a Hochschule RheinMain

Programming Language
Foundations

05 Polymorphic Type Inference

Prof. Dr. David Sabel
Wintersemester 2024/25 Last update: December 18, 2024

Motivation and Outline ai Hochschule RheinMain

@ Why should we care about type inference?

@ Type inference algorithms for KFPTS+-seq
for parametric polymorphic types

@ Typing recursive supercombinators
o lterative type inference

@ Hindley-Damas-Milner type inference

MOt|Vat|On ai Hochschule RheinMain

Why should we use a type system?
@ for untyped programs, dynamic type errors can occur
@ runtime errors are programming €rrors

strong and static typing —» no type errors during runtime

types as documentation

types usually lead to a better program structure

@ types as specification in the design phase

MOtIVatIOH (CO nt’d) *Hochschule RheinMain

Minimal requirements:

@ typing should be decided during compile time

o well-typed programs have no type errors during runtime

MOtIVatIOH (Cont,d) *Hoohschule RheinMain

Minimal requirements:

@ typing should be decided during compile time

o well-typed programs have no type errors during runtime

Desirable properties

@ the type system does not restrict the programmer

@ the compiler can compute types = type inference

MOtIVatIOH (Cont,d) *Hoohschule RheinMain

Not all type systems satisfy all the properties:

@ Simply typed lambda calculus:
typed language is no longer Turing-complete, since all well-typed programs
converge
@ Type system extensions in Haskell:
typing / type inference is undecidable
in some cases the compiler does not terminate!
requires effort / precaution of the programmer

Naive ApproaCh al Hochschule RheinMain

Naive definition:

A KFPTSP+-seq-program is well-typed, if it cannot lead to a dynamic type
error during runtime.

Naive ApproaCh al Hochschule RheinMain

Naive definition:

A KFPTSP+-seq-program is well-typed, if it cannot lead to a dynamic type
error during runtime.

But, this does not work well, since:

Dynamic typing in KFPTS+seq is undecidable!

Undecidability of Dynamic Typing *Hochschule RheinMain

Let tmEncode be a KFPTS+seq-supercombinator that simulates a universal Turing
machine:

@ Input: an encoding of a Turing machine M and an input w

e Output: True, if the TM M halts on w

tmEncode is programmable:
@ in the lecture notes, there is a Haskell-program that performs this simulation
@ the program is not dynamically untyped (since it is Haskell-typeable)

@ thus we can assume tmEncode exists in KFPTS+seq and it is not dynamically
untyped

Undecidability of Dynamic Typing (Cont'd) *Hochschule RheinMain

For TM encoding enc and input inp, let the expression s be defined as

s:= if tmEncode enc inp
then casepool Nil of {True — True;False — False}
else casepoo Nil of {True — True;False — False}

Then the following holds:
s is dynamically untyped <= the evaluation of (tmEncode enc inp) ends with True
This shows:

if we can decide whether s is dynamically untyped, then we can decide the halting problem

Thus:

The dynamic typing of KFPTS+seq-programs is undecidable. I

a Hochschule RheinMain

UNIFICATION

Types a Hochschule RheinMain

Syntax of polymorphic Types:
T:=TV|TCTy ... T, | T1 > T,

where T'V is a type variable, T'C' type constructor
@ A base type is a type of the form T'C, where T'C' is of arity 0.
@ A monomorphic type is a type without type variables
Examples
@ Int, Bool and Char are base types.
@ [Int] und Char — Int are monomorphic types, but no base types,

e [a] und a — a are neither base nor monomorphic types (but polymorphic types)

Q ua nt|f|ed Types *Hoohschule RheinMain

For polymorphic types, we use the universal quantifier::

o If 7 is a polymorphic type with occurrences of type variables aq, ..., ay, then
Yai,...,ap.7 is the universally quantified type for 7

@ Since the order is irrelevant, we also use VX'.7 where X is a set of type variables

Later:

@ universally quantified types can be copied and renamed, while types without
quantifiers cannot be renamed

Type SU bStItutlonS *Hoohschule RheinMain

Type substitution = a mapping {a1 — 71,...,q, — T, } of a finite set of type
variables to types.

Written as 0 = {a1 — T1,. .., — Ty }.

Formally, extension to types: or mapping from types to types

op(TV) = o(TV), if o maps TV
og(TV) = TV, if o does not map TV
op(TCTy ... T,) = TCog(Ty) ... op(T,)
O’E(Tl — TQ) = UE(Tl) — UE(TQ)

In the following, we do not distinguish between o and its extension og!

Semantics of Polymorphic Types *Hochschule RheinMain

Type substitution ¢ is ground for a type 7 iff

e o(X) is a monomorphic type for all X mapped by o
o o(X) is defined for all X € Vars(7)

Semantics of type 7:

sem(7) := {o(7) | o is a ground substitution for 7}

This corresponds to the intuition of schematic types:

a polymorphic type describes the schema of a set of monomorphic types

Typlng RUIeS ai Hochschule RheinMain

Rule for Application:
s =15, t:1Th

(st) Ty

Problem: Guess the right instance, e.g.

map :: (a —> b) -> [a] -> [b]
not :: Bool -> Bool

Typing of map not:
Before applying the rule, the type of map must be instantiated:

o = {a+> Bool,b > Bool}

Instead of guessing o, o can be computed: Using Unification

U n |f|Cat|On al Hochschule RheinMain

@ A unification problem on types is a set E of equations of the form 71 = 7, where
71 and 7o are polymorphic types.

@ A solution to a unification problem on types is a substitution o (called unifier),
such that o(m1) = o(m2) for all equations 71 = 73 of E.

o A most general solution (most general unifier, mgu) of E is a unifier o such that
for every unifier p of E there is a substitution such that p(z) = v o o(x) for all
x € Vars(E).

Unification Algorithm *Hochschule RheinMain

@ data structure: £ = multiset of equations
e let £ U E' be the disjoint union of multisets
e E[r/a] is defined as {s[r/a] =t[r/a] | (s =t) € E}.

Algorithm: Apply the following inference rules until
e a fail occurs, or

@ no more rule is applicable

Unification Algorithm: Inference Rules >

Fail-rules:
EU{(TCy 7 ...) =(TCoy 1 ... 7))}
FaiLl
Fail
if TC1 # TCy
EUu{(TCy 7 ... 7) = (1 = 7))}
FAIL2
Fail
Eu{(ri =) =(TCy 71 ... 7a)}
FAIL3

Fail

Unification Algorithm: Inference Rules (2) *Hochschule RhelnMaln

Decomposition:

Eu{rCr ... 7, =TC 7 ... 7.}

n
EUu{n=1,...,mm=1}

DECOMPOSE1

Eu{n —-mn=m -1}

EU{r =1,1 ="}

DECOMPOSