

Γ1 ⊢ [g] :: 𝛼1, {𝛼4 → [𝛼4] → [𝛼4]
·
= [𝛼5] → 𝛼3, 𝛼3

·
= [𝛼2] → 𝛼1}

Γ1 ⊢𝑇 f :: 𝜎(𝛼1) = [[𝛼5]]
𝜎 = {𝛼1 ↦→ [[𝛼5]], 𝛼2 ↦→ [𝛼5], 𝛼3 ↦→ [[𝛼5]] → [[𝛼5]], 𝛼4 ↦→ [𝛼5]} is a

solution of {𝛼4 → [𝛼4] → [𝛼4]
·
= [𝛼5] → 𝛼3, 𝛼3

·
= [𝛼2] → 𝛼1}

(SCRec)

(RApp)

(RApp)

(AxC)
Γ1 ⊢ Cons :: 𝛼4 → [𝛼4] → [𝛼4], ∅ ,

(AxSC)
Γ1 ⊢ f :: [𝛼5]

Γ1 ⊢ (Cons f) :: 𝛼3, {𝛼4 → [𝛼4] → [𝛼4]
·
= [𝛼5] → 𝛼3} ,

(AxC)
Γ1 ⊢ Nil :: [𝛼2], ∅

Γ1 ⊢ [f] :: 𝛼1, {𝛼4 → [𝛼4] → [𝛼4]
·
= [𝛼5] → 𝛼3, 𝛼3

·
= [𝛼2] → 𝛼1}

Γ1 ⊢𝑇 g :: 𝜎(𝛼1) = [[𝛼5]]
𝜎 = {𝛼1 ↦→ [[𝛼5]], 𝛼2 ↦→ [𝛼5], 𝛼3 ↦→ [[𝛼5]] → [[𝛼5]], 𝛼4 ↦→ [𝛼5]} is a

solution of {𝛼4 → [𝛼4] → [𝛼4]
·
= [𝛼5] → 𝛼3, 𝛼3

·
= [𝛼2] → 𝛼1}

We get Γ2 = Γ ∪ {f :: ∀𝑎.[[𝑎]], g :: ∀𝑎.[[𝑎]]}. Since Γ2 ≠ Γ1, another iteration is required.
One can guess that this procedure does not end. We prove it: Let [𝑎]𝑖 the 𝑖-fold nesting of lists.
We use induction to show that Γ𝑖 = Γ ∪ {f :: ∀𝑎.[𝑎]𝑖 , g :: ∀𝑎.[𝑎]𝑖}. The base is already shown.
The induction step is
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(SCRec)

(RApp)

(RApp)

(AxC)
Γ𝑖 ⊢ Cons :: 𝛼4 → [𝛼4] → [𝛼4], ∅ ,

(AxSC)
Γ𝑖 ⊢ g :: [𝛼5]𝑖

Γ𝑖 ⊢ (Cons g) :: 𝛼3, {𝛼4 → [𝛼4] → [𝛼4]
·
= [𝛼5]𝑖 → 𝛼3} ,

(AxC)
Γ𝑖 ⊢ Nil :: [𝛼2], ∅

Γ𝑖 ⊢ [g] :: 𝛼1, {𝛼4 → [𝛼4] → [𝛼4]
·
= [𝛼5]𝑖 → 𝛼3, 𝛼3

·
= [𝛼2] → 𝛼1}

Γ𝑖 ⊢𝑇 f :: 𝜎(𝛼1) = [[𝛼5]𝑖]
𝜎 = {𝛼1 ↦→ [[𝛼5]𝑖], 𝛼2 ↦→ [𝛼5]𝑖 , 𝛼3 ↦→ [[𝛼5]𝑖] → [[𝛼5]𝑖], 𝛼4 ↦→ [𝛼5]𝑖} is a

solution of {𝛼4 → [𝛼4] → [𝛼4]
·
= [𝛼5]𝑖 → 𝛼3, 𝛼3

·
= [𝛼2] → 𝛼1}

(SCRec)

(RApp)

(RApp)

(AxC)
Γ𝑖 ⊢ Cons :: 𝛼4 → [𝛼4] → [𝛼4], ∅ ,

(AxSC)
Γ𝑖 ⊢ f :: [𝛼5]𝑖

Γ𝑖 ⊢ (Cons f) :: 𝛼3, {𝛼4 → [𝛼4] → [𝛼4]
·
= [𝛼5]𝑖 → 𝛼3} ,

(AxC)
Γ𝑖 ⊢ Nil :: [𝛼2], ∅

Γ𝑖 ⊢ [f] :: 𝛼1, {𝛼4 → [𝛼4] → [𝛼4]
·
= [𝛼5]𝑖 → 𝛼3, 𝛼3

·
= [𝛼2] → 𝛼1}

Γ𝑖 ⊢𝑇 g :: 𝜎(𝛼1) = [[𝛼5]𝑖]
𝜎 = {𝛼1 ↦→ [[𝛼5]𝑖], 𝛼2 ↦→ [𝛼5]𝑖 , 𝛼3 ↦→ [[𝛼5]𝑖] → [[𝛼5]𝑖], 𝛼4 ↦→ [𝛼5]𝑖} is a

solution of {𝛼4 → [𝛼4] → [𝛼4]
·
= [𝛼5]𝑖 → 𝛼3, 𝛼3

·
= [𝛼2] → 𝛼1}

We derive Γ𝑖+1 = Γ ∪ {f :: ∀𝑎.[𝑎]𝑖+1, g :: ∀𝑎.[𝑎]𝑖+1}.

Proposition 5.5.7. The iterative type inference algorithm may not terminate.

Proof. See Example 5.5.6. □

It can be shown, that the iterative typing in general is undecidable (and thus non termination of
our algorithm is a consequence, and not a bad design of the algorithm).

Theorem 5.5.8. Iterative typing is undecidable.

Proof. We do not give the proof. It follows from the undecidability of so-called semi-unification
of first-order terms. The proofs can be found in (Kfoury et al., 1990b; Kfoury et al., 1993;
Henglein, 1993). □

Finally, we show that type safety holds for iterative typing. Type safety requires two properties:
Typing is preserved when evaluating an expression (called type preservation) and evaluation of
well-typed expressions does not get stuck until a value is obtained (called progress lemma).

Lemma 5.5.9. Let 𝑠 be a directly dynamically untyped KFPTS+seq-expression. Then the iterative
typing cannot type 𝑠.

Proof. If 𝑠 is directly dynamically untyped, then one of the following cases holds:
• 𝑠 = 𝑅[case𝑇 (𝑐 𝑠1 . . . 𝑠𝑛) of 𝐴𝑙𝑡𝑠] and 𝑐 is not of type 𝑇 . If iterative typing tries to

infer the type of the case-expression, equations are added to make sure that the type of
(𝑐 𝑠1 . . . 𝑠𝑛) is equal to the type of the patterns in the case-alternative. Since the types
of the patterns belong to type 𝑇 , but 𝑐 does not, unification of the equations will fail.
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• 𝑠 = 𝑅[case𝑇 𝜆𝑥.𝑡 of 𝐴𝑙𝑡𝑠]: If the case-expression is typed, iterative typing will add
equations that ensure that the type of 𝜆𝑥.𝑡 is a function type and equal to the type of the
patterns. Unification of these equation will fail, because the patterns are not of function
type.

• 𝑅[(𝑐 𝑠1 . . . 𝑠ar(𝑐) ) 𝑡]: the iterative typing types ((𝑐 𝑠1 . . . 𝑠ar(𝑐) ) 𝑡) as a nested application
(((𝑐 𝑠1) . . .) 𝑠ar(𝑐) ) 𝑡). For each application, equations are added that imply that 𝑐 can
receive at most ar(𝑐) arguments. Since there is one more argument, unification will
fail. □

Lemma 5.5.10 (Type Preservation). Let 𝑠 be a well-typed and closed KFPTSP+seq-expression
(of a well-typed KFPTSP+seq-program) and 𝑠 𝑛𝑎𝑚𝑒−−−−→ 𝑠′. Then 𝑠′ is well-typed.

Proof. For the proof, all cases of a (𝛽)-, (𝑆𝐶-𝛽)- and (case)-reduction have to be inspected. For
the type derivation of 𝑠, all type derivations of subterms of 𝑠 can be read off. In the reduction,
the types are moved and copied. It is easy to verify that a type derivation is still possible after
the reduction. □

Considering the type, the last lemma can be formulated as: For a monomorphic type 𝜏: If 𝑡 : 𝜏
and 𝑡

𝑛𝑎𝑚𝑒−−−−→ 𝑡′, then 𝑡′ : 𝜏. Note that it may happen that after a reduction step the type is more
general than before.
Lemmas 5.5.9 and 5.5.10 show:

Proposition 5.5.11. Let 𝑠 be a well-typed, closed KFPTSP+seq-expression. Then 𝑠 is not
dynamically untyped.

Lemma 5.5.12 (Progress Lemma). Let 𝑠 be a well-typed, closed KFPTSP+seq-expression. Then
• 𝑠 is a WHNF, or
• 𝑠 is call-by-name-reducible, i.e. 𝑠 𝑛𝑎𝑚𝑒−−−−→ 𝑠′ for some 𝑠′.

Proof. Consider the cases where a KFPTS+seq-expression is not a WHNF, closed, and irre-
ducible. In all cases 𝑠 is directly dynamically untyped and thus for a well-typed expression, these
cases cannot occur. □

Theorem 5.5.13. Type safety holds for the iterative typing of KFPTSP+seq.

5.5.2.4. Forcing Termination

To force termination of the iterative type inference algorithm, a so-called Milner-step can be done,
which will be explained below. In the next section we will introduce the Hindley-Damas-Milner
type inference algorithm which also uses the Milner-step, but the difference is that it uses the
Milner-step in the first iteration and so there are no iterations at all. Using the Milner-step within
the iterative type inference algorithm, it may be possible to compute more general types, e.g. by
perfoming 10 iterations and then stopping using the Milner-step.

D. Sabel, Programming Language Foundations, Winter 2024/25 81 Last update: January 8, 2025



5. Polymorphic Type Inference

Definition 5.5.14 (Milner-Step). Let 𝑆𝐶1, . . . , 𝑆𝐶𝑚 be a group of mutually recursive
supercombinators- and let Γ𝑖 ⊢𝑇 𝑆𝐶1 :: 𝜏1, . . . , Γ𝑖 ⊢𝑇 𝑆𝐶𝑚 :: 𝜏𝑚 be the assumptions com-
puted by the 𝑖-th iteration for 𝑆𝐶1, . . . , 𝑆𝐶𝑚.
For the Milner-step: Type all supercombinators 𝑆𝐶1, . . . , 𝑆𝐶𝑚 together using the type assumption
Γ𝑀 = Γ ∪ {𝑆𝐶1 :: 𝜏1, . . . , 𝑆𝐶𝑚 :: 𝜏𝑚} (where Γ contains the types of the constructors and other
supercombinators that are already typed) and using the following rule:

(SCRecM)

for 𝑖 = 1, . . . , 𝑚:
Γ𝑀 ∪ {𝑥𝑖,1 :: 𝛼𝑖,1, . . . , 𝑥𝑖,𝑛𝑖 :: 𝛼𝑖,𝑛𝑖 } ⊢ 𝑠𝑖 :: 𝜏′𝑖 , 𝐸𝑖

Γ𝑀 ⊢𝑇 for 𝑖 = 1, . . . , 𝑚 𝑆𝐶𝑖 :: 𝜎(𝛼𝑖,1 → . . .→ 𝛼𝑖,𝑛𝑖 → 𝜏′𝑖 )
if 𝜎 is the solution of 𝐸1 ∪ . . . ∪ 𝐸𝑚 ∪

𝑚⋃
𝑖=1
{𝜏𝑖

·
= 𝛼𝑖,1 → . . .→ 𝛼𝑖,𝑛𝑖 → 𝜏′

𝑖
}

and 𝑆𝐶1 𝑥1,1 . . . 𝑥1,𝑛1 = 𝑠1

. . .

𝑆𝐶𝑚 𝑥𝑚,1 . . . 𝑥𝑚,𝑛𝑚 = 𝑠𝑚

are the definitions of 𝑆𝐶1, . . . , 𝑆𝐶𝑚

As a new inference rule in type derivation we add:

(AxSC2)
Γ ∪ {𝑆𝐶 :: 𝜏} ⊢ 𝑆𝐶 :: 𝜏

if 𝜏 is not universally quantified

We explain the Milner-step: In the assumption Γ𝑀 the types of the supercombinator to be typed
are not universally quantified. The rule (AxSC2) is then used to extract such a type from the
assumptions. No renaming is performed, i.e. the whole typing uses one fixed type for each
occurrence of the supercombinator. Additionally, in the rule (SCRecM) all equations are unified
together and new equations are added: For each supercombinator the assumed type must match
the inferred types.
As consequence, the new assumption is always consistent, and thus no further iteration is required.
Note that in unlike (SCRec) all supercombinators that are mutually recursive must be treated
together to ensure that unification considers all equations together.
A disadvantage of the algorithm is that one does not know, when to use the Milner-step and that
the types are more restrictive than iterative types. It may happen that a further iteration would
lead to a type, but the Milner step rejects the expression as untyped.

5.5.3. Hindley-Damas-Milner-Typing

The Hindley-Damas-Milner typing was invented and analyzed by Robin Milner, Luis Damas and
Roger Hindley. Instead of iterative typing, the algorithm uses a Milner-step as first step and thus
it terminates after this step:
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Algorithm 4: Hindley-Damas-Milner Type Inference Algorithm
Let 𝑆𝐶1, . . . , 𝑆𝐶𝑚 be all mutually recursive supercombinators of an equivalence class
w.r.t. ≃ and assume that the supercombinators strictly less than 𝑆𝐶1, . . . , 𝑆𝐶𝑚 w.r.t. ⪯
are already typed.

1. The type assumption Γ contains the already typed supercombinators with universally
quantified types and also the types of the constructors.

2. Type 𝑆𝐶1, . . . , 𝑆𝐶𝑚 with rule (MSCRec):

(MSCRec)

for 𝑖 = 1, . . . , 𝑚:
Γ ∪ {𝑆𝐶1 :: 𝛽1, . . . , 𝑆𝐶𝑚 :: 𝛽𝑚}

∪{𝑥𝑖,1 :: 𝛼𝑖,1, . . . , 𝑥𝑖,𝑛𝑖 :: 𝛼𝑖,𝑛𝑖 } ⊢ 𝑠𝑖 :: 𝜏𝑖 , 𝐸𝑖

Γ ⊢𝑇 for 𝑖 = 1, . . . , 𝑚 𝑆𝐶𝑖 :: 𝜎(𝛼𝑖,1 → . . .→ 𝛼𝑖,𝑛𝑖 → 𝜏𝑖)
if 𝜎 is the solution of 𝐸1 ∪ . . . ∪ 𝐸𝑚 ∪

𝑚⋃
𝑖=1
{𝛽𝑖

·
= 𝛼𝑖,1 → . . .→ 𝛼𝑖,𝑛𝑖 → 𝜏𝑖}

and the definitions of 𝑆𝐶1, . . . , 𝑆𝐶𝑚 are 𝑆𝐶1 𝑥1,1 . . . 𝑥1,𝑛1 = 𝑠1
. . .

𝑆𝐶𝑚 𝑥𝑚,1 . . . 𝑥𝑚,𝑛𝑚 = 𝑠𝑚

If the unification fails, then 𝑆𝐶1, . . . , 𝑆𝐶𝑚 are not Hindley-Damas-Milner-typeable,
otherwise the Hindley-Damas-Milner-types of 𝑆𝐶1, . . . , 𝑆𝐶𝑚 are the types derived by
rule (MSCRec). Note that rule (AxSC2) is used in the type derivation.

To explain the algorithm, we also write down the rule (MSCRec) for the case of a single recursive
supercombinator:

(MSCRec1)
Γ ∪ {𝑆𝐶 :: 𝛽, 𝑥1 :: 𝛼1, . . . , 𝑥𝑛 :: 𝛼𝑛} ⊢ 𝑠 :: 𝜏, 𝐸

Γ ⊢𝑇 𝑆𝐶 :: 𝜎(𝛼1 → . . .→ 𝛼𝑛 → 𝜏)
if 𝜎 is the solution of 𝐸 ∪ {𝛽 ·= 𝛼1 → . . .→ 𝛼𝑛 → 𝜏}

and 𝑆𝐶 𝑥1 . . . 𝑥𝑛 = 𝑠 is the definition of 𝑆𝐶

We explain this rule: the type assumption for the supercombinator is 𝛽, so the most general type.
In difference to the iterative type inference it is not universally quantified and thus when typing
the right-hand side 𝑠 of the definition, all occurrences of 𝑆𝐶 are typed with the same type 𝛽 (and
not with renamed copies). (iterative type inference uses rule (AxSC), Hindley-Damas-Milner
type inference uses (AxSC2)). Another difference to the iterative type inference is the additional
unification equation 𝛽 ·= 𝛼1 → . . . → 𝛼𝑛 → 𝜏. It forces the assumed type 𝛽 to be equal to the
inferred type.
The Hindley-Damas-Milner type inference algorithm has the following properties:

• It terminates.
• It returns unique types (up to renaming of variables).
• Hindley-Damas-Milner typing is decidable.
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• The decidable problem whether an expression is Hindley-Damas-Milner typeable is
DEXPTIME-complete (see (Mairson, 1990; Kfoury et al., 1990a)).

• It may return more restrictive types than iterative type inference. In particular, there are
expressions that are iteratively typeable, but not Hindley-Damas-Milner typeable.

Example 5.5.15. An example that requires exponentially many type variables is:

𝑥0 = 𝜆𝑧.𝑧

𝑥1 = (𝑥0, 𝑥0)
𝑥2 = (𝑥1, 𝑥1)
𝑥3 = (𝑥2, 𝑥2)

...

𝑥𝑛 = (𝑥𝑛−1, 𝑥𝑛−1)

The type of 𝑥𝑛 contains 2𝑛 type variables.

We consider some examples.

Example 5.5.16. We type the supercombinator map with the Hindley-Damas-Milner type infer-
ence algorithm.

map f xs = case xs of {

[] -> []

(y:ys) -> (f y):(map f ys)

}

The assumption for the constructors is Γ0 = {Cons :: ∀𝑎.𝑎 → [𝑎] → [𝑎], Nil :: ∀𝑎.[𝑎]}.
Let Γ = Γ0 ∪ {map :: 𝛽, 𝑓 :: 𝛼1, 𝑥𝑠 :: 𝛼2} and Γ′ = Γ′ ∪ {𝑦 : 𝛼3, 𝑦𝑠 :: 𝛼4}.
Typing starts with rule (MSCRec):

(MSCRec1)

(RCase)

(𝑎) Γ′ ⊢ 𝑥𝑠 :: 𝜏1, 𝐸1

(𝑏) Γ′ ⊢ Nil :: 𝜏2, 𝐸2

(𝑐) Γ′ ⊢ (Cons 𝑦 𝑦𝑠) :: 𝜏3, 𝐸3

(𝑑) Γ′ ⊢ Nil :: 𝜏4, 𝐸4

(𝑒) Γ′ ⊢ (Cons ( 𝑓 𝑦) (map 𝑓 𝑦𝑠)) :: 𝜏5, 𝐸5

Γ′ ⊢ case 𝑥𝑠 of {Nil→ Nil; Cons 𝑦 𝑦𝑠→ Cons 𝑦 (map 𝑓 𝑦𝑠)} :: 𝛼, 𝐸
Γ ⊢𝑇 map :: 𝜎(𝛼1 → 𝛼2 → 𝛼)

if 𝜎 is the solution of 𝐸 ∪ {𝛽 ·= 𝛼1 → 𝛼2 → 𝛼}

where 𝐸 = 𝐸1 ∪ 𝐸2 ∪ 𝐸3 ∪ 𝐸4 ∪ 𝐸5 ∪ {𝜏1
·
= 𝜏2, 𝜏1

·
= 𝜏3, 𝛼

·
= 𝜏4, 𝛼

·
= 𝜏5}. Types 𝜏1, . . . , 𝜏5 and

equations 𝐸1, . . . , 𝐸5 are computed during deriving the premises (𝑎), . . . , (𝑒).
We write down the derivations separately:
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(a)
(AxV)

Γ′ ⊢ 𝑥𝑠 :: 𝛼2, ∅
I.e., 𝜏1 = 𝛼2 and 𝐸1 = ∅.

(b)
(AxC)

Γ′ ⊢ Nil :: [𝛼5], ∅
I.e., 𝜏2 = [𝛼5] and 𝐸2 = ∅

(c)
(RApp)

(RApp)

(AxC)
Γ′ ⊢ Cons :: 𝛼6 → [𝛼6] → [𝛼6] ,

(AxV)
Γ′ ⊢ 𝑦 :: 𝛼3, ∅

Γ′ ⊢ (Cons 𝑦) :: 𝛼7, {𝛼6 → [𝛼6] → [𝛼6]
·
= 𝛼3 → 𝛼7} ,

(AxV)
Γ′ ⊢ 𝑦𝑠 :: 𝛼4, ∅

Γ′ ⊢ (Cons 𝑦 𝑦𝑠) :: 𝛼8, {𝛼6 → [𝛼6] → [𝛼6]
·
= 𝛼3 → 𝛼7, 𝛼7

·
= 𝛼4 → 𝛼8}

I.e., 𝜏3 = 𝛼8 and 𝐸3 = {𝛼6 → [𝛼6] → [𝛼6]
·
= 𝛼3 → 𝛼7, 𝛼7

·
= 𝛼4 → 𝛼8}

(d)
(AxC)

Γ′ ⊢ Nil :: [𝛼9], ∅
I.e., 𝜏4 = [𝛼9] and 𝐸4 = ∅.

(e)

(RApp)

(RApp)

(AxC)
Γ′ ⊢ Cons :: 𝛼10 → [𝛼10] → [𝛼10], ∅ ,

(RApp)

(AxV)
Γ′ ⊢ 𝑓 :: 𝛼1, ∅ ,

(AxV)
Γ′ ⊢ 𝑦 :: 𝛼3, ∅

Γ′ ⊢ ( 𝑓 𝑦) :: 𝛼15, {𝛼1
·
= 𝛼3 → 𝛼15}

Γ′ ⊢ (Cons ( 𝑓 𝑦)) :: 𝛼11, {𝛼10 → [𝛼10] → [𝛼10]
·
= 𝛼15 → 𝛼11, 𝛼1

·
= 𝛼3 → 𝛼15} ,

(RApp)

(RApp)

(AxSC2)
Γ′ ⊢ map :: 𝛽, ∅ ,

(AxV)
Γ′ ⊢ 𝑓 :: 𝛼1, ∅ ,

Γ′ ⊢ (map 𝑓 ) :: 𝛼12, {𝛽
·
= 𝛼1 → 𝛼12} ,

(AxV)
Γ′ ⊢ 𝑦𝑠 :: 𝛼4, ∅

Γ′ ⊢ (map 𝑓 𝑦𝑠) :: 𝛼13, {𝛽
·
= 𝛼1 → 𝛼12, 𝛼12

·
= 𝛼4 → 𝛼13}

Γ′ ⊢ (Cons ( 𝑓 𝑦) (map 𝑓 𝑦𝑠)) :: 𝛼14,
{𝛼11

·
= 𝛼13 → 𝛼14, 𝛼10 → [𝛼10] → [𝛼10]

·
= 𝛼15 → 𝛼11, 𝛼1

·
= 𝛼3 → 𝛼15, 𝛽

·
= 𝛼1 → 𝛼12, 𝛼12

·
= 𝛼4 → 𝛼13}

I.e., 𝜏5 = 𝛼14 and
𝐸5 = {𝛼11

·
= 𝛼13 → 𝛼14, 𝛼10 → [𝛼10] → [𝛼10]

·
= 𝛼15 → 𝛼11, 𝛼1

·
= 𝛼3 → 𝛼15,

𝛽
·
= 𝛼1 → 𝛼12, 𝛼12

·
= 𝛼4 → 𝛼13}

In total, the equations 𝐸 ∪ {𝛽 ·= 𝛼1 → 𝛼2 → 𝛼} have to be unified, i.e.

{𝛼6 → [𝛼6] → [𝛼6]
·
= 𝛼3 → 𝛼7, 𝛼7

·
= 𝛼4 → 𝛼8, 𝛼11

·
= 𝛼13 → 𝛼14,

𝛼10 → [𝛼10] → [𝛼10]
·
= 𝛼15 → 𝛼11, 𝛼1

·
= 𝛼3 → 𝛼15, 𝛽

·
= 𝛼1 → 𝛼12,

𝛼12
·
= 𝛼4 → 𝛼13, 𝛼2

·
= [𝛼5], 𝛼2

·
= 𝛼8, 𝛼

·
= 𝛼9, 𝛼

·
= 𝛼14}

Unification results in

𝜎 = {𝛼 ↦→ [𝛼10], 𝛼1 ↦→ 𝛼6 → 𝛼10, 𝛼2 ↦→ [𝛼6], 𝛼3 ↦→ 𝛼6, 𝛼4 ↦→ [𝛼6], 𝛼5 ↦→ 𝛼6,

𝛼7 ↦→ [𝛼6] → [𝛼6], 𝛼8 ↦→ [𝛼6], 𝛼9 ↦→ [𝛼10], 𝛼11 ↦→ [𝛼10] → [𝛼10],
𝛼12 ↦→ [𝛼6] → [𝛼10], 𝛼13 ↦→ [𝛼10], 𝛼14 ↦→ [𝛼10], 𝛼15 ↦→ 𝛼10,

𝛽 ↦→ (𝛼6 → 𝛼10) → [𝛼6] → [𝛼10],

I.e., 𝑚𝑎𝑝 :: 𝜎(𝛼1 → 𝛼2 → 𝛼) = (𝛼6 → 𝛼10) → [𝛼6] → [𝛼10].

Example 5.5.17. We consider the Hindley-Damas-Milner typing of Example 5.5.3. Let super-
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combinator g be defined as

g x = x : (g (g ’c’))

The assumption for the constructors is Γ = {Cons :: ∀𝑎.𝑎 → [𝑎] → [𝑎], ’c’ :: Char}. Let
Γ′ = Γ ∪ {𝑥 :: 𝛼, g :: 𝛽}.

(MSCRec)

(RApp)

(RApp)

(AxC)
Γ′ ⊢ Cons :: 𝛼5 → [𝛼5] → [𝛼5], ∅ ,

(AxV)
Γ′ ⊢ 𝑥 :: 𝛼, ∅

Γ′ ⊢ (Cons 𝑥) :: 𝛼3, 𝛼5 → [𝛼5] → [𝛼5]
·
= 𝛼→ 𝛼3 ,

(RApp)

(AxSC2)
Γ′ ⊢ g :: 𝛽, ∅ ,

(RApp)

(AxSC2)
Γ′ ⊢ g :: 𝛽, ∅ ,

(AxC)
Γ′ ⊢ ’c’ :: Char, ∅ ,

Γ′ ⊢ (g ’c’) :: 𝛼7, {𝛽
·
= Char→ 𝛼7}

Γ′ ⊢ (g (g ’c’)) :: 𝛼4, {𝛽
·
= Char→ 𝛼7, 𝛽

·
= 𝛼7 → 𝛼4}

Γ′ ⊢ Cons 𝑥 (g (g ’c’)) :: 𝛼2, {𝛽
·
= Char→ 𝛼7, 𝛽

·
= 𝛼7 → 𝛼4𝛼5 → [𝛼5] → [𝛼5]

·
= 𝛼→ 𝛼3, 𝛼3

·
= 𝛼4 → 𝛼2}

Γ ⊢𝑇 g :: 𝜎(𝛼→ 𝛼2)
where 𝜎 is the solution of {𝛽 ·= Char→ 𝛼7, 𝛽

·
= 𝛼7 → 𝛼4, 𝛼5 → [𝛼5] → [𝛼5]

·
= 𝛼→ 𝛼3, 𝛼3

·
= 𝛼4 → 𝛼2, 𝛽

·
= 𝛼→ 𝛼2}

Unification fails, because Char has to be unified with a list. Hence, g is not Hindley-Damas-
Milner typeable.

Example 5.5.18. We consider the supercombinator g of Example 5.5.2:

g x = 1 : (g (g ’c’))

Let Γ′ = Γ ∪ {𝑥 :: 𝛼, g :: 𝛽}.

(SCRec)

(RApp)

(RApp)

(AxC)
Γ′ ⊢ Cons :: 𝛼5 → [𝛼5] → [𝛼5], ∅ ,

(AxC)
Γ′ ⊢ 1 :: Int, ∅

Γ′ ⊢ (Cons 1) :: 𝛼3, 𝛼5 → [𝛼5] → [𝛼5]
·
= Int→ 𝛼3 ,

(RApp)

(AxSC2)
Γ′ ⊢ g :: 𝛽, ∅ ,

(RApp)

(AxSC2)
Γ′ ⊢ g :: 𝛽, ∅ ,

(AxC)
Γ′ ⊢ ’c’ :: Char, ∅ ,

Γ′ ⊢ (g ’c’) :: 𝛼7, {𝛽
·
= Char→ 𝛼7}

Γ′ ⊢ (g (g ’c’)) :: 𝛼4, {𝛽
·
= Char→ 𝛼7, 𝛽

·
= 𝛼7 → 𝛼4}

Γ′ ⊢ Cons 1 (g (g ’c’)) :: 𝛼2, {𝛽
·
= Char→ 𝛼7, 𝛽

·
= 𝛼7 → 𝛼4, 𝛼5 → [𝛼5] → [𝛼5]

·
= Int→ 𝛼3, 𝛼3

·
= 𝛼4 → 𝛼2}

Γ ⊢𝑇 g :: 𝜎(𝛼→ 𝛼2)
where 𝜎 is the solution of {𝛽 ·= Char→ 𝛼7, 𝛽

·
= 𝛼7 → 𝛼4, 𝛼5 → [𝛼5] → [𝛼5]

·
= Int→ 𝛼3, 𝛼3

·
= 𝛼4 → 𝛼2, 𝛽

·
= 𝛼→ 𝛼2}

Unification fails, due to the equation [𝛼5]
·
= Char.

Finally, we consider a supercombinator that has a type w.r.t. the Hindley-Damas-Milner type
inference and w.r.t. the iterative type inference, but the iterative type is more general.

Example 5.5.19. Assume the recursive data type Tree, defined in Haskell as

data Tree a = Empty | Node a (Tree a) (Tree a)

The types of the constructors are: Empty :: ∀𝑎.Tree 𝑎 and Node :: ∀𝑎.𝑎 → Tree a →
Tree a→ Tree a
We type the supercombinator g defined as
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g x y = Node True (g x y) (g y x)

We first compute the Hindley-Damas-Milner type: Suppose that Γ contains the assumption on
the constructors. Let Γ′ = Γ ∪ {𝑥 :: 𝛼1, 𝑦 :: 𝛼2, g :: 𝛽}. For readability, we draw the derivation
trees separately:

(MSCRec)

(RApp)
(𝑐), (𝑎)

Γ′ ⊢ (Node True (g 𝑥 𝑦) (g 𝑦 𝑥)) :: 𝛼3,
{𝛼8 → Tree 𝛼8 → Tree 𝛼8 → Tree 𝛼8

·
= Bool→ 𝛼9,

𝛽
·
= 𝛼2 → 𝛼4, 𝛼4

·
= 𝛼1 → 𝛼5, 𝛼9

·
= 𝛼7 → 𝛼10,

𝛽
·
= 𝛼1 → 𝛼6, 𝛼6

·
= 𝛼2 → 𝛼7, 𝛼10

·
= 𝛼5 → 𝛼3}

Γ ⊢𝑇 g :: 𝜎(𝛼1 → 𝛼2 → 𝛼3)
where 𝜎 is the solution of

{𝛼8 → Tree 𝛼8 → Tree 𝛼8 → Tree 𝛼8
·
= Bool→ 𝛼9,

𝛽
·
= 𝛼2 → 𝛼4, 𝛼4

·
= 𝛼1 → 𝛼5, 𝛼9

·
= 𝛼7 → 𝛼10,

𝛽
·
= 𝛼1 → 𝛼6, 𝛼6

·
= 𝛼2 → 𝛼7, 𝛼10

·
= 𝛼5 → 𝛼3, 𝛽

·
= 𝛼1 → 𝛼2 → 𝛼3}

(a)

(RApp)

(RApp)

(AxSC2)
Γ′ ⊢ 𝑔 :: 𝛽, ∅ ,

(AxV)
Γ′ ⊢ 𝑦 :: 𝛼2, ∅

Γ′ ⊢ (g 𝑦) :: 𝛼4, {𝛽
·
= 𝛼2 → 𝛼4} ,

(AxV)
Γ′ ⊢ 𝑥 :: 𝛼1, ∅

(g 𝑦 𝑥)) :: 𝛼5, {𝛽
·
= 𝛼2 → 𝛼4, 𝛼4

·
= 𝛼1 → 𝛼5}

(b)

(RApp)

(RApp)

(AxSC2)
Γ′ ⊢ 𝑔 :: 𝛽, ∅ ,

(AxV)
Γ′ ⊢ 𝑥 :: 𝛼1, ∅

Γ′ ⊢ (g 𝑥) :: 𝛼6, {𝛽
·
= 𝛼1 → 𝛼6} ,

(AxV)
Γ′ ⊢ 𝑦 :: 𝛼2, ∅

(g 𝑥 𝑦)) :: 𝛼7, {𝛽
·
= 𝛼1 → 𝛼6, 𝛼6

·
= 𝛼2 → 𝛼7}

(c)

(RApp)

(RApp)

(AxC)
Γ′ ⊢ Node :: 𝛼8 → Tree 𝛼8 → Tree 𝛼8 → Tree 𝛼8, ∅ ,

(AxC)
Γ′ ⊢ True :: Bool, ∅

Γ′ ⊢ (Node True) :: 𝛼9, {𝛼8 → Tree 𝛼8 → Tree 𝛼8 → Tree 𝛼8
·
= Bool→ 𝛼9} ,

(𝑏)
Γ′ ⊢ (Node True (g 𝑥 𝑦)) :: 𝛼10,

{𝛼8 → Tree 𝛼8 → Tree 𝛼8 → Tree 𝛼8
·
= Bool→ 𝛼9,

𝛼9
·
= 𝛼7 → 𝛼10, 𝛽

·
= 𝛼1 → 𝛼6, 𝛼6

·
= 𝛼2 → 𝛼7}

Unification results in
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𝜎 = { 𝛼1 ↦→ 𝛼2,

𝛼3 ↦→ Tree Bool,
𝛼4 ↦→ 𝛼2 → Tree Bool,
𝛼5 ↦→ Tree Bool,
𝛼6 ↦→ 𝛼2 → Tree Bool,
𝛼7 ↦→ Tree Bool,
𝛼8 ↦→ Bool,
𝛼9 ↦→ Tree Bool→ Tree Bool→ Tree Bool,
𝛼10 ↦→ Tree Bool→ Tree Bool,
𝛽 ↦→ 𝛼2 → 𝛼2 → Tree Bool }

I.e., Γ ⊢𝑇 g :: 𝜎(𝛼1 → 𝛼2 → 𝛼3) = 𝛼2 → 𝛼2 → Tree Bool.
The Hindley-Damas-Milner type inference algorithm thus results in g :: 𝑎 → 𝑎 → Tree Bool.
We now consider the iterative type inference for g: Let Γ0 = Γ ∪ {g :: ∀𝛼.𝛼}. The first iteration
for Γ0 consists of the following derivation (where Γ′0 = Γ0 ∪ {𝑥 :: 𝛼1, 𝑦 :: 𝛼2}):

(SCRec)

(RApp)
(𝑐), (𝑎)

Γ′0 ⊢ (Node True (g 𝑥 𝑦) (g 𝑦 𝑥)) :: 𝛼3,
{𝛼8 → Tree 𝛼8 → Tree 𝛼8 → Tree 𝛼8

·
= Bool→ 𝛼9,

𝛽1
·
= 𝛼2 → 𝛼4, 𝛼4

·
= 𝛼1 → 𝛼5, 𝛼9

·
= 𝛼7 → 𝛼10,

𝛽2
·
= 𝛼1 → 𝛼6, 𝛼6

·
= 𝛼2 → 𝛼7, 𝛼10

·
= 𝛼5 → 𝛼3}

Γ0 ⊢𝑇 g :: 𝜎(𝛼1 → 𝛼2 → 𝛼3)
where 𝜎 is the solution of

{𝛼8 → Tree 𝛼8 → Tree 𝛼8 → Tree 𝛼8
·
= Bool→ 𝛼9,

𝛽1
·
= 𝛼2 → 𝛼4, 𝛼4

·
= 𝛼1 → 𝛼5, 𝛼9

·
= 𝛼7 → 𝛼10,

𝛽2
·
= 𝛼1 → 𝛼6, 𝛼6

·
= 𝛼2 → 𝛼7, 𝛼10

·
= 𝛼5 → 𝛼3}

(a)

(RApp)

(RApp)

(AxSC)
Γ′0 ⊢ 𝑔 :: 𝛽1, ∅ ,

(AxV)
Γ′0 ⊢ 𝑦 :: 𝛼2, ∅

Γ′0 ⊢ (g 𝑦) :: 𝛼4, {𝛽1
·
= 𝛼2 → 𝛼4} ,

(AxV)
Γ′0 ⊢ 𝑥 :: 𝛼1, ∅

(g 𝑦 𝑥)) :: 𝛼5, {𝛽1
·
= 𝛼2 → 𝛼4, 𝛼4

·
= 𝛼1 → 𝛼5}

(b)

(RApp)

(RApp)

(AxSC)
Γ′0 ⊢ 𝑔 :: 𝛽2, ∅ ,

(AxV)
Γ′0 ⊢ 𝑥 :: 𝛼1, ∅

Γ′0 ⊢ (g 𝑥) :: 𝛼6, {𝛽2
·
= 𝛼1 → 𝛼6} ,

(AxV)
Γ′0 ⊢ 𝑦 :: 𝛼2, ∅

(g 𝑥 𝑦)) :: 𝛼7, {𝛽2
·
= 𝛼1 → 𝛼6, 𝛼6

·
= 𝛼2 → 𝛼7}
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(c)

(RApp)

(RApp)

(AxC)
Γ′0 ⊢ Node :: 𝛼8 → Tree 𝛼8 → Tree 𝛼8 → Tree 𝛼8, ∅ ,

(AxC)
Γ′0 ⊢ True :: Bool, ∅

Γ′0 ⊢ (Node True) :: 𝛼9,
{𝛼8 → Tree 𝛼8 → Tree 𝛼8 → Tree 𝛼8

·
= Bool→ 𝛼9} ,

(𝑏)
Γ′0 ⊢ (Node True (g 𝑥 𝑦)) :: 𝛼10,

{𝛼8 → Tree 𝛼8 → Tree 𝛼8 → Tree 𝛼8
·
= Bool→ 𝛼9,

𝛼9
·
= 𝛼7 → 𝛼10, 𝛽2

·
= 𝛼1 → 𝛼6, 𝛼6

·
= 𝛼2 → 𝛼7}

Unification results in

𝜎 = { 𝛽1 ↦→ 𝛼2 → 𝛼1 → Tree Bool,
𝛽2 ↦→ 𝛼1 → 𝛼2 → Tree Bool,
𝛼3 ↦→ Tree Bool,
𝛼4 ↦→ 𝛼1 → Tree Bool,
𝛼5 ↦→ Tree Bool,
𝛼6 ↦→ 𝛼2 → Tree Bool,
𝛼7 ↦→ Tree Bool,
𝛼8 ↦→ Bool,
𝛼9 ↦→ Tree Bool→ Tree Bool→ Tree Bool,
𝛼10 ↦→ Tree Bool→ Tree Bool }

This results in g :: 𝜎(𝛼1 → 𝛼2 → 𝛼3) = 𝛼1 → 𝛼2 → Tree Bool. Now Γ1 = Γ ∪ {g ::

∀𝛼, 𝛽, 𝛼→ 𝛽→ Tree Bool}. A further iteration shows that Γ1 is consistent (we omit it)
Thus the iterative type inference algorithm returns g :: 𝑎 → 𝑏 → Tree Bool and the iterative
type is more general than the Hindley-Damas-Milner-Type. In the Haskell interpreter, the more
specific type is derived:

*Main> let g x y = Node True (g x y) (g y x)

*Main> :t g

g :: t -> t -> Tree Bool

If the programmer assigns the more general type, then Haskell verifies it:

*Main> let g :: a -> b -> Tree Bool; g x y = Node True (g x y) (g y x)

*Main> :t g

g :: a -> b -> Tree Bool

The Hindley-Damas-Milner type inference algorithm has the property, that well-typed programs
are never dynamically untyped. Also, the progress lemma holds, i.e. Hindley-Damas-Milner
typed programs are reducible or WHNFs. Type preservation also holds n KFPTSP+seq for
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Hindley-Damas-Milner typing. If recursive let-expressions are used instead of supercombina-
tors, then it may happen that Hindley-Damas-Milner typed expressions are reduced to expressions
that are no longer Hindley-Damas-Milner typed (nevertheless the expression is still iteratively
typed, so no dynamic type error will occur) An example is

let x = (let y = \u -> z in (y [], y True, seq x True)); z = const z x in x

The expression is Hindley-Damas-Milner typeable. After a so-called (𝑙𝑙𝑒𝑡)-reduction which
flattens the let-bindings, the expression becomes

let x = (y [], y True, seq x True); y = \u -> z; z = const z x in x

This expression is no longer Hindley-Damas-Milner typeable, since y and x are typed together.

5.6. Conclusion and References

We introduced the polymorphic type systems for KFPTSP+seq-expressions and supercombi-
nators, where we explained two type inference algorithms and analyzed their properties. The
content of this chapter mainly stems from (Schmidt-Schauß, 2009).
The Hindley-Damas-Milner type inference algorithm was invented in (Milner, 1978) and similarly
already in (Hindley, 1969). In (Damas & Milner, 1982) soundness and completeness of the
algorithm was shown. The iterative type inference algorithm mainly stems from (Mycroft,
1984).
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6.1. Formal Semantics

A semantics of a programming language is used to formally describe the behavior of programs
and its effect on the environment. Thus it represents the meaning of a programming. Such a
semantics is necessary to reason on correctness of program optimization, program translation,
program transformation and for verifying programs.
The research field of formal semantics for programming languages (see e.g. (Gunter, 1992;
Winskel, 1993; Mitchell, 1996; Stump, 2013)) investigates this topic. In general there exist the
following approaches of semantics for programming languages which can be briefly described
as follows:
An axiomatic semantics defines the meaning of programs using logical axioms. Properties
of programs can then be deduced using logical inference rules. A prominent example for an
axiomatic semantics is the Hoare calculus (see (Hoare, 1969)) where triples {𝑃} 𝐶 {𝑄}) are
used to describe the effect of the programs on the environment: if precondition 𝑃 holds and
command 𝐶 is executed, then postcondition 𝑄 holds. An inference rule is the following rule for
sequencing:

{𝑃} 𝐶1 {𝑄}, {𝑄} 𝐶2 {𝑅}
{𝑃} 𝐶1;𝐶2 {𝑅}

An operational semantics defines how a program is executed, i.e. it describes the evaluation of
programs. There are different models used for operational semantics: state transition systems
where a state describes the current state of the program and maybe the machine memory. The
transitions define how the next state is computed. Using abstract machines a machine model is
used to define the execution of programs. Finally, rewriting systems define how programs are
rewritten to compute the successor in a sequence of an evaluation. We already used rewriting
systems to describe the operational semantics of the lambda calculus and the functional core
languages. The Turing machine can also be seen as an abstract machine, however the programs
are hard coded in the set of states, thus there the program is not adjustable. In contrast, a
universal Turing machine interprets its input as a Turing machine, so it is an interpreter of Turing
machine. This is an operational semantics, however the programming language (consisting of
TM descriptions) is a bit unusual for a programmer.
A further criterion for classifying operational semantics is the distinction into small-step and
big-step semantics. While the former describes evaluation using small steps, i.e. in general an
evaluation consists of multiple steps, the latter describes the evaluation within few (mostly one)
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steps. The operational semantics that we have defined for the lambda calculus and the functional
core languages are small-step semantics.
Usually operational semantics are intuitive, but reasoning using operational semantics is often
seen as difficult and complex.
A denotational semantics (see e.g. (Stoy, 1977; Schmidt, 1986; Tennent, 1994)) maps programs
into mathematical objects which are used as the denotation of a program and thus represent the
meaning of a program. A wide-spread approach for denotational semantics is using domains,
i.e. partially ordered sets.
A contextual semantics defines contextual equivalence as an equality notion on programs. The
equivalence class can then be seen as the semantics of the program. We already have seen the
contextual semantics for the call-by-name and the call-by-value lambda calculus.
A transformational semantics usually transforms the program in a program of another language
(or a sublanguage) and then the semantics of the target language is used. This can for instance
be used to remove syntactic sugar or for example, when expressing recursive supercombinators
with the fixpoint operator.
A desired property of every semantic description is compositionality which means that the
semantics of a program can be computed from the semantics of the subprograms. For example,
if ⟨·⟩ compute the semantics, then ⟨𝑠 + 𝑡⟩ = ⟨𝑠⟩ + ⟨𝑡⟩ should hold.
In this chapter we will consider different forms of operational semantics and denotational se-
mantics. We do not consider axiomatic semantics. Instead of a functional language, we consider
a core language of imperative programming. The language is called IMP. It can for instance, be
found in (Winskel, 1993).

Definition 6.1.1. Let 𝑉 be a non-terminal for storage locations (generating a countably infinite
set Loc of storage locations 𝑥, 𝑦, . . .). Let 𝑛, 𝑚 represent arbitrary integers. The syntax of IMP-
programs is generated by the non-terminal Cmd, which uses arithmetic expressions generated
by the non-terminal AExp and boolean expressions generated by the non-terminal BExp

AExp ::= 𝑛 | 𝑉 | AExp +AExp | AExp −AExp | AExp ∗AExp

BExp ::= True | False | AExp = AExp | AExp ≤ AExp

| ¬BExp | BExp ∨ BExp | Bexp ∧ BExp

Cmd ::= skip | 𝑉 := AExp | Cmd;Cmd

| if BExp then Cmd else Cmd fi | while BExp do Cmd od

Example 6.1.2. We show some example programs.
The program

𝑦 := 2 : 𝑧 := 4; 𝑥 := 𝑦 + 𝑧

will assign 2 to storage location 𝑦, 4 to storage location 𝑧, and 6 to storage location 𝑥.
The program

𝑥 := 1; 𝑦 := 100; while 0 ≤ 𝑦 do 𝑥 := 𝑥 ∗ 𝑦; 𝑦 := 𝑦 − 1 od
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computes 100!.
The program

𝑠 := 0; 𝑖 := 100; while 1 ≤ 𝑖 do 𝑠 := 𝑠 + 𝑖 ∗ 𝑖; 𝑖 := 𝑖 − 1 od

computes the sum
∑100

𝑖=0 𝑖
2.

6.2. Operational Semantics

A state is a partial function 𝜎 : Loc → ℤ such that Dom (𝜎) is finite. I.e., it assigns an integer
to a finite set of storage locations. Storage locations store numbers, but no boolean values.
The behavior of programs that access storage locations before initializing them, can be defined
in different ways (for example, all locations could be initialized with a default value like 0). We
treat such an access as a runtime error.

6.2.1. A Big-Step Semantics

We define the evaluation of arithmetic expressions, boolean expressions and commands as a
big-step semantics. We introduce the notation and later axioms and inference rules.

Definition 6.2.1 (Evaluation Relation). Let Σ be the set of all states, i.e.

Σ = {𝜎 | 𝜎 : Loc → ℤ ∧Dom (𝜎) is finite}.

For 𝜎 ∈ Σ and 𝑥 ∈ Loc, 𝜎(𝑥) ∈ ℤ is the value of storage location 𝑥, or if 𝜎 is not defined for 𝑥,
𝜎(𝑥) = ⊥.
A configuration ⟨𝑠, 𝜎⟩ consists of a command, arithmetic expression, or boolean expression 𝑠
and a state 𝜎 ∈ Σ.
We use the evaluation relation ↓ for all three kinds of configurations:

• For an arithmetic expression 𝑎, we write ⟨𝑎, 𝜎⟩ ↓ 𝑛 to denote that 𝑎 evaluates to a number
𝑛 ∈ ℤ in state 𝜎.

• For a boolean expression 𝑏, we write ⟨𝑏, 𝜎⟩ ↓ True or ⟨𝑏, 𝜎⟩ ↓ False, to denote that 𝑏
evaluates to boolean value True (or False, resp.) in state 𝜎.

• For a command 𝑐, we write ⟨𝑐, 𝜎⟩ ↓ 𝜎′ if 𝑐 changes the state 𝜎 to state 𝜎′.

Note that ↓ is a relation and not necessarily a function. If we would define it as a function,
we would enforce that evaluation is deterministic by definition, but this determinism should be
a consequence of the definition. Or from another view, if we define it to be a function, but
an evaluation rule is non-deterministic, then we (accidentally) introduce a wrong rule. Thus,
allowing a relation, and then proving that it is in fact a function, seems to be the right way.
However, there are cases where a relation is required, for instance, if our programming language
would have a true random number generator.
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In the following section we list axioms and derivation rules for the big-step semantics of IMP.
We use the notation

premises

conclusion

6.2.1.1. Rules for Evaluation of Arithmetic Expressions

The rules for evaluation of arithmetic expressions are:

(AxNum)
⟨𝑛, 𝜎⟩ ↓ 𝑛

(Sum)
⟨𝑎1, 𝜎⟩ ↓ 𝑛1 ⟨𝑎2, 𝜎⟩ ↓ 𝑛2
⟨𝑎1 + 𝑎2, 𝜎⟩ ↓ 𝑛′

if 𝑛′ = 𝑛1 + 𝑛2

(AxLoc)
⟨𝑥, 𝜎⟩ ↓ 𝜎(𝑥)

if 𝜎(𝑥) is defined (Prod)
⟨𝑎1, 𝜎⟩ ↓ 𝑛1 ⟨𝑎2, 𝜎⟩ ↓ 𝑛2

⟨𝑎1 ∗ 𝑎2, 𝜎⟩ ↓ 𝑛′
if 𝑛′ = 𝑛1 · 𝑛2

(Diff)
⟨𝑎1, 𝜎⟩ ↓ 𝑛1 ⟨𝑎2, 𝜎⟩ ↓ 𝑛2
⟨𝑎1 − 𝑎2, 𝜎⟩ ↓ 𝑛′

if 𝑛′ = 𝑛1 − 𝑛2

The axiom (AxNum) states that a number evaluates to a number, with axiom (AxLoc) the value of
a location is looked up (if it is defined), the rules (Sum), (Prod), (Diff) compute the sum, product,
or difference of two numbers. Note that for instance, 𝑎1 + 𝑎2 is syntax of the programming
language, while 𝑛′ = 𝑛1 + 𝑛2 is meta-notation.

6.2.1.2. Rules for Evaluation of Boolean Expressions

The rules for evaluation of boolean expressions are:

(AxT)
⟨True, 𝜎⟩ ↓ True

(Eq)
⟨𝑎1, 𝜎⟩ ↓ 𝑛 ⟨𝑎2, 𝜎⟩ ↓ 𝑚
⟨𝑎1 = 𝑎2, 𝜎⟩ ↓ True

if 𝑛 = 𝑚

(AxF)
⟨False, 𝜎⟩ ↓ False

(NEq)
⟨𝑎1, 𝜎⟩ ↓ 𝑛 ⟨𝑎2, 𝜎⟩ ↓ 𝑚
⟨𝑎1 = 𝑎2, 𝜎⟩ ↓ False

if 𝑛 ≠ 𝑚

(Leq)
⟨𝑎1, 𝜎⟩ ↓ 𝑛 ⟨𝑎2, 𝜎⟩ ↓ 𝑚
⟨𝑎1 ≤ 𝑎2, 𝜎⟩ ↓ True

if 𝑛 ≤ 𝑚 (NLeq)
⟨𝑎1, 𝜎⟩ ↓ 𝑛 ⟨𝑎2, 𝜎⟩ ↓ 𝑚
⟨𝑎1 ≤ 𝑎2, 𝜎⟩ ↓ False

if 𝑛 > 𝑚

(AndT)
⟨𝑏1, 𝜎⟩ ↓ True ⟨𝑏2, 𝜎⟩ ↓ True

⟨𝑏1 ∧ 𝑏2, 𝜎⟩ ↓ True
(AndF1)

⟨𝑏1, 𝜎⟩ ↓ False
⟨𝑏1 ∧ 𝑏2, 𝜎⟩ ↓ False
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(AndF2)
⟨𝑏1, 𝜎⟩ ↓ True ⟨𝑏2, 𝜎⟩ ↓ False

⟨𝑏1 ∧ 𝑏2, 𝜎⟩ ↓ False
(OrF)

⟨𝑏1, 𝜎⟩ ↓ False ⟨𝑏2, 𝜎⟩ ↓ False
⟨𝑏1 ∨ 𝑏2, 𝜎⟩ ↓ False

(OrT1)
⟨𝑏1, 𝜎⟩ ↓ True

⟨𝑏1 ∨ 𝑏2, 𝜎⟩ ↓ True
(OrT2)

⟨𝑏1, 𝜎⟩ ↓ False ⟨𝑏2, 𝜎⟩ ↓ True
⟨𝑏1 ∨ 𝑏2, 𝜎⟩ ↓ True

(Not1)
⟨𝑏, 𝜎⟩ ↓ False
⟨¬𝑏, 𝜎⟩ ↓ True

(Not2)
⟨𝑏, 𝜎⟩ ↓ True
⟨¬𝑏, 𝜎⟩ ↓ False

Axioms (AxT) and (AxF) state that a boolean value evaluates to a boolean value. Rules (Eq) and
(Neq) evaluate the boolean value of an equality test on arithmetic expressions. Note that in the
premise the evaluation of arithmetic expressions is used. Rules (Leq) and (NLeq) evaluate an ≤-
operator. Rules (Not1) and (Not2) evaluate the negation. Rules (AndT), (AndF1), and (AndF2)
evaluate a conjunction, rules (OrT), (OrF1), (OrF2) evaluate a disjunction. Note that conjunction
and disjunction are evaluated “sequentially”, i.e. if the value of can be calculated when the
left value is available, the right value is not computed. This means ⟨True ∨ 𝑏, 𝜎⟩ ↓ True and
⟨False ∧ 𝑏, 𝜎⟩ ↓ False for every 𝑏, in particular when 𝑏 is undefined.

Example 6.2.2. For 𝜎 = {𝑥 ↦→ 10, 𝑦 ↦→ 7, 𝑧 ↦→ 8}, we can built the derivation tree for the
arithmetic expression 𝑥 ≤ 𝑦 + 4 ∨ 𝑤 as follows

OrT1

Leq

AxNum
⟨𝑥, 𝜎⟩ ↓ 10

Sum

AxLoc
⟨𝑦, 𝜎⟩ ↓ 7

AxNum
⟨4, 𝜎⟩ ↓ 4

⟨𝑦 + 4, 𝜎⟩ ↓ 11
if 11 = 7 + 4

⟨𝑥 ≤ 𝑦 + 4, 𝜎⟩ ↓ True
if 10 ≤ 11

⟨𝑥 ≤ 𝑦 + 4 ∨ 𝑤, 𝜎⟩ ↓ True

The construction is done bottom-up, until the top of the tree consists of axioms and thus no more
premises have to be shown.

Note that the semantics does not prescribe an exact order of evaluation (for instance in 𝑎1 + 𝑎2,
the semantics does not fix the order of evaluation 𝑎1 and 𝑎2). This is a typical characteristics of
a big-step semantics – it leaves some freedom in the implementation.

We could change this, by either fixing the order as an instruction in the premise of the rules, or
by changing the rules, such that they distinguish between expressions and values, for instance,
replacing the rule (Sum) by the following two rules would enforce left to right evaluation of
addition:

⟨𝑎1, 𝜎⟩ ↓ 𝑛 ⟨𝑛 + 𝑎2, 𝜎⟩ ↓ 𝑚
⟨𝑎1 + 𝑎2, 𝜎⟩ ↓ 𝑚

⟨𝑎2, 𝜎⟩ ↓ 𝑛
⟨𝑚 + 𝑎2, 𝜎⟩ ↓ 𝑛′

if 𝑛′ = 𝑚 + 𝑛
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6.2.1.3. Rules for Evaluation of Commands

The rules for evaluation of commands have side-effects, i.e. they modify the state 𝜎. We write
𝜎[𝑚/𝑥] for the state 𝜎 where the value of 𝑥 is changed to 𝑚, i.e.

𝜎[𝑚/𝑥] (𝑦) =
{
𝜎(𝑥) if 𝑦 ≠ 𝑥
𝑚 if 𝑦 = 𝑥

The evaluation rules are:

(AxSkip)
⟨skip, 𝜎⟩ ↓ 𝜎

(Asgn)
⟨𝑎, 𝜎⟩ ↓ 𝑚

⟨𝑥 := 𝑎, 𝜎⟩ ↓ 𝜎[𝑚/𝑥]
(Seq)

⟨𝑐1, 𝜎⟩ ↓ 𝜎′ ⟨𝑐2, 𝜎′⟩ ↓ 𝜎′′

⟨𝑐1; 𝑐2, 𝜎⟩ ↓ 𝜎′′

(IfT)
⟨𝑏, 𝜎⟩ ↓ True ⟨𝑐1, 𝜎⟩ ↓ 𝜎′

⟨if 𝑏 then 𝑐1 else 𝑐2 fi, 𝜎⟩ ↓ 𝜎′
(IfF)

⟨𝑏, 𝜎⟩ ↓ False ⟨𝑐2, 𝜎⟩ ↓ 𝜎′

⟨if 𝑏 then 𝑐1 else 𝑐2 fi, 𝜎⟩ ↓ 𝜎′

(WhileF)
⟨𝑏, 𝜎⟩ ↓ False

⟨while 𝑏 do 𝑐 od, 𝜎⟩ ↓ 𝜎
(WhileT)

⟨𝑏, 𝜎⟩ ↓ True ⟨𝑐, 𝜎⟩ ↓ 𝜎′
⟨while 𝑏 do 𝑐 od, 𝜎′⟩ ↓ 𝜎′′

⟨while 𝑏 do 𝑐 od, 𝜎⟩ ↓ 𝜎′′

The axiom (AxSkip) states that evaluation of the skip-command does not change the state.
The rule (Asgn) evaluates the assignment, by evaluating the right-hand side and then modifying
the state. The rule evaluates sequential composition of programs. Note that the different states
enforce left to right evaluation. Rules (IfT) and (IfF) evaluate an if-then-else-command where
depending on the value of the boolean expression the then- or the else-branch is evaluated.
Rule (WhileF) is used to finish the evaluation of a while-command if the condition evaluates to
False. The rule (WhileT) treats the case that the while-condition is True: then the body of the
loop is evaluated once, and the newly derived state is us to evaluate the while-command again.

Example 6.2.3. We show some examples for the evaluation of commands.

The evaluation of 𝑐 = 𝑥 := 1; 𝑦 := 2 in the state {𝑥 ↦→ 2} is

(Seq)

(Asgn)

(AxNum)
⟨1, {𝑥 ↦→ 2}⟩ ↓ 1

⟨𝑥 := 1, {𝑥 ↦→ 2}⟩ ↓ {𝑥 ↦→ 1}
(Asgn)

(AxNum)
⟨2, {𝑥 ↦→ 1}⟩ ↓ 2

⟨𝑦 := 2, {𝑥 ↦→ 1}⟩ ↓ {𝑥 ↦→ 1, 𝑦 ↦→ 2}
⟨𝑥 := 1; 𝑦 := 2, {𝑥 ↦→ 2}⟩ ↓ {𝑥 ↦→ 1, 𝑦 ↦→ 2}
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The evaluation of while ¬(𝑥 ≤ 1) do 𝑦 := 𝑦 + 1; 𝑥 := 𝑥 − 1 od in the state {𝑥 ↦→ 2, 𝑦 ↦→ 0} is

(WhileT)

⟨¬(𝑥 ≤ 1), {𝑥 ↦→ 2, 𝑦 ↦→ 0}⟩ ↓ True (𝑎)
⟨𝑦 := 𝑦 + 1; 𝑥 := 𝑥 − 1, {𝑥 ↦→ 2, 𝑦 ↦→ 0}⟩ ↓ {𝑥 ↦→ 1, 𝑦 ↦→ 1} (𝑏)

⟨while ¬(𝑥 ≤ 1) do 𝑦 := 𝑦 + 1; 𝑥 := 𝑥 − 1 od, {𝑥 ↦→ 1, 𝑦 ↦→ 1}⟩ ↓ {𝑥 ↦→ 1, 𝑦 ↦→ 1}(𝑐)
⟨while ¬(𝑥 ≤ 1) do 𝑦 := 𝑦 + 1; 𝑥 := 𝑥 − 1 od, {𝑥 ↦→ 2, 𝑦 ↦→ 0}⟩ ↓ {𝑥 ↦→ 1, 𝑦 ↦→ 1}

where we show the derivations of three judgments (a), (b), (c) separately:

For (a):

(Not1)

(NLeq)

(AxLoc)
⟨𝑥, {𝑥 ↦→ 2, 𝑦 ↦→ 0}⟩ ↓ 2

(AxNum)
⟨1, {𝑥 ↦→ 2, 𝑦 ↦→ 0}⟩ ↓ 1

⟨𝑥 ≤ 1, {𝑥 ↦→ 2, 𝑦 ↦→ 0}⟩ ↓ False
⟨¬(𝑥 ≤ 1), 𝜎⟩ ↓ True

For (b):

(Seq)

⟨𝑦 := 𝑦 + 1, {𝑥 ↦→ 2, 𝑦 ↦→ 0}⟩ ↓ {𝑥 ↦→ 2, 𝑦 ↦→ 1} (𝑏1)
⟨𝑥 := 𝑥 − 1, {𝑥 ↦→ 2, 𝑦 ↦→ 1}⟩ ↓ {𝑥 ↦→ 1, 𝑦 ↦→ 1} (𝑏2)
⟨𝑦 := 𝑦 + 1; 𝑥 := 𝑥 − 1, {𝑥 ↦→ 2, 𝑦 ↦→ 0}⟩ ↓ {𝑥 ↦→ 1, 𝑦 ↦→ 1}

Again we show the premises (b1) and (b2) separately:

For (b1):

(Asgn)

(Sum)

(AxLoc)
⟨𝑦, {𝑥 ↦→ 2, 𝑦 ↦→ 0}⟩ ↓ 0

(AxNum)
⟨1, {𝑥 ↦→ 2, 𝑦 ↦→ 0}⟩ ↓ 1

⟨𝑦 + 1, {𝑥 ↦→ 2, 𝑦 ↦→ 0}⟩ ↓ 1
⟨𝑦 := 𝑦 + 1, {𝑥 ↦→ 2, 𝑦 ↦→ 0}⟩ ↓ {𝑥 ↦→ 2, 𝑦 ↦→ 1}

For (b2):

(Asgn)

(Diff)

(AxLoc)
⟨𝑥, {𝑥 ↦→ 2, 𝑦 ↦→ 1}⟩ ↓ 2

(AxNum)
⟨1, {𝑥 ↦→ 2, 𝑦 ↦→ 1}⟩ ↓ 1

⟨𝑥 − 1, {𝑥 ↦→ 2, 𝑦 ↦→ 1}⟩ ↓ 1
⟨𝑥 := 𝑥 − 1, {𝑥 ↦→ 2, 𝑦 ↦→ 1}⟩ ↓ {𝑥 ↦→ 1, 𝑦 ↦→ 1}
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For (c)

(WhileF)

(Not2)

(Leq)

(AxLoc)
⟨𝑥, {𝑥 ↦→ 1, 𝑦 ↦→ 1}⟩ ↓ 1

(AxNum)
⟨1, {𝑥 ↦→ 1, 𝑦 ↦→ 1}⟩ ↓ 1

⟨(𝑥 ≤ 1), {𝑥 ↦→ 1, 𝑦 ↦→ 1}⟩ ↓ True
⟨¬(𝑥 ≤ 1), {𝑥 ↦→ 1, 𝑦 ↦→ 1}⟩ ↓ False

⟨while ¬(𝑥 ≤ 1) do 𝑦 := 𝑦 + 1; 𝑥 := 𝑥 − 1 od, {𝑥 ↦→ 1, 𝑦 ↦→ 1}⟩ ↓ {𝑥 ↦→ 1, 𝑦 ↦→ 1}

Example 6.2.4. Let 𝜎 be an arbitrary state. Trying to derive ⟨while True do skip od⟩ ↓ 𝜎′
for some state 𝜎′ in a bottom-up manner starts with

(WhileT)

(AxT)
⟨True, 𝜎⟩ ↓ True

(AxSkip)
⟨skip, 𝜎⟩ ↓ 𝜎

...

⟨while True do skip od, 𝜎⟩ ↓ 𝜎′

⟨while True do skip od, 𝜎⟩ ↓ 𝜎′

Now the third premise has to be shown (i.e. the derivation tree replacing the dots is missing). But
the premise to be shown, is exactly the conclusion of the whole tree. Hence, the construction of
the derivation tree will not finish and thus no derivation tree exists.

6.2.1.4. Evaluation is Deterministic

In this section we show that evaluation is deterministic, i.e. if ⟨𝑐, 𝜎⟩ ↓ 𝜎′ and ⟨𝑐, 𝜎⟩ ↓ 𝜎′′, then
𝜎′ = 𝜎′′.
We first proof that evaluation of arithmetic expressions is deterministic

Lemma 6.2.5. Let 𝑎 be an arithmetic expression and 𝜎 ∈ Σ. If ⟨𝑎, 𝜎⟩ ↓ 𝑛 and ⟨𝑎, 𝜎⟩ ↓ 𝑛′ then
𝑛 = 𝑛′.

Proof. By structural induction on 𝑎. If 𝑎 is a number 𝑚, then only (AxNum) is applicable which
always results in ⟨𝑚, 𝜎⟩ ↓ 𝑚 and thus 𝑛 = 𝑛′ = 𝑚. If 𝑎 is a storage location 𝑥, to derive number 𝑛
and 𝑛′ as in the claim of the lemma, only axiom (AxLoc) can be used. This shows that 𝜎(𝑥) must
be defined and that applying the axiom always results in ⟨𝑥, 𝜎⟩ ↓ 𝜎(𝑥) and thus 𝑛 = 𝑛′ = 𝜎(𝑥).
If 𝑎 = 𝑎1 + 𝑎2, then the induction hypothesis shows that the derivations ⟨𝑎𝑖 , 𝜎⟩ ↓ 𝑛𝑖 are
deterministic. Then the rule (Sum) must result in ⟨𝑎1 + 𝑎2, 𝜎⟩ ↓ 𝑚 where 𝑚 = 𝑛1 + 𝑛2. Thus
𝑛 = 𝑛′ = 𝑚 must hold. The cases 𝑎 = 𝑎1 ∗ 𝑎2 and 𝑎 = 𝑎1 − 𝑎2 are completely analogous. □

Lemma 6.2.6. Let 𝑏 be a boolean expression, 𝜎 ∈ Σ and ⟨𝑏, 𝜎⟩ ↓ 𝑣1 and ⟨𝑏, 𝜎⟩ ↓ 𝑣2 then
𝑣1 = 𝑣2

Proof. By structural induction on 𝑏. If 𝑏 is a boolean value, then only (AxT) or (AxF) is
applicable which always results in ⟨𝑏, 𝜎⟩ ↓ 𝑏 and thus 𝑣1 = 𝑣2 = 𝑏. If 𝑏 is a conjunction 𝑏1∧ 𝑏2,
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then by the induction hypothesis the evaluations ⟨𝑏𝑖 , 𝜎⟩ ↓ 𝑤𝑖 are deterministic. Since the rule
(AndT) can only be applied if 𝑤1, 𝑤2 are both True, rule (AndF1) can only be applied if 𝑤1 is
False, and rule (AndF2) can only be applied if 𝑤1 is True and 𝑤2 is False, the rule application
is unique and only depends on the values 𝑤1, 𝑤2 which shows 𝑣1 = 𝑣2.
If 𝑏 is a disjunction 𝑏1 ∨ 𝑏2, then by the induction hypothesis the evaluations ⟨𝑏𝑖 , 𝜎⟩ ↓ 𝑤𝑖 are
deterministic. Since the rule (OrF) can only be applied if 𝑤1, 𝑤2 are both False, rule (OrT1)
can only be applied if 𝑤1 is True, and rule (OrT2) can only be applied if 𝑤1 is False and 𝑤2 is
True, the rule application is unique and only depends on the values 𝑤1, 𝑤2 which shows 𝑣1 = 𝑣2.
If 𝑏 is a negation ¬𝑏′, then by the induction hypothesis the evaluation ⟨𝑏′, 𝜎⟩ ↓ 𝑣 is deterministic.
Then either rule (Not1) or rule (Not2) is applicable (but not both). This shows 𝑣1 = 𝑣2.
If 𝑏 is an equation 𝑎1 = 𝑎2, then by Lemma 6.2.5 the evaluations ⟨𝑎𝑖 , 𝜎⟩ ↓ 𝑛𝑖 are deterministic.
Then either rule (Eq) or rule (NEq) is applicable (but not both). This shows 𝑣1 = 𝑣2.
If 𝑏 is an inequation 𝑎1 ≤ 𝑎2, then by Lemma 6.2.5 the evaluations ⟨𝑎𝑖 , 𝜎⟩ ↓ 𝑛𝑖 are deterministic.
Then either rule (Leq) or rule (NLeq) is applicable (but not both). This shows 𝑣1 = 𝑣2. □

Proposition 6.2.7. Let 𝑐 be a command, 𝜎 ∈ Σ and ⟨𝑐, 𝜎⟩ ↓ 𝜎1 and ⟨𝑐, 𝜎⟩ ↓ 𝜎2 then 𝜎1 = 𝜎2

Proof. By the derivation of ⟨𝑐, 𝜎⟩ ↓ 𝜎1. If the derivation consists of one rule application, then
this rule must be an axiom, and there exists only the axiom (AxSkip). The 𝜎 = 𝜎1 and 𝑐 = skip.
Then also 𝜎2 = 𝜎, since no other derivation rule is applicable for this case.
For the induction step, we consider the last rule that is applied in the derivation of ⟨𝑐, 𝜎⟩ ↓ 𝜎1,
i.e. the rule at the bottom of the derivation tree.
If the rule is (Seq), then 𝑐 = 𝑐1; 𝑐2, and the derivation step must be of the form ⟨𝑐1, 𝜎⟩ ↓ 𝜎′
and ⟨𝑐2, 𝜎′⟩ ↓ 𝜎1 for some 𝜎′. For the derivation ⟨𝑐, 𝜎⟩ ↓ 𝜎2, the final rule also must be the
rule (Seq), since no other rule matches this case, i.e. there is some 𝜎′′ with ⟨𝑐1, 𝜎⟩ ↓ 𝜎′′ and
⟨𝑐2, 𝜎′′⟩ ↓ 𝜎2. The induction hypothesis applied to the subderivations show that 𝜎′ = 𝜎′′ and
thus 𝜎1 = 𝜎2. Thus the claim holds.
If the rule is (IfT), then 𝑐 = if 𝑏 then 𝑐1 else 𝑐2 fi and ⟨𝑏, 𝜎⟩ ↓ True and ⟨𝑐1, 𝜎⟩ ↓ 𝜎1.
Lemma 6.2.6 shows that ⟨𝑏, 𝜎⟩ ↓ False is impossible. and thus also in the derivation of
⟨𝑐, 𝜎⟩ ↓ 𝜎2 rule (IfT) must be used, where ⟨𝑐1, 𝜎⟩ ↓ 𝜎2. The induction hypothesis applied to
⟨𝑐1, 𝜎⟩ ↓ 𝜎1 now shows 𝜎1 = 𝜎2.
The cases (IfF) and (WhileF) are similar, so we ommit them.
If (WhileT) is used, then 𝑐 = while 𝑏 do 𝑐′ od and there exists𝜎′ with ⟨𝑏, 𝜎⟩ ↓ True, ⟨𝑐, 𝜎⟩ ↓ 𝜎′
and ⟨while 𝑏 do 𝑐′ od, 𝜎′⟩ ↓ 𝜎1.
By Lemma 6.2.6, ⟨𝑏, 𝜎⟩ ↓ False is impossible and thus for ⟨𝑐, 𝜎⟩ ↓ 𝜎2 also the rule (WhileT)
must be the last used rule. Hence, there exists𝜎′′ with ⟨𝑐, 𝜎⟩ ↓ 𝜎′′ and ⟨while 𝑏 do 𝑐′ od, 𝜎′′⟩ ↓
𝜎2. The induction hypothesis shows that 𝜎′ = 𝜎′′ and thus also 𝜎1 = 𝜎2. □

Note that an induction on the structure of 𝑐 is not possible, since in the rule (WhileT) the
command of the conclusion occurs in the premise.
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Since evaluation is deterministic, we can express the semantics of a command as a partial function
that maps a state to a new state:

Definition 6.2.8. Let 𝑐 be a command, then ⟦𝑐⟧𝑒𝑣𝑎𝑙 : Σ→ Σ is the partial function such that

⟦𝑐⟧𝑒𝑣𝑎𝑙𝜎 = 𝜎′ iff ⟨𝑐, 𝜎⟩ ↓ 𝜎′

Note that there are programs such that ⟦𝑐⟧𝑒𝑣𝑎𝑙 is undefined for all states. One such program is
while True do skip od.
We can define the following equivalence ∼ on commands which expresses that programs are
equivalent if there input-output behavior is the same:

Definition 6.2.9. The relation ∼ is defined as 𝑐1 ∼ 𝑐2 iff for all 𝜎 ∈ Σ : ⟦𝑐1⟧𝑒𝑣𝑎𝑙𝜎 = ⟦𝑐2⟧𝑒𝑣𝑎𝑙𝜎

Lemma 6.2.10. The equivalence

(while 𝑏 do 𝑐 od) ∼ (if 𝑏 then 𝑐; while 𝑏 do 𝑐 od else skip fi)

holds.

Proof. Let 𝜎 ∈ Σ. We consider three cases:
• ⟨𝑏, 𝜎⟩ ↓ False. Then ⟨while 𝑏 do 𝑐 od, 𝜎⟩ ↓ 𝜎, since:

(WhileF)
⟨𝑏, 𝜎⟩ ↓ False

⟨while 𝑏 do 𝑐 od, 𝜎⟩ ↓ 𝜎

Also ⟨if 𝑏 then 𝑐; while 𝑏 do 𝑐 od else skip fi, 𝜎⟩ ↓ 𝜎 holds, since:

(IfF)
⟨𝑏, 𝜎⟩ ↓ False

(AxSkip)
⟨skip, 𝜎⟩ ↓ 𝜎

⟨if 𝑏 then 𝑐; while 𝑏 do 𝑐 od else skip fi, 𝜎⟩ ↓ 𝜎

This shows⟦while 𝑏 do 𝑐 od⟧𝑒𝑣𝑎𝑙𝜎 = ⟦if 𝑏 then 𝑐; while 𝑏 do 𝑐 odelseskipfi⟧𝑒𝑣𝑎𝑙𝜎 =

𝜎 in this case.
• ⟨𝑏, 𝜎⟩ ↓ True. If ⟨while 𝑏 do 𝑐 od, 𝜎⟩ ↓ 𝜎′ then 𝜎′′ must exist such that ⟨𝑐, 𝜎⟩ ↓ 𝜎′′

and ⟨while 𝑏 do 𝑐 od, 𝜎′′⟩ ↓ 𝜎′ must hold (by rule (WhileT)).
Then the following derivation can be constructed:

(IfT)
⟨𝑏, 𝜎⟩ ↓ True

(Seq)
⟨𝑐, 𝜎⟩ ↓ 𝜎′′ ⟨while 𝑏 do 𝑐 od, 𝜎′′⟩ ↓ 𝜎′

⟨𝑐; while 𝑏 do 𝑐 od, 𝜎⟩ ↓ 𝜎′

⟨if 𝑏 then 𝑐; while 𝑏 do 𝑐 od else skip fi, 𝜎⟩ ↓ 𝜎′

Last update: January 8, 2025 100 D. Sabel, Programming Language Foundations, Winter 2024/25



6.2. Operational Semantics

If there does not exists any 𝜎′ such that ⟨while 𝑏 do 𝑐 od, 𝜎⟩ ↓ 𝜎′, then there doese
not exist a 𝜎′′ with ⟨𝑐, 𝜎⟩ ↓ 𝜎′′ or ⟨𝑐, 𝜎⟩ ↓ 𝜎′′ and there does not exist a 𝜎′ such
that ⟨while 𝑏 do 𝑐 od, 𝜎′′⟩ ↓ 𝜎′. In both cases, there does not exist 𝜎′ such that
⟨if 𝑏 then 𝑐; while 𝑏 do 𝑐 od else skip fi, 𝜎⟩ ↓ 𝜎′, since both parts are required for
the derivation tree.
If ⟨if 𝑏 then 𝑐; while 𝑏 do 𝑐 od else skip fi, 𝜎⟩ ↓ 𝜎′, then 𝜎′′ must exist, such that
⟨𝑐, 𝜎⟩ ↓ 𝜎′′, and ⟨while 𝑏 do 𝑐 od, 𝜎′′⟩ ↓ 𝜎′. Then the following derivation can be
constructed:

(WhileT)
⟨𝑏, 𝜎⟩ ↓ True ⟨𝑐, 𝜎⟩ ↓ 𝜎′′ ⟨while 𝑏 do 𝑐 od, 𝜎′′⟩ ↓ 𝜎′

⟨while 𝑏 do 𝑐 od, 𝜎′′⟩ ↓ 𝜎′

If there does not exist 𝜎′ with ⟨if 𝑏 then 𝑐; while 𝑏 do 𝑐 od else skip fi, 𝜎⟩ ↓ 𝜎′,
then the reasoning is analogous to the previous case showing that there does not exist 𝜎′

with ⟨while 𝑏 do 𝑐 od, 𝜎⟩ ↓ 𝜎′.
This shows⟦while 𝑏 do 𝑐 od⟧𝑒𝑣𝑎𝑙𝜎 = ⟦if 𝑏 then 𝑐; while 𝑏 do 𝑐 odelseskipfi⟧𝑒𝑣𝑎𝑙𝜎
for all subcases of the case ⟨𝑏, 𝜎⟩ ↓ True.

• if ⟨𝑏, 𝜎⟩ ↓ 𝑣 does not hold for any 𝑣. Then there must be a storage location 𝑥 that occurs
in 𝑏, such that 𝜎(𝑥) is not defined. Then ⟦while 𝑏 do 𝑐 od⟧𝑒𝑣𝑎𝑙𝜎 is not defined and
also ⟦if 𝑏 then 𝑐; while 𝑏 do 𝑐 od else skip fi⟧𝑒𝑣𝑎𝑙𝜎 is not defined. Thus the claim
holds. □

Assume that ∼𝑖𝑛𝑖𝑡 is defined analogous to our definition of ∼with the difference, that all variables
are initialized with value 0 (i.e. 𝜎(𝑥) = 0, if 𝜎 does not define a value for 𝑥).
Then∼ and∼𝑖𝑛𝑖𝑡 are different equivalences: The equivalence if 𝑏 then skip else skip fi ∼𝑖𝑛𝑖𝑡
skip holds for every boolean expression 𝑏, since ⟨𝑏, 𝜎⟩ will always evaluate to True or False.
In our semantics, there exists 𝑏 such that if 𝑏 then skip else skip fi ≁ skip: choose
𝑥 = 𝑥 for 𝑏 and a 𝜎 such that 𝜎(𝑥) is undefined. Then there does not exist 𝜎′ with
⟦if 𝑏 then skip else skip fi⟧𝑒𝑣𝑎𝑙𝜎 = 𝜎′, since ⟨𝑏, 𝜎⟩ ↓ 𝜎 does not hold. But
⟦skip⟧𝑒𝑣𝑎𝑙𝜎 = 𝜎 holds by (AxSkip).

6.2.2. A Small-Step-Semantics of IMP

We define a small-step semantics→ in form of a reduction semantics for IMP. This approach is
very similar to the reduction semantics that we have defined for the lambda calculus.
We will define reduction rules and reduction contexts to fix the position where the next reduction
step has to be applied (alternatively, a labeling algorithm could be used).
The relation→ will operate on configurations, i.e. tuples ⟨𝑡, 𝜎⟩ where 𝑡 is an arithmetic expres-
sion, a boolean expression, or a command and 𝜎 ∈ Σ.
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Definition 6.2.11. The reduction rules are

(skip) ⟨skip; 𝑐, 𝜎⟩ → ⟨𝑐, 𝜎⟩
(asgn) ⟨𝑥 := 𝑚, 𝜎⟩ → ⟨skip, 𝜎[𝑚/𝑥]⟩ if 𝑚 ∈ ℤ
(ifT ) ⟨if True then 𝑐1 else 𝑐2 fi, 𝜎⟩ → ⟨𝑐1, 𝜎⟩
(ifF ) ⟨if False then 𝑐1 else 𝑐2 fi, 𝜎⟩ → ⟨𝑐2, 𝜎⟩
(while) ⟨while 𝑏 do 𝑐 od, 𝜎⟩ → ⟨if 𝑏 then 𝑐; while 𝑏 do 𝑐 od else skip fi, 𝜎⟩
(sum) ⟨𝑛 + 𝑚, 𝜎⟩ → ⟨𝑛′, 𝜎⟩ if 𝑛′ = 𝑛 + 𝑚
(prod ) ⟨𝑛 ∗ 𝑚, 𝜎⟩ → ⟨𝑛′, 𝜎⟩ if 𝑛′ = 𝑛 · 𝑚
(diff ) ⟨𝑛 − 𝑚, 𝜎⟩ → ⟨𝑛′, 𝜎⟩ if 𝑛′ = 𝑛 − 𝑚
(loc) ⟨𝑥, 𝜎⟩ → ⟨𝑛, 𝜎⟩ if 𝜎(𝑥) = 𝑛
(leqT ) ⟨𝑛 ≤ 𝑚, 𝜎⟩ → ⟨True, 𝜎⟩ if 𝑛 ≤ 𝑚
(leqF ) ⟨𝑛 ≤ 𝑚, 𝜎⟩ → ⟨False, 𝜎⟩ if 𝑛 > 𝑚
(eqT ) ⟨𝑛 = 𝑛, 𝜎⟩ → ⟨True, 𝜎⟩ if 𝑛 = 𝑚
(eqF ) ⟨𝑛 = 𝑚, 𝜎⟩ → ⟨False, 𝜎⟩ if 𝑛 ≠ 𝑚
(orT ) ⟨True ∨ 𝑏, 𝜎⟩ → ⟨True, 𝜎⟩
(orF ) ⟨False ∨ 𝑣, 𝜎⟩ → ⟨𝑣, 𝜎⟩ if 𝑣 ∈ {True, False}
(andF ) ⟨False ∧ 𝑏, 𝜎⟩ → ⟨False, 𝜎⟩
(andT ) ⟨True ∧ 𝑣, 𝜎⟩ → ⟨𝑣, 𝜎⟩ if 𝑣 ∈ {True, False}
(notT ) ⟨¬True, 𝜎⟩ → ⟨False, 𝜎⟩
(notF ) ⟨¬False, 𝜎⟩ → ⟨True, 𝜎⟩

We define three classes of reduction contexts

𝑅𝐴 ::= [·] | 𝑅𝐴 + 𝑎 | 𝑅𝐴 ∗ 𝑎 | 𝑅𝐴 − 𝑎 | 𝑛 + 𝑅𝐴 | 𝑛 ∗ 𝑅𝐴 | 𝑛 − 𝑅𝐴

𝑅𝐵 ::= [·] | 𝑅𝐵 ∨ 𝑏 | 𝑅𝐵 ∧ 𝑏 | False ∨ 𝑅𝐵 | True ∧ 𝑅𝐵 | ¬𝑅𝐵

| 𝑅𝐴 ≤ 𝑎 | 𝑛 ≤ 𝑅𝐴 | 𝑅𝐴 = 𝑎 | 𝑛 = 𝑅𝐴

𝑅𝐶 ::= [·] | 𝑅𝐶 ; 𝑐 | if 𝑅𝐵 then 𝑐1 else 𝑐2 fi | 𝑥 := 𝑅𝐴

Definition 6.2.12. We define the reduction relation eval−−−→:

If ⟨𝑠, 𝜎⟩ → ⟨𝑠′, 𝜎′⟩ then for every 𝑅𝐶-context: ⟨𝑅𝐶 [𝑠], 𝜎⟩
eval−−−→ ⟨𝑅𝐶 [𝑠′], 𝜎′⟩.

To specify the used rule, we also write
eval ,rule−−−−−−−→ where rule is the name of the used rule.

Alternatively, we can use the following labeling algorithm to find the position for the next
reduction: For a command 𝑐 it starts with 𝑐★ and exhaustively applies the following shifting
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rules:

(𝑐1; 𝑐2)★ ⇒ (𝑐★1 ; 𝑐2)
(𝑋 := 𝑎)★ ⇒ (𝑥 := 𝑎★)
if 𝑏 then 𝑐 else 𝑐′ fi★ ⇒ if 𝑏★ then 𝑐 else 𝑐′ fi
(𝑎1 ⊕ 𝑎2)★ ⇒ (𝑎★1 ⊕ 𝑎2) if ⊕ ∈ {+,−, ∗, =, ≤}
(𝑛★ ⊕ 𝑎) ⇒ (𝑛 ⊕ 𝑎★) if 𝑛 ∈ ℤ and ⊕ ∈ {+,−, ∗, =, ≤}
(𝑏1 ∨ 𝑏2)★ ⇒ (𝑏★1 ∨ 𝑏2)
(𝑏1 ∧ 𝑏2)★ ⇒ (𝑏★1 ∧ 𝑏2)
(¬ 𝑏)★ ⇒ (¬ 𝑏★)
(False★ ∨ 𝑏) ⇒ (False ∨ 𝑏★)
(True★ ∧ 𝑏) ⇒ (True ∧ 𝑏★)

The reduction rules with labels are 𝐶 is an arbitrary context that is a command and the hole may
be at at command-, arithmetic expression-, or boolean expression-position.

⟨𝐶 [skip★; 𝑐], 𝜎⟩
eval ,skip
−−−−−−−→ ⟨𝐶 [𝑐], 𝜎⟩

⟨𝐶 [𝑥 := 𝑚★], 𝜎⟩
eval ,asgn
−−−−−−−−→ ⟨𝐶 [skip], 𝜎[𝑚/𝑥]⟩ if 𝑚 ∈ ℤ

⟨𝐶 [if True★ then 𝑐1 else 𝑐2 fi], 𝜎⟩
eval ,ifT
−−−−−−→ ⟨𝐶 [𝑐1], 𝜎⟩

⟨𝐶 [if False★ then 𝑐1 else 𝑐2 fi], 𝜎⟩
eval ,ifF
−−−−−−→ ⟨𝐶 [𝑐2], 𝜎⟩

⟨𝐶 [while 𝑏 do 𝑐 od], 𝜎⟩★ eval ,while−−−−−−−−→ ⟨𝐶 [if 𝑏 then 𝑐; while 𝑏 do 𝑐 od else skip fi], 𝜎⟩
⟨𝐶 [𝑛 + 𝑚★], 𝜎⟩ eval ,sum−−−−−−−→ ⟨𝐶 [𝑛′], 𝜎⟩ if 𝑛′ = 𝑛 + 𝑚
⟨𝐶 [𝑛 ∗ 𝑚★], 𝜎⟩

eval ,prod
−−−−−−−→ ⟨𝐶 [𝑛′], 𝜎⟩ if 𝑛′ = 𝑛 · 𝑚

⟨𝐶 [𝑛 − 𝑚★], 𝜎⟩
eval ,diff
−−−−−−−→ ⟨𝐶 [𝑛′], 𝜎⟩ if 𝑛′ = 𝑛 − 𝑚

⟨𝐶 [𝑥★], 𝜎⟩ eval ,loc−−−−−−→ ⟨𝐶 [𝑛], 𝜎⟩ if 𝜎(𝑥) = 𝑛
⟨𝐶 [𝑛 ≤ 𝑚★], 𝜎⟩

eval ,leqT
−−−−−−−→ ⟨𝐶 [True], 𝜎⟩ if 𝑛 ≤ 𝑚

⟨𝐶 [𝑛 ≤ 𝑚★], 𝜎⟩
eval ,leqF
−−−−−−−→ ⟨𝐶 [False], 𝜎⟩ if 𝑛 > 𝑚

⟨𝐶 [𝑛 = 𝑛★], 𝜎⟩
eval ,eqT
−−−−−−−→ ⟨𝐶 [True], 𝜎⟩ if 𝑛 = 𝑚

⟨𝐶 [𝑛 = 𝑚★], 𝜎⟩
eval ,eqF
−−−−−−−→ ⟨𝐶 [False], 𝜎⟩ if 𝑛 ≠ 𝑚

⟨𝐶 [True★ ∨ 𝑏], 𝜎⟩ eval ,orT−−−−−−−→ ⟨𝐶 [True], 𝜎⟩
⟨𝐶 [False ∨ 𝑣★], 𝜎⟩ eval ,orF−−−−−−−→ ⟨𝐶 [𝑣], 𝜎⟩ if 𝑣 ∈ {True, False}
⟨𝐶 [False★ ∧ 𝑏], 𝜎⟩ eval ,andF−−−−−−−−→ ⟨𝐶 [False], 𝜎⟩
⟨𝐶 [True ∧ 𝑣★], 𝜎⟩ eval ,andT−−−−−−−−→ ⟨𝐶 [𝑣], 𝜎⟩ if 𝑣 ∈ {True, False}
⟨𝐶 [¬True★], 𝜎⟩ eval ,notT−−−−−−−−→ ⟨𝐶 [False], 𝜎⟩
⟨𝐶 [¬False★], 𝜎⟩ eval ,notF−−−−−−−−→ ⟨𝐶 [True], 𝜎⟩

It is possible to verify that both definitions (i.e. using the labeling algorithm or using reduction
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contexts) indeed lead to the same relation
eval−−−→. The proof requires the inspection of all syntactic

cases. We omit the proof.

We write
eval ,𝑛−−−−−→ for 𝑛

eval−−−→-steps (i.e. the 𝑛-fold composition of
eval−−−→) and

eval ,+−−−−−→ for the transitive
closure and

eval ,∗−−−−−→ for the reflexive-transitive closure of
eval−−−→.

Small-step evaluation successfully stops if the configuration ⟨skip, 𝜎⟩ for some𝜎 ∈ Σ is reached.
For command 𝑐 and environment 𝜎, we write ⟨𝑐, 𝜎⟩ ↓𝑒𝑣𝑎𝑙 𝜎′ iff ⟨𝑐, 𝜎⟩ eval∗−−−−→ ⟨skip, 𝜎′⟩.

Note that there are configurations that have no successor w.r.t.
eval−−−→ but are not successful: this

hold for configurations of the form ⟨𝑅𝐶 [𝑥], 𝜎⟩ where 𝜎(𝑥) is undefined.
By inspecting all syntactic cases one can verify:

Lemma 6.2.13. The reduction relation eval−−−→ deterministic, i.e. if ⟨𝑐, 𝜎⟩ eval−−−→ ⟨𝑐′, 𝜎′⟩ and
⟨𝑐, 𝜎⟩ eval−−−→ ⟨𝑐′′, 𝜎′′⟩, then 𝑐′ = 𝑐′′ and 𝜎′ = 𝜎′′.

Example 6.2.14. We evaluate the command while ¬(𝑥 ≤ 1) do 𝑥 := 𝑥 − 1 od for the state
{𝑥 ↦→ 3}:

⟨while ¬(𝑥 ≤ 1) do 𝑥 := 𝑥 − 1 od, {𝑥 ↦→ 3}⟩
eval ,while−−−−−−−−→ ⟨if ¬(𝑥 ≤ 1) then 𝑥 := 𝑥 − 1; while ¬(𝑥 ≤ 1) do 𝑥 := 𝑥 − 1 od else skip fi, {𝑥 ↦→ 3}⟩
eval ,loc−−−−−−→ ⟨if ¬(3 ≤ 1) then 𝑥 := 𝑥 − 1; while ¬(𝑥 ≤ 1) do 𝑥 := 𝑥 − 1 od else skip fi, {𝑥 ↦→ 3}⟩
eval ,leqF
−−−−−−−→ ⟨if ¬False then 𝑥 := 𝑥 − 1; while ¬(𝑥 ≤ 1) do 𝑥 := 𝑥 − 1 od else skip fi, {𝑥 ↦→ 3}⟩
eval ,notF−−−−−−−−→ ⟨if True then 𝑥 := 𝑥 − 1; while ¬(𝑥 ≤ 1) do 𝑥 := 𝑥 − 1 od else skip fi, {𝑥 ↦→ 3}⟩
eval ,ifT
−−−−−−→ ⟨𝑥 := 𝑥 − 1; while ¬(𝑥 ≤ 1) do 𝑥 := 𝑥 − 1 od, {𝑥 ↦→ 3}⟩
eval ,loc−−−−−−→ ⟨𝑥 := 3 − 1; while ¬(𝑥 ≤ 1) do 𝑥 := 𝑥 − 1 od, {𝑥 ↦→ 3}⟩
eval ,diff
−−−−−−−→ ⟨𝑥 := 2; while ¬(𝑥 ≤ 1) do 𝑥 := 𝑥 − 1 od, {𝑥 ↦→ 3}⟩
eval ,asgn
−−−−−−−−→ ⟨𝑠𝑘𝑖𝑝; while ¬(𝑥 ≤ 1) do 𝑥 := 𝑥 − 1 od, {𝑥 ↦→ 2}⟩
eval ,skip
−−−−−−−→ ⟨while ¬(𝑥 ≤ 1) do 𝑥 := 𝑥 − 1 od, {𝑥 ↦→ 2}⟩
eval ,while−−−−−−−−→ ⟨if ¬(𝑥 ≤ 1) then 𝑥 := 𝑥 − 1; while ¬(𝑥 ≤ 1) do 𝑥 := 𝑥 − 1 od else skip fi, {𝑥 ↦→ 2}⟩
eval ,loc−−−−−−→ ⟨if ¬(2 ≤ 1) then 𝑥 := 𝑥 − 1; while ¬(𝑥 ≤ 1) do 𝑥 := 𝑥 − 1 od else skip fi, {𝑥 ↦→ 2}⟩
eval ,leqF
−−−−−−−→ ⟨if ¬False then 𝑥 := 𝑥 − 1; while ¬(𝑥 ≤ 1) do 𝑥 := 𝑥 − 1 od else skip fi, {𝑥 ↦→ 2}⟩
eval ,notF−−−−−−−−→ ⟨if True then 𝑥 := 𝑥 − 1; while ¬(𝑥 ≤ 1) do 𝑥 := 𝑥 − 1 od else skip fi, {𝑥 ↦→ 2}⟩
eval ,ifT
−−−−−−→ ⟨𝑥 := 𝑥 − 1; while ¬(𝑥 ≤ 1) do 𝑥 := 𝑥 − 1 od, {𝑥 ↦→ 2}⟩
eval ,loc−−−−−−→ ⟨𝑥 := 2 − 1; while ¬(𝑥 ≤ 1) do 𝑥 := 𝑥 − 1 od, {𝑥 ↦→ 2}⟩
eval ,diff
−−−−−−−→ ⟨𝑥 := 1; while ¬(𝑥 ≤ 1) do 𝑥 := 𝑥 − 1 od, {𝑥 ↦→ 2}⟩
eval ,asgn
−−−−−−−−→ ⟨𝑠𝑘𝑖𝑝; while ¬(𝑥 ≤ 1) do 𝑥 := 𝑥 − 1 od, {𝑥 ↦→ 1}⟩
eval ,skip
−−−−−−−→ ⟨while ¬(𝑥 ≤ 1) do 𝑥 := 𝑥 − 1 od], {𝑥 ↦→ 1}⟩
eval ,while−−−−−−−−→ ⟨if ¬(𝑥 ≤ 1) then 𝑥 := 𝑥 − 1; while ¬(𝑥 ≤ 1) do 𝑥 := 𝑥 − 1 od else skip fi, {𝑥 ↦→ 1}⟩
eval ,loc−−−−−−→ ⟨if ¬(1 ≤ 1) then 𝑥 := 𝑥 − 1; while ¬(𝑥 ≤ 1) do 𝑥 := 𝑥 − 1 od else skip fi, {𝑥 ↦→ 1}⟩
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eval ,leqT
−−−−−−−→ ⟨if ¬True then 𝑥 := 𝑥 − 1; while ¬(𝑥 ≤ 1) do 𝑥 := 𝑥 − 1 od else skip fi, {𝑥 ↦→ 1}⟩
eval ,notT−−−−−−−−→ ⟨if False then 𝑥 := 𝑥 − 1; while ¬(𝑥 ≤ 1) do 𝑥 := 𝑥 − 1 od else skip fi, {𝑥 ↦→ 1}⟩
eval ,ifF
−−−−−−→ ⟨skip, {𝑥 ↦→ 1}⟩

One can prove that the big-step semantics and the reduction semantics are equivalent. We will
only sketch the proof. Two helpful lemmas are:

Lemma 6.2.15. Let 𝑎 be an arithmetic expression and 𝜎 be a state. Then ⟨𝑎, 𝜎⟩ ↓ 𝑚 iff
⟨𝑎, 𝜎⟩ 𝑛−→ ⟨𝑚, 𝜎⟩ by applying the reduction rules of Definition 6.2.11.

Proof. The “if”-direction can be shown by induction on the derivation tree for ⟨𝑎, 𝜎⟩ ↓ 𝑚, the
“only-if”-direction can be shown by induction on the number 𝑛 of steps. □

Lemma 6.2.16. Let 𝑏 be a boolean expression and 𝜎 be a state, 𝑣 ∈ {True, False}. Then
⟨𝑏, 𝜎⟩ ↓ 𝑣 iff ⟨𝑏, 𝜎⟩ 𝑛−→ ⟨𝑣, 𝜎⟩ by applying the reduction rules of Definition 6.2.11.

Proof. The “if”-direction can be shown by induction on the derivation tree for ⟨𝑏, 𝜎⟩ ↓ 𝑚, the
“only-if”-direction can be shown by induction on the number 𝑛 of steps. Also Lemma 6.2.15 has
to be used if arithmetic expressions are evaluated. □

Proposition 6.2.17. For IMP-commands 𝑐 and states 𝜎 ∈ Σ:

⟨𝑐, 𝜎⟩ ↓eval 𝜎′ iff ⟨𝑐, 𝜎⟩ ↓ 𝜎′

Proof. We consider the “if”-direction. If ⟨𝑐, 𝜎⟩ eval ,𝑛−−−−−→ ⟨skip, 𝜎′⟩ then ⟨𝑐, 𝜎⟩ ↓ 𝜎′. We use
induction on the number 𝑛 of steps.
The base case is 𝑛 = 0 and thus 𝑐 = skip and 𝜎′ = 𝜎. Then (AxSkip) shows the claim.

If 𝑛 > 0 i.e. ⟨𝑐, 𝜎⟩ eval−−−→ ⟨𝑐1, 𝜎1⟩
eval ,𝑛−1−−−−−−−→ ⟨skip, 𝜎′⟩. The induction hypothesis shows that

⟨𝑐1, 𝜎1⟩ ↓ 𝜎′.
Now all cases of the first reduction step (and 𝑐, 𝑐1, 𝜎, 𝜎1) have to be considered:

• If the step is a
eval ,skip
−−−−−−−→-step, then 𝑐 = skip; 𝑐1 and 𝜎 = 𝜎1. Then

(Seq)

(AxSkip)
⟨skip⟩ ↓ 𝜎 ⟨𝑐1, 𝜎⟩ ↓ 𝜎′

⟨skip; 𝑐1, 𝜎⟩ ↓ 𝜎′

• If the step is a
eval ,asgn
−−−−−−−−→-step, then there are two possible cases
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1. 𝑐 = 𝑥 := 𝑚, 𝑐1 = skip and 𝜎1 = 𝜎[𝑚/𝑥] = 𝜎′. Then

(Asgn)

(AxNum)
⟨𝑚, 𝜎⟩ ↓ 𝑚

⟨𝑥 := 𝑚, 𝜎⟩ ↓ 𝜎[𝑚/𝑥]

2. 𝑐 = 𝑥 := 𝑚; 𝑐′, 𝑐1 = skip; 𝑐′, and 𝜎1 = 𝜎[𝑚/𝑥]. Then ⟨skip; 𝑐′, 𝜎1⟩
eval ,skip
−−−−−−−→

⟨𝑐′, 𝜎1⟩, and the induction hypothesis can also be applied to ⟨𝑐′, 𝜎1⟩
eval ,𝑛−2−−−−−−−→

⟨skip, 𝜎′⟩ showing ⟨𝑐′, 𝜎1⟩ ↓ 𝜎′. Then

(Seq)

(Asgn)

(AxNum)
⟨𝑚, 𝜎⟩ ↓ 𝑚

⟨𝑥 := 𝑚, 𝜎⟩ ↓ 𝜎1 ⟨𝑐′, 𝜎1⟩ ↓ 𝜎′

⟨𝑥 := 𝑚; 𝑐1, 𝜎⟩ ↓ 𝜎′

• The cases that the reduction is a
eval ,ifT
−−−−−−→-step or

eval ,ifF
−−−−−−→-step, is similar to the previous

one, we omit it.

• The case that the reduction is a
eval ,while−−−−−−−−→-step also has two subcases, depending on whether

the while-command is a single command, or the first command of a sequence. We only
consider the first case, the other case is similar (but requires the (Seq)-rule in the derivation
tree).
Let 𝑐 = while 𝑏 do 𝑐′ od, 𝑐1 = if 𝑏 then 𝑐′; while 𝑏 do 𝑐′ od else skip fi, and
𝜎1 = 𝜎. The reduction semantics will evaluate 𝑏 until it is a boolean value (otherwise a
final configuration cannot be reached). We consider two cases:

– 𝑏 evaluates toFalse. Then ⟨if 𝑏 then 𝑐′; while 𝑏 do 𝑐′ od else skip fi, 𝜎⟩ eval ,∗−−−−−→
⟨if False then 𝑐′; while 𝑏 do 𝑐′ od else skip fi, 𝜎⟩

eval ,ifF
−−−−−−→ (skip, 𝜎2).

Then also ⟨𝑏, 𝜎⟩ ∗−→ ⟨False, 𝜎⟩ (by omitting the outer reduction context) and by
Lemma 6.2.16 ⟨𝑏, 𝜎⟩ ↓ ⟨False, 𝜎⟩. This shows

(WhileF)
⟨𝑏, 𝜎⟩ ↓ False

⟨while 𝑏 do 𝑐′ od, 𝜎⟩ ↓ 𝜎

– 𝑏 evaluates toTrue. Then ⟨if 𝑏 then 𝑐′; while 𝑏 do 𝑐′ od else skip fi, 𝜎⟩ eval ,∗−−−−−→
⟨if True then 𝑐′; while 𝑏 do 𝑐′ od else skip fi, 𝜎⟩

eval ,ifT
−−−−−−→

(𝑐′; while 𝑏 do 𝑐′ od, 𝜎). Then also ⟨𝑏, 𝜎⟩ ∗−→ ⟨True, 𝜎⟩ (by omitting the
outer reduction context) and by Lemma 6.2.16 ⟨𝑏, 𝜎⟩ ↓ ⟨False, 𝜎⟩. By the
induction hypothesis we also have ⟨𝑐′; while 𝑏 do 𝑐′ od, 𝜎⟩ ↓ 𝜎′. Hence there must
exist a derivation tree:
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(Seq)
⟨𝑐′, 𝜎⟩ ↓ 𝜎2⟨while 𝑏 do 𝑐′ od, 𝜎2⟩ ↓ 𝜎′

⟨𝑐′; while 𝑏 do 𝑐′ od, 𝜎⟩ ↓ 𝜎′

and thus ⟨𝑐′, 𝜎⟩ ↓ 𝜎2 and ⟨while 𝑏 do 𝑐′ od, 𝜎2⟩ ↓ 𝜎′ must hold.

Putting everything together this shows:

(WhileT)
⟨𝑏, 𝜎⟩ ↓ True ⟨𝑐′, 𝜎⟩ ↓ 𝜎2 ⟨while 𝑏 do 𝑐′ od, 𝜎2⟩ ↓ 𝜎′

⟨while 𝑏 do 𝑐′ od, 𝜎⟩ ↓ 𝜎′

• In all other cases the first reduction step operates on a boolean expression or an arithmetic
expression (with an outer reduction context), We consider two cases:

1. 𝑐 = 𝑅𝑐 [if 𝑏 then 𝑐′ else 𝑐′′ fi] where 𝑏 is a boolean expression. Then
⟨𝑐, 𝜎⟩ eval ,𝑘−−−−−→ ⟨𝑅𝑐 [if 𝑣 then 𝑐′ else 𝑐′′ fi], 𝜎⟩

eval ,𝑛−𝑘−−−−−−−→ ⟨skip, 𝜎′⟩ with 𝑣 ∈
{True, False} and 𝑘 ≥ 1.

Then also ⟨𝑏, 𝜎⟩ 𝑘−→ ⟨𝑣, 𝜎⟩ with the reductions of Definition 6.2.11 and thus Lem-
mas 6.2.15 and 6.2.16 show ⟨𝑏, 𝜎⟩ ↓ 𝑣.
Now we distinguish on 𝑣:

– 𝑣 = True: Then

⟨𝑅𝑐 [if 𝑣 then 𝑐′ else 𝑐′′ fi], 𝜎⟩
eval−−−→ ⟨𝑅𝑐 [𝑐′], 𝜎⟩

eval ,𝑛−𝑘−1−−−−−−−−−→ ⟨skip, 𝜎′⟩

Since 𝑘 > 0 we can apply the induction hypothesis to ⟨𝑅𝑐 [𝑐′], 𝜎⟩
eval ,𝑛−𝑘−1−−−−−−−−−→

⟨skip, 𝜎′⟩ showing ⟨𝑅𝑐 [𝑐′], 𝜎⟩ ↓ 𝜎′.
If 𝑅𝑐 = [·], then this shows

(IfT)
⟨𝑏, 𝜎⟩ ↓ True ⟨𝑐′, 𝜎⟩ ↓ 𝜎′

⟨if 𝑏 then 𝑐′ else 𝑐′′ fi, 𝜎⟩ ↓ 𝜎′

If 𝑅𝑐 = [·]; 𝑐0 then ⟨𝑅𝑐 [𝑐′], 𝜎⟩ ↓ 𝜎′ implies ⟨𝑐′, 𝜎⟩ ↓ 𝜎0 and ⟨𝑐0, 𝜎0⟩ ↓ 𝜎′ for
some state 𝜎0.

(Seq)

(IfT)
⟨𝑏, 𝜎⟩ ↓ True ⟨𝑐′, 𝜎⟩ ↓ 𝜎0

⟨if 𝑏 then 𝑐′ else 𝑐′′ fi, 𝜎⟩ ↓ 𝜎0 ⟨𝑐0, 𝜎0⟩ ↓ 𝜎′

⟨if 𝑏 then 𝑐′ else 𝑐′′ fi; 𝑐0, 𝜎⟩ ↓ 𝜎′

– 𝑣 = False: Then ⟨if 𝑣 then 𝑐′ else 𝑐′′ fi, 𝜎⟩ eval−−−→ ⟨𝑐′′, 𝜎⟩ eval ,𝑛−𝑘−1−−−−−−−−−→
⟨skip, 𝜎′⟩. Since 𝑘 > 0 we can apply the induction hypothesis to
⟨𝑐′′, 𝜎⟩ eval ,𝑛−𝑘−1−−−−−−−−−→ ⟨skip, 𝜎′⟩ showing ⟨𝑐′′, 𝜎⟩ ↓ 𝜎′.
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Putting everything together shows

(IfF)
⟨𝑏, 𝜎⟩ ↓ False ⟨𝑐′, 𝜎⟩ ↓ 𝜎′

⟨𝑅𝑐 [if 𝑏 then 𝑐′ else 𝑐′′ fi], 𝜎⟩ ↓ 𝜎′

2. 𝑐 = 𝑅𝑐 [𝑥 := 𝑎] where 𝑎 is an arithmetic expression. This case can be proved
analogously to the previous one.

For the “only if”-direction the induction has to be done on the derivation tree. We omit it. □

The language IMP is Turing complete. This can be shown by simulating a Turing machine with
an IMP-program. In (Schöning, 2008) a similar language is shown to be Turing complete, by first
showing that While-programs compute the same functions as Goto-programs and then shown
Turing completeness of Goto-programs.
We only roughly sketch a direct proof of showing Turing completeness of IMP: for a Turing
machine configuration 𝑤𝑞𝑤′, the words 𝑤, 𝑤′ and the state 𝑞 are encoded as numbers to a
base that is large enough to capture the tape alphabet and then encoded as integers. The three
numbers are stored in storage locations 𝑥𝑤 , 𝑥𝑤′ , 𝑥𝑞 of the IMP-program. Operations of a Turing
machine (i.e. replacing the current symbol and moving the read-/write-head) are operations on
the numbers that can be implemented using division with reminders which can be expressed in
IMP by using subtraction, addition, and multiplication. The state transition of Turing machine is
encoded by a single while-loop: The while-condition checks whether 𝑥𝑞 contains a state number
that corresponds to an accepting state of the TM. If yes, the condition is false, the while-loop
is finished and the IMP-program successfully stops. Otherwise the body of the while-loop
performs one step of the TM. The body consists of nested if − then − else-commands: for
each if 𝑏 then 𝑐1 else 𝑐2 fi, 𝑐2 contains the next if − then − else or skip if it is the last
one. The condition 𝑏 checks the state 𝑞 stored in 𝑥𝑞 and the first symbol 𝑎 of 𝑤′ stored in 𝑥𝑤′
and the code 𝑐1 performs the transition defined by 𝛿(𝑞, 𝑎): it adjusts the content of 𝑥𝑤 , 𝑥′𝑤 , 𝑥𝑞
accordingly.
This sketch shows that IMP-programs can simulated Turing machines and thus IMP is Turing
complete. Note that the construction requires arbitrary large numbers. If the size of numbers
where restricted, then IMP-programs would not be Turing complete.

6.2.3. An Abstract Machine as Operational Semantics of IMP

Defining the operational semantics in form of an abstract machine is a very explicit method to
describe the semantics. However, it is machine-independent and the abstract machine can then be
implemented on real machines. Often, an abstract machine can be implemented more efficiently
than for instance the reduction semantics.
For reasoning, an abstract machine can also be used, but often the other formalisms are better
suited.
We define an abstract machine for IMP.
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Definition 6.2.18. The state of the IMP machine is a triple (𝐸,𝑇, 𝑆) with
• Environment 𝐸 that maps storage locations to numbers (similar to states 𝜎 used before).
• Current task 𝑇 which might be a command or an (arithmetic or boolean) expression which

is executed.
• Stack 𝑆: Contains numbers, boolean values (as intermediate results) and commands (which

will be executed later). We use list notation for stacks and write 𝑠1; 𝑠2; . . . ; 𝑠𝑛 for a stack
with 𝑛 elements 𝑠1, . . . , 𝑠𝑛 where the top most element is 𝑠1. We also write 𝑠1; 𝑆 to denote
a stack with top element 𝑠1 and 𝑆 is the remaining stack. With [] we denote the empty
stack.

For a command 𝑐, the start state of the IMP machine is the tuple (∅, 𝑐, []). For a given environment
𝐸 we might also start the machine with (𝐸, 𝑐, []).
A final state of the IMP machine is any state of the form (𝐸, skip, []), i.e. the task is the command
skip and the stack is empty. The result (or output) of the IMP machine is the environment 𝐸 of
the final state.

The IMP machine may run infinitely if a non-terminating program is run. If the program
uses undefined storage locations, the IMP machine will get stuck. This case is treated like
non-termination.

Definition 6.2.19. We define the transition relation ⇝ of the IMP machine:

(𝐸, (𝑐1; 𝑐2), 𝑆) ⇝ (𝐸, 𝑐1, 𝑐2; 𝑆)
(𝐸, 𝑥 := 𝑎, 𝑆) ⇝ (𝐸, 𝑎, 𝑥 :=; 𝑆)
(𝐸, 𝑛, 𝑥 :=; 𝑆) ⇝ (𝐸 [𝑛/𝑥], skip, 𝑆)
(𝐸, 𝑥, 𝑆) ⇝ (𝐸, 𝑛, 𝑆) if 𝐸 (𝑥) = 𝑛
(𝐸, while 𝑏 do 𝑐 od, 𝑆) ⇝ (𝐸, 𝑏, [𝑇 : 𝑐; while 𝑏 do 𝑐 od, 𝐹 : skip]; 𝑆)
(𝐸, if 𝑏 then 𝑐1 else 𝑐2 fi, 𝑆) ⇝ (𝐸, 𝑏, [𝑇 : 𝑐1, 𝐹 : 𝑐2]; 𝑆)
(𝐸, skip, 𝑐; 𝑆) ⇝ (𝐸, 𝑐, 𝑆)
(𝐸, True, [𝑇 : 𝑐1, 𝐹 : 𝑐2]; 𝑆) ⇝ (𝐸, 𝑐1, 𝑆)
(𝐸, False, [𝑇 : 𝑐1, 𝐹 : 𝑐2]; 𝑆) ⇝ (𝐸, 𝑐2, 𝑆)

(𝐸, 𝑎1 + 𝑎2, 𝑆) ⇝ (𝐸, 𝑎1, (+𝑎2); 𝑆)
(𝐸, 𝑛, (+𝑎); 𝑆) ⇝ (𝐸, 𝑎, (𝑛+); 𝑆)
(𝐸, 𝑚, (𝑛+); 𝑆) ⇝ (𝐸, 𝑚′, 𝑆) if 𝑚′ = 𝑛 + 𝑚
(𝐸, 𝑎1 − 𝑎2, 𝑆) ⇝ (𝐸, 𝑎1, (−𝑎2); 𝑆)
(𝐸, 𝑛, (−𝑎); 𝑆) ⇝ (𝐸, 𝑎, (𝑛−); 𝑆)
(𝐸, 𝑚, (𝑛−); 𝑆) ⇝ (𝐸, 𝑚′, 𝑆) if 𝑚′ = 𝑛 − 𝑚
(𝐸, 𝑎1 ∗ 𝑎2, 𝑆) ⇝ (𝐸, 𝑎1, (∗𝑎2); 𝑆)
(𝐸, 𝑛, (∗𝑎); 𝑆) ⇝ (𝐸, 𝑎, (𝑛∗); 𝑆)
(𝐸, 𝑚, (𝑛∗); 𝑆) ⇝ (𝐸, 𝑚′, 𝑆) if 𝑚′ = 𝑛 · 𝑚
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(𝐸, 𝑏1 ∧ 𝑏2, 𝑆) ⇝ (𝐸, 𝑏2, (∧ 𝑏2); 𝑆)
(𝐸, True, (∧ 𝑏2); 𝑆) ⇝ (𝐸, 𝑏2, 𝑆)
(𝐸, False, (∧ 𝑏2); 𝑆) ⇝ (𝐸, False, 𝑆)
(𝐸, 𝑏1 ∨ 𝑏2, 𝑆) ⇝ (𝐸, 𝑏2, (∨ 𝑏2); 𝑆)
(𝐸, True, (∨ 𝑏2); 𝑆) ⇝ (𝐸, True, 𝑆)
(𝐸, False, (∨ 𝑏2); 𝑆) ⇝ (𝐸, 𝑏2, 𝑆)
(𝐸,¬𝑏, 𝑆) ⇝ (𝐸, 𝑏,¬; 𝑆)
(𝐸, True,¬; 𝑆) ⇝ (𝐸, False, 𝑆)
(𝐸, False,¬; 𝑆) ⇝ (𝐸, True, 𝑆)

(𝐸, 𝑎1 = 𝑎2, 𝑆) ⇝ (𝐸, 𝑎1, (= 𝑎2); 𝑆)
(𝐸, 𝑛, (= 𝑎); 𝑆) ⇝ (𝐸, 𝑎, (𝑛 =); 𝑆)
(𝐸, 𝑚, (𝑛 =); 𝑆) ⇝ (𝐸, True, 𝑆) if 𝑚 = 𝑛

(𝐸, 𝑚, (𝑛 =); 𝑆) ⇝ (𝐸, False, 𝑆) if 𝑚 ≠ 𝑛

(𝐸, 𝑎1 ≤ 𝑎2, 𝑆) ⇝ (𝐸, 𝑎1, (≤ 𝑎2); 𝑆)
(𝐸, 𝑛, (≤ 𝑎); 𝑆) ⇝ (𝐸, 𝑎, (𝑛 ≤); 𝑆)
(𝐸, 𝑚, (𝑛 ≤); 𝑆) ⇝ (𝐸, True, 𝑆) if 𝑛 ≤ 𝑚
(𝐸, 𝑚, (𝑛 ≤); 𝑆) ⇝ (𝐸, False, 𝑆) if 𝑛 > 𝑚

The stack entries are:

• commands 𝑐

• branches [𝑇 : 𝑐1, 𝐹 : 𝑐2] to continue the evaluation of a conditional or a while loop

• 𝑥 := meaning that 𝑥 has to be updated in the environment

• (⊕𝑡) means that the current task evaluates the left argument of operator ⊕. If this task
is finished the entry marks how to proceed. This is used for arithmetic and boolean
expressions 𝑡 and operators ⊕ ∈ {+,−, ∗, =, ≤,∧,∨}

• ¬ to negate the result of the current task

• (𝑛⊕) means that the right argument of ⊕ is evaluated in the current task and after success
the operator with 𝑛 as first argument is applied. Here 𝑛 is a number and ⊕ ∈ {+,−, ∗, =, ≤}

Example 6.2.20. We consider the program 𝑥 := 2; while 2 ≤ 𝑥 do 𝑥 := 𝑥 − 1 od and evaluate
it on the IMP machine:
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(∅, 𝑥 := 2; while 2 ≤ 𝑥 do 𝑥 := 𝑥 − 1 od, [])
⇝ (∅, 𝑥 := 2, while 2 ≤ 𝑥 do 𝑥 := 𝑥 − 1 od)
⇝ (∅, 2, 𝑥 :=; while 2 ≤ 𝑥 do 𝑥 := 𝑥 − 1 od)
⇝ ({𝑥 ↦→ 2}, skip, while 2 ≤ 𝑥 do 𝑥 := 𝑥 − 1 od)
⇝ ({𝑥 ↦→ 2}, while 2 ≤ 𝑥 do 𝑥 := 𝑥 − 1 od, [])
⇝ ({𝑥 ↦→ 2}, 2 ≤ 𝑥, [𝑇 : 𝑥 := 𝑥 − 1; while 2 ≤ 𝑥 do 𝑥 := 𝑥 − 1 od, 𝐹 : skip])
⇝ ({𝑥 ↦→ 2}, 2, ≤ 𝑥; [𝑇 : 𝑥 := 𝑥 − 1; while 2 ≤ 𝑥 do 𝑥 := 𝑥 − 1 od, 𝐹 : skip])
⇝ ({𝑥 ↦→ 2}, 𝑥, 2 ≤; [𝑇 : 𝑥 := 𝑥 − 1; while 2 ≤ 𝑥 do 𝑥 := 𝑥 − 1 od, 𝐹 : skip])
⇝ ({𝑥 ↦→ 2}, 2, 2 ≤; [𝑇 : 𝑥 := 𝑥 − 1; while 2 ≤ 𝑥 do 𝑥 := 𝑥 − 1 od, 𝐹 : skip])
⇝ ({𝑥 ↦→ 2}, True; [𝑇 : 𝑥 := 𝑥 − 1; while 2 ≤ 𝑥 do 𝑥 := 𝑥 − 1 od, 𝐹 : skip])
⇝ ({𝑥 ↦→ 2}, 𝑥 := 𝑥 − 1; while 2 ≤ 𝑥 do 𝑥 := 𝑥 − 1 od)
⇝ ({𝑥 ↦→ 2}, 𝑥 − 1; 𝑥 :=; while 2 ≤ 𝑥 do 𝑥 := 𝑥 − 1 od)
⇝ ({𝑥 ↦→ 2}, 𝑥;−1; 𝑥 :=; while 2 ≤ 𝑥 do 𝑥 := 𝑥 − 1 od)
⇝ ({𝑥 ↦→ 2}, 2;−1; 𝑥 :=; while 2 ≤ 𝑥 do 𝑥 := 𝑥 − 1 od)
⇝ ({𝑥 ↦→ 2}, 1; 2−; 𝑥 :=; while 2 ≤ 𝑥 do 𝑥 := 𝑥 − 1 od)
⇝ ({𝑥 ↦→ 2}, 1; 𝑥 :=; while 2 ≤ 𝑥 do 𝑥 := 𝑥 − 1 od)
⇝ ({𝑥 ↦→ 1}, skip, while 2 ≤ 𝑥 do 𝑥 := 𝑥 − 1 od)
⇝ ({𝑥 ↦→ 1}, while 2 ≤ 𝑥 do 𝑥 := 𝑥 − 1 od, [])
⇝ ({𝑥 ↦→ 1}, 2 ≤ 𝑥, [𝑇 : 𝑥 := 𝑥 − 1; while 2 ≤ 𝑥 do 𝑥 := 𝑥 − 1 od, 𝐹 : skip])
⇝ ({𝑥 ↦→ 1}, 2, ≤ 𝑥 [𝑇 : 𝑥 := 𝑥 − 1; while 2 ≤ 𝑥 do 𝑥 := 𝑥 − 1 od, 𝐹 : skip])
⇝ ({𝑥 ↦→ 1}, 𝑥, 2 ≤ [𝑇 : 𝑥 := 𝑥 − 1; while 2 ≤ 𝑥 do 𝑥 := 𝑥 − 1 od, 𝐹 : skip])
⇝ ({𝑥 ↦→ 1}, 1, 2 ≤ [𝑇 : 𝑥 := 𝑥 − 1; while 2 ≤ 𝑥 do 𝑥 := 𝑥 − 1 od, 𝐹 : skip])
⇝ ({𝑥 ↦→ 1}, False; [𝑇 : 𝑥 := 𝑥 − 1; while 2 ≤ 𝑥 do 𝑥 := 𝑥 − 1 od, 𝐹 : skip])
⇝ ({𝑥 ↦→ 1}, skip, [])

Definition 6.2.21. Let
∗
⇝ be the reflexive-transitive closure of ⇝ and let

𝑛
⇝ be 𝑛 steps of ⇝.

For a program 𝑐 and an environment 𝜎, we write ⟨𝑐, 𝜎⟩ ↓𝑎𝑏𝑠𝑚 𝜎′ iff (𝜎, 𝑐, ∅) ∗⇝ (𝜎′, skip, []).

Theorem 6.2.22. The abstract machine is equivalent to the big-step semantics and to the re-
duction semantics, i.e. ⟨𝑐, 𝜎⟩ ↓𝑎𝑏𝑠𝑚 𝜎 iff ⟨𝑐, 𝜎⟩ ↓𝑒𝑣𝑎𝑙 𝜎 and ⟨𝑐, 𝜎⟩ ↓𝑎𝑏𝑠𝑚 𝜎 iff ⟨𝑐, 𝜎⟩ ↓ 𝜎
and

Proof. It suffices to show the claim for the reduction semantics. It is straight-forward by an
induction on the number of

𝑒𝑣𝑎𝑙−−−→-steps for one direction, and another induction on the number
of ⇝-step for the other direction. We leave the full proof as an exercise. □

6.3. Denotational Semantics of IMP

In this section we define the denotational semantics of IMP. The idea is of the denotational
semantics is to map each program construct to a mathematical object. Since the meaning of an
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arithmetic or a boolean expression or a command, depends on the current state of the underlying
programming, the mathematical objects itself are relations between states and number (boolean
values, or states, resp.) Since evaluation in IMP is deterministic, these relations are in fact
functions, and thus we use functions as objects, more specific, partial functions that map states
to a number, a boolean value, or another state depending on the construct (arithmetic expressions,
boolean expressions, commands). The functions must be partial, since for instance not every
state defines the needed value of storage locations, or since non-termination of loops must also
be treated as a function that is not defined for the start state.

We denote the mapping according to their syntax with A,B, and C for the denotation of
arithmetic expressions, boolean expressions, and commands. We write the syntactic argument
in ⟦·⟧ brackets, and thus

• for arithmetic expressions 𝑎, A⟦𝑎⟧ : Σ→ ℤ

• for boolean expression 𝑏, B⟦𝑏⟧ : Σ→ {True, False}

• for commands 𝑐, C⟦𝑐⟧ : Σ→ Σ

where all images are partial functions.

Remark 6.3.1. A partial function 𝑓 : 𝑀 → 𝑁 is not necessarily defined for elements of 𝑀 . The
domain of a partial function 𝑓 , is denoted as Dom ( 𝑓 ). It is the subset of 𝑀 where 𝑓 is defined
(for a total function, Dom ( 𝑓 ) = 𝑀 holds). The function 𝑓 with Dom ( 𝑓 ) = ∅ is never defined,
and also called the empty function, written as ∅.

We use 𝜆-notation to define the denotation, where we write 𝜆𝜎 ∈ Σ. . . . to explicitly write that
𝜎 must be state. d

Definition 6.3.2 (Denotational Semantics of Arithmetic Expressions).

A⟦𝑛⟧ := 𝜆𝜎 ∈ Σ.𝑛, if 𝑛 ∈ ℤ
A⟦𝑥⟧ := 𝜆𝜎 ∈ Σ.𝜎(𝑥) if 𝑥 ∈ Loc
A⟦𝑎1 + 𝑎2⟧ := 𝜆𝜎 ∈ Σ.(A⟦𝑎1⟧𝜎) + (A⟦𝑎2⟧𝜎)
A⟦𝑎1 − 𝑎2⟧ := 𝜆𝜎 ∈ Σ.(A⟦𝑎1⟧𝜎) − (A⟦𝑎2⟧𝜎)
A⟦𝑎1 ∗ 𝑎2⟧ := 𝜆𝜎 ∈ Σ.(A⟦𝑎1⟧𝜎) · (A⟦𝑎2⟧𝜎)

Note that if 𝜎(𝑥) is not defined, then 𝑥 ∉ Dom (𝜆𝜎 ∈ Σ.𝜎(𝑥)).

We assume for the denotation of boolean expressions, we also have boolean values True, False in
the denotation with conjunction and disjunction that evaluates sequentially. We do not use
different notation between the syntactic objects and the denotational objects.
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Definition 6.3.3 (Denotational Semantics of Boolean Expressions).

B⟦True⟧ := 𝜆𝜎 ∈ Σ.True
B⟦False⟧ := 𝜆𝜎 ∈ Σ.False
B⟦𝑎1 = 𝑎2⟧ := 𝜆𝜎 ∈ Σ.A⟦𝑎1⟧𝜎 = A⟦𝑎2⟧𝜎
B⟦𝑎1 ≤ 𝑎2⟧ := 𝜆𝜎 ∈ Σ.A⟦𝑎1⟧𝜎 ≤ A⟦𝑎2⟧𝜎
B⟦¬𝑏⟧ := 𝜆𝜎 ∈ Σ.¬(B⟦𝑏⟧𝜎)
B⟦𝑏1 ∨ 𝑏2⟧ := 𝜆𝜎 ∈ Σ.(B⟦𝑏1⟧𝜎) ∨ (B⟦𝑏2⟧𝜎)
B⟦𝑏1 ∧ 𝑏2⟧ := 𝜆𝜎 ∈ Σ.(B⟦𝑏1⟧𝜎) ∧ (B⟦𝑏2⟧𝜎)

For the denotational semantics of commands, we introduce a helper function

cond : (Σ→ 𝐵𝑜𝑜𝑙) → (Σ→ Σ) → (Σ→ Σ) → Σ→ Σ

defined as

(cond 𝑓 𝑔1 𝑔2) 𝜎 =

{
𝑔1 𝜎, if 𝑓 𝜎 = True

𝑔2 𝜎, if 𝑓 𝜎 = False

We also defined the identity:
idΣ := 𝜆𝜎 ∈ Σ.𝜎

Now we can define the denotation of all commands except for while:

Definition 6.3.4 (Denotation of Commands (without while)).

C⟦skip⟧ := idΣ
C⟦𝑥 := 𝑎⟧ := 𝜆𝜎 ∈ Σ.𝜎[(A⟦𝑎⟧𝜎)/𝑥]
C⟦𝑐0; 𝑐1⟧ := C⟦𝑐1⟧ ◦ C⟦𝑐0⟧

= 𝜆𝜎 ∈ Σ.(C⟦𝑐1⟧)(C⟦𝑐0⟧𝜎)
C⟦if 𝑏 then 𝑐0 else 𝑐1 fi⟧ := 𝜆𝜎 ∈ Σ.(cond (B⟦𝑏⟧) (C⟦𝑐0⟧) (C⟦𝑐1⟧)) 𝜎

Note that 𝜎 ∉ Dom (C⟦𝑥 := 𝑎⟧) if (A⟦𝑎⟧𝜎) is undefined.

Defining the denotation of while is not as straight-forward as one could imagine. A first approach
is to use the equivalence

while 𝑏 do 𝑐0 od ∼ if 𝑏 then 𝑐0; while 𝑏 do 𝑐0 od else skip fi

This results in

C⟦while 𝑏 do 𝑐0 od⟧ := 𝜆𝜎 ∈ Σ.(cond (B⟦𝑏⟧) (C⟦𝑐0; while 𝑏 do 𝑐0 od⟧) idΣ) 𝜎

which can be simplified to

C⟦while 𝑏 do 𝑐0 od⟧ := cond (B⟦𝑏⟧) (C⟦𝑐0; while 𝑏 do 𝑐0 od⟧) idΣ
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Computing the denotation for the sequence 𝑐0; while 𝑏 do 𝑐0 od, this results in

C⟦while 𝑏 do 𝑐0 od⟧ := cond (B⟦𝑏⟧) ((C⟦while 𝑏 do 𝑐0 od⟧) ◦ (C⟦𝑐0⟧)) idΣ

Now we see a circularity: the left-hand side C⟦while 𝑏 do 𝑐0 od⟧ of the defining equation
occurs on the right-hand side. Thus, this is not a well-formed definition.
But we can use this circular description to get a solution. Let us assume, that we know the
denotation of C⟦while 𝑏 do 𝑐0 od⟧ and let us write 𝜑 for it (where 𝜑 : Σ → Σ). Then the
circularity tells us that 𝜑 must satisfy the property

𝜑 = cond (B⟦𝑏⟧) (𝜑 ◦ (C⟦𝑐0⟧)) idΣ

This equation can be rewritten as
𝜑 = Γ(𝜑)

if we define
Γ := 𝜆𝑢 ∈ (Σ→ Σ).cond (B⟦𝑏⟧) (𝑢 ◦ (C⟦𝑐0⟧)) idΣ

Note that Γ : (Σ→ Σ) → (Σ→ Σ), i.e. it takes a function of type Σ→ Σ and returns a function
of type Σ→ Σ.
In fact, we do not know the denotation 𝜑, but now we know what it should be. The denotation
of C⟦while 𝑏 do 𝑐0 od⟧ is a fixpoint of Γ!
Indeed, we will use the least fixpoint of Γ, and to be correct we would need to prove that the
fixpoint exists and that it can be constructed. We omit this part and refer to (Winskel, 1993) and
(Stump, 2013), where the latter contains a lot of details and exact proofs.
Let us write Fix(Γ) for the least fixpoint of Γ.

Definition 6.3.5 (Denotation of while).

C⟦while 𝑏 do 𝑐0 od⟧ := Fix(Γ)

where Γ := 𝜆𝑢 : Σ→ Σ.cond (B⟦𝑏⟧) (𝑢 ◦ (C⟦𝑐0⟧)) idΣ

Operationally, the idea of computing the least fixpoint is to compute the partial functions
𝐹𝑛⟦while 𝑏 do 𝑐0 od⟧which represent the denotation of the while-loop while 𝑏 do 𝑐0 odwhere
only 𝑛 iterations are allowed (for states 𝜎 that require more than 𝑛 iterations 𝐹𝑛 is undefined).
The denotation C⟦while 𝑏 do 𝑐0 od⟧ is then the union of all functions 𝐹𝑛⟦while 𝑏 do 𝑐0 od⟧.
We can use the idea to make the computation of 𝐹𝑛 explicit:
For 𝑛 = 0, the function 𝐹0⟦while 𝑏 do 𝑐 od⟧ is only defined on those states 𝜎 where no iteration
of the loop is necessary, i.e. these are the states 𝜎 where B⟦𝑏⟧𝜎 = False holds. This shows

𝐹0⟦while 𝑏 do 𝑐 od⟧ = {𝜎 ↦→ 𝜎 | B⟦𝑏⟧(𝜎) = False}
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(Note that we use set notation for functions, where all mappings are written explicitly as elements
𝑥 ↦→ 𝑦 whenever 𝑓 (𝑥) = 𝑦 should hold.),
For 𝑛 = 1, the function 𝐹1⟦while 𝑏 do 𝑐 od⟧ is defined on those states 𝜎 where at most 1
iteration of the loop is necessary:

𝐹1⟦while 𝑏 do 𝑐 od⟧ = {𝜎 ↦→ 𝜎 | B⟦𝑏⟧(𝜎) = False}
∪ {𝜎 ↦→ 𝜎′ | B⟦𝑏⟧(𝜎) = True and C⟦𝑐⟧(𝜎) = 𝜎′ and B⟦𝑏⟧(𝜎′) = False}

The general case for 𝑛 ≥ 1 can be written as:

𝐹𝑛⟦while 𝑏 do 𝑐 od⟧ = 𝐹𝑛−1⟦while 𝑏 do 𝑐 od⟧
∪ {𝜎 ↦→ 𝜎′ | 𝐹𝑛−1⟦while 𝑏 do 𝑐 od⟧(𝜎) = 𝜎′ and B⟦𝑏⟧(𝜎′) = True

and C⟦𝑐⟧(𝜎′) = 𝜎′′ and B⟦𝑏⟧(𝜎′′) = False}

Since 𝐹𝑖⟦while 𝑏 do 𝑐 od⟧ ⊆ 𝐹𝑖+1⟦while 𝑏 do 𝑐 od⟧ for all 𝑖 ∈ ℕ0, the infinite union can be
built, i.e. C⟦while 𝑏 do 𝑐0 od⟧ =

⋃
𝑛∈ℕ0

𝐹𝑛⟦while 𝑏 do 𝑐0 od⟧.
It can be shown that this union is a fixpoint of Γ and that it is the least fixpoint.
Another construction of the least fixpoint is the following: start with the smallest function and
then iteratively apply Γ and union all results. This will compute the least fixpoint. The smallest
function is the empty function ∅ which is undefined for all states. Let us write 𝜑𝑖 for the 𝑖-fold
application of Γ to ∅, i.e. 𝜑0 = ∅ and 𝜑𝑖 = Γ(𝜑𝑖−1) for 𝑖 > 0. Then

Fix(Γ) =
⋃
𝑖∈ℕ0

𝜑𝑖

This union can be built, since the chain 𝜑0 ⊆ 𝜑1 ⊆ 𝜑2 ⊆ . . . is increasing w.r.t. ⊆.

Example 6.3.6. We compute the denotation of while 𝑥 = 0 do skip od:

C⟦while 𝑥 = 0 do skip od⟧ = Fix(Γ) where

Γ := 𝜆𝑢 ∈ Σ→ Σ.(cond (B⟦𝑥 = 0⟧) (𝑢 ◦ id) id)
= 𝜆𝑢 ∈ Σ→ Σ.(cond (𝜆𝜎 ∈ Σ.𝜎(𝑥) = 0) 𝑢 id)

We compute 𝜑0, 𝜑1, . . ..
• 𝜑0 = ∅.
• 𝜑1 = Γ𝜑0. Using the definition of Γ:

𝜑1 = Γ𝜑0 = cond (𝜆𝜎 ∈ Σ.𝜎(𝑥) = 0) ∅ id

This can be expressed as 𝜑1 = {𝜎 ↦→ 𝜎 | 𝑥 ∈ Dom (𝜎) and 𝜎(𝑥) ≠ 0}
• 𝜑2 = cond (𝜆𝜎 ∈ Σ.𝜎(𝑥) = 0) 𝜑1 id
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If 𝜎(𝑥) ≠ 0, then it is id and otherwise it is 𝜑1. This can be expressed as

𝜑2 = {𝜎 ↦→ 𝜎 | 𝑥 ∈ Dom (𝜎) and 𝜎(𝑥) ≠ 0} ∪ {𝜎 ↦→ 𝜑1𝜎 | 𝜎(𝑥) = 0}

But {𝜎 ↦→ 𝜑1𝜎 | 𝜎(𝑥) = 0} = ∅, since 𝜑1𝜎 is undefined for 𝜎(𝑥) = 0. This shows
𝜑2 = 𝜑1.

• Since 𝜑2 = 𝜑1, we also have 𝜑𝑖 = 𝜑1 for all 𝑖 ≥ 1.
Thus Fix(Γ) = 𝜑1 = {𝜎 ↦→ 𝜎 | 𝑥 ∈ Dom (𝜎) and 𝜎(𝑥) ≠ 0}.
This matches the intuition that the program terminates (with unchanged state), if 𝑥 is defined and
𝑥 ≠ 0 holds in the initial state.

6.4. Equivalence of Operational and Denotational Semantics

In this section, we prove that the operational semantics and the denotational semantics of IMP
are equivalent. We will use the big-step semantics.

Lemma 6.4.1. For all arithmetic expressions 𝑎 and states 𝜎 ∈ Σ: A⟦𝑎⟧𝜎 = 𝑛 iff ⟨𝑎, 𝜎⟩ ↓ 𝑛

Proof. We use structural induction on 𝑎.
• If 𝑎 = 𝑛, then A⟦𝑛⟧𝜎 = 𝑛 and ⟨𝑛, 𝜎⟩ ↓ 𝑛 by axiom (AxNum).
• If 𝑎 = 𝑥, then A⟦𝑥⟧𝜎 = 𝜎(𝑥) and ⟨𝑥, 𝜎⟩ ↓ 𝜎(𝑥) by axiom (AxLoc).
• If 𝑎 = 𝑎1 + 𝑎2, then: A⟦𝑎1 + 𝑎2⟧𝜎 = 𝑛 = (A⟦𝑎1⟧𝜎) + (A⟦𝑎2⟧𝜎)

iff (A⟦𝑎1⟧𝜎) = 𝑛1 and (A⟦𝑎2⟧𝜎) and 𝑛 = 𝑛1 + 𝑛2
iff (by the induction hypothesis)
⟨𝑎1, 𝜎⟩ ↓ 𝑛1 and ⟨𝑎2, 𝜎⟩ ↓ 𝑛2
iff (by the operational semantics, rule (Sum))
⟨𝑎1 + 𝑎2, 𝜎⟩ ↓ 𝑛

• The cases 𝑎 = 𝑎1 − 𝑎2 and 𝑎 = 𝑎1 ∗ 𝑎2 are completely analogous to the previous one.
□

Lemma 6.4.2. For all boolean expressions 𝑏, 𝜎 ∈ Σ, and 𝑣 ∈ {True, False}:

B⟦𝑏⟧𝜎 = 𝑣 iff ⟨𝑎, 𝜎⟩ ↓ 𝑣

Sketch. The proof is by structural induction on 𝑏. It is similar to the previous proof and
uses Lemma 6.4.1 if 𝑏 requires the value of an arithmetic expression. □

Theorem 6.4.3. For all commands 𝑐 of IMP and 𝜎 ∈ Σ: C⟦𝑐⟧𝜎 = 𝜎′ iff ⟨𝑐, 𝜎⟩ ↓ 𝜎′

Proof. We show the “if”-direction and omit the “only-if”-direction. The latter can be proved
by induction on the derivation tree for ⟨𝑐, 𝜎⟩ ↓ 𝜎′. For the “if”-direction, let us assume that
C⟦𝑐⟧𝜎 = 𝜎′. We use structural induction on 𝑐:
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• C⟦skip⟧𝜎 = 𝜎 and ⟨skip, 𝜎⟩ ↓ 𝜎.
• C⟦𝑥 := 𝑎⟧𝜎 = 𝜎[A⟦𝑎⟧𝜎/𝑥]. Assume that A⟦𝑎⟧𝜎 = 𝑛 Lemma 6.4.1 shows ⟨𝑎, 𝜎⟩ ↓ 𝑛.

Thus we have C⟦𝑥 := 𝑎⟧𝜎 = 𝜎[𝑛/𝑥], and thus ⟨𝑥 := 𝑎, 𝜎⟩ ↓ 𝜎[𝑛/𝑥].
• C⟦𝑐0; 𝑐1⟧𝜎 = C⟦𝑐1⟧(C⟦𝑐0⟧𝜎) = 𝜎′. The induction hypothesis shows for all 𝜎1, 𝜎2, 𝜎3,

and 𝜎4:
– C⟦𝑐0⟧𝜎1 = 𝜎2 implies ⟨𝑐0, 𝜎1⟩ ↓ 𝜎2 and
– C⟦𝑐1⟧𝜎3 = 𝜎4 implies ⟨𝑐0, 𝜎3⟩ ↓ 𝜎4.

With 𝜎1 = 𝜎, 𝜎2 = 𝜎3 = C⟦𝑐0⟧𝜎 and 𝜎4 = 𝜎′, rule (Seq) shows ⟨𝑐0; 𝑐1, 𝜎⟩ ↓ 𝜎′′.
• C⟦if 𝑏 then 𝑐0 else 𝑐1 fi⟧𝜎 = (cond B⟦𝑏⟧ C⟦𝑐0⟧ C⟦𝑐1⟧)𝜎 = 𝜎′.

If (B⟦𝑏⟧𝜎) = True, then ⟨𝑏, 𝜎⟩ ↓ True and if (B⟦𝑏⟧𝜎) = False, then ⟨𝑏, 𝜎⟩ ↓ False
by Lemma 6.4.2. By the induction hypothesis (C⟦𝑐0⟧𝜎) = 𝜎′ implies ⟨𝑐0, 𝜎⟩ ↓ 𝜎′ and
(C⟦𝑐1⟧𝜎) = 𝜎′ iff ⟨𝑐1, 𝜎⟩ → 𝜎′.
Using rule (IfT) or (IfF), resp., this shows ⟨if 𝑏 then 𝑐0 else 𝑐1 fi, 𝜎⟩ ↓ 𝜎′.

• C⟦while 𝑏 do 𝑐0 od⟧ = Fix(Γ) where Γ := 𝜆𝑢 ∈ (Σ → Σ).cond (B⟦𝑏⟧) (𝑢 ◦
(C⟦𝑐0⟧)) id. Then

Γ(𝜑) = {𝜎 ↦→ 𝜎 | (B⟦𝑏⟧𝜎) = False}
∪ {𝜎 ↦→ 𝜎′ | (B⟦𝑏⟧𝜎) = True and (𝜎 ↦→ 𝜎′) ∈ 𝜑 ◦ (C⟦𝑐0⟧)}

Let 𝜑𝑛 := Γ𝑛 (∅).
Then:

𝜑𝑛+1 = {𝜎 ↦→ 𝜎 | (B⟦𝑏⟧𝜎) = False}
∪ {𝜎 ↦→ 𝜎′ | (B⟦𝑏⟧𝜎) = True and (𝜎 ↦→ 𝜎′) ∈ 𝜑𝑛 ◦ (C⟦𝑐0⟧)}

By induction on 𝑛, we show that (𝜎 ↦→ 𝜎′) ∈ 𝜑𝑛 =⇒ ⟨while 𝑏 do 𝑐0 od, 𝜎⟩ ↓ 𝜎′.
– 𝑛 = 0: 𝜑0 = ∅, thus the left-hand side of the implication is false and thus the

implication is true.
– 𝑛 > 0: Assume that the claim holds for 𝑛 and let (𝜎 ↦→ 𝜎′) ∈ 𝜑𝑛+1. Then either
(B⟦𝑏⟧𝜎) = False and 𝜎′ = 𝜎. Then (by Lemma 6.4.2) ⟨𝑏, 𝜎⟩ ↓ False and thus
by rule (WhileF), ⟨while 𝑏 do 𝑐0 od, 𝜎⟩ ↓ 𝜎.
If B⟦𝑏⟧𝜎 = True then ⟨𝑏, 𝜎⟩ ↓ True by Lemma 6.4.2. Since (𝜎 ↦→ 𝜎′) ∈ 𝜑𝑛+1,
there exists 𝜎′′ with (𝜎 ↦→ 𝜎′′) ∈ C⟦𝑐0⟧ and (𝜎′′ ↦→ 𝜎′) ∈ 𝜑𝑛.
By the outer induction hypothesis we get ⟨𝑐0, 𝜎′⟩ ↓ 𝜎′′. By the inner in-
duction hypothesis we get ⟨while 𝑏 do 𝑐0 od, 𝜎′′⟩ ↓ 𝜎′. Rule (WhileT) shows
⟨while 𝑏 do (𝑐0; while 𝑏 do 𝑐0 od) od, 𝜎⟩ ↓ 𝜎′.

Since Fix(Γ) = ⋃
𝜑𝑛, we have:

(𝜎 ↦→ 𝜎′) ∈ Fix(Γ) =⇒ (𝜎 ↦→ 𝜎′) ∈ 𝜑𝑛 for some 𝑛

and thus ⟨while 𝑏 do 𝑐0 od, 𝜎⟩ ↓ 𝜎′.
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□

Example 6.4.4. Consider the loop

(while True do skip od)

The big-step operational semantics cannot derive any 𝜎′ such that
⟨while True do skip od, 𝜎⟩ ↓ 𝜎′ for any 𝜎.
The small-step operational semantics has an infinite sequence of reduction steps:

⟨while True do skip od, 𝜎⟩
eval ,while−−−−−−−−→ ⟨if True then while True do skip od else skip fi, 𝜎⟩
eval ,ifT
−−−−−−→ ⟨while True do skip od, 𝜎⟩
eval ,while−−−−−−−−→ . . .

The denotational semantics is
C⟦while True do skip od⟧ := Fix(Γ) where Γ := 𝜆𝑢 ∈ (Σ→ Σ).cond (𝜆𝜎.True) (𝑢◦id) id

For computing the fixpoint, we compute 𝜑0, 𝜑1, . . .:
• 𝜑0 = ∅
• 𝜑1 = Γ(𝜑0) = cond (𝜆𝜎.True) (∅◦id) id = cond (𝜆𝜎.True) ∅ id = ∅ and thus 𝜑1 = 𝜑0

Since 𝜑1 = 𝜑0, this shows 𝜑𝑖 = 𝜑0 = ∅ and thus Fix(Γ) = ∅. Thus the denotation is the partial
function that is undefined for every state 𝜎.

6.5. Conclusion and References

We have shown different concepts and formalisms for operational semantics and denotational
semantics. As example we used a simple but Turing complete imperative language, called IMP.
We proved equivalence of the denotational and the operational semantics.
As stated in the introduction, there are several books that explain different semantics for a small
imperative language like IMP. Very similar languages are treated in (Winskel, 1993; Stump,
2013). The presentation of the content follows the lecture notes (Schmidt-Schauß, 2013).

Last update: January 8, 2025 118 D. Sabel, Programming Language Foundations, Winter 2024/25



7. Conclusion

We introduced several aspects on the foundations of programming languages, where we mainly
considered core languages of real programming languages that are Turing-complete and follow
different programming paradigms. The first chapters consider the core of functional languages,
while in the final chapter our running example was an imperative language. Besides the opera-
tional semantics and denotational semantics we studied the typing of programs which sometimes
is called its static semantics. Of course, these notes only cover some parts of the topic and can
mainly be seen as an introduction or starting point for further studies.
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A. Turing Machines in Haskell

-- -------------------------------------------------------------

-- Imports

import Data.List

import Data.Maybe

-- -------------------------------------------------------------

-- data types

-- The type Move represents the movement of the read/write-head

data Move = MLeft | MRight | MNothing

deriving (Eq, Show)

-- The type TM represents a Turing machine.

-- The input alphabet, the tape alphabet, and the set of states

-- are only represented implicitely

-- The remaining components are:

-- * start: The start state of the Turing machine

-- * accepting: The set of accepting states of the Turing machine

-- * delta: The state transition function

-- The data type is polymorphic over the tape alphabet and the states.

-- The blank symbol is represented by using the Maybe-type:

-- - Nothing means a blank symbol

-- - Just s means the symbol s of the alphabet

data TM alphabet state =

TM {

start :: state,

accepting :: [state],

-- delta receives the state and the current symbol and

-- returns the new state, the new symbol,

-- and the movement of read/write-head

delta :: (state,Maybe alphabet) -> (state,Maybe alphabet,Move)

}

-- TMConfig is a data type for Turing machine configurations:

-- The current (explored) tape content is

-- before ++ [current] ++ after,

-- the read/write-head is on the symbol current
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-- currState is the current state of the machine

data TMConfig alphabet state =

TMConfig {

before :: [Maybe alphabet],

current :: Maybe alphabet,

after :: [Maybe alphabet],

currState :: state

}

deriving(Eq,Show)

-- -------------------------------------------------------------

-- Functions

-- oneStep calculates one step of the TM

-- oneStep receives a TM and a TMConfig

-- if the machine is already in accepting state,

-- oneStep returns Nothing,

-- otherwise, oneStep returns Just c, where

-- c is the configuration after performing one step

oneStep :: Eq s => TM a s -> (TMConfig a s) -> Maybe (TMConfig a s)

oneStep tm tc

-- already in an accepting state:

| (currState tc) ‘elem‘ (accepting tm) = Nothing

-- not in an accepting state:

| otherwise =

case (delta tm) (currState tc, current tc) of

(s’,a’,m) -> -- successor state, symbol, movement

case m of

MNothing -> Just $ tc {currState = s’, current = a’}

MRight ->

if null (after tc) then

Just $ tc {currState = s’,

current = Nothing,

before = (before tc)++[a’],

after = []}

else Just $ tc {currState = s’,

current = head (after tc),

before = (before tc) ++ [a’],

after = tail (after tc)}

MLeft ->

if null (before tc) then

error "move left on start position"

else if (null (after tc)) && (isNothing a’) then

Just $ tc {currState = s’,

current = last (before tc),
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A. Turing Machines in Haskell

before = init (before tc),

after = []}

else

Just $ tc {currState = s’,

current = last (before tc),

before = init (before tc),

after = a’:(after tc)}

-- runMachine receives a TM and an input.

-- It returns the final configuration,

-- if the machine stops in an accepting state.

runMachine tm input =

let startconfig = TMConfig {current = head input,

before = [],

after = tail input,

currState = (start tm)}

go tc = case oneStep tm tc of

Nothing -> tc

Just tc’ -> go tc’

in go startconfig

-- tmEncode receives a TM and an input an returns True,

-- if the TM accepts the input

tmEncode tm input = case runMachine tm input of

(TMConfig _ _ _ _) -> True

-- -------------------------------------------------------------

-- Example

-- ex1 TM that searches the last symbol of the input

ex1 =

let

d (1,Just 0) = (1,Just 0, MRight)

d (1,Just 1) = (1,Just 1, MRight)

d (1,Nothing) = (2,Nothing, MLeft)

d (2,_) = undefined

input = [Just 0,Just 1,Just 0, Nothing]

tm =

TM {

delta = d,

accepting = [2],

start = 1

}

in runMachine tm input
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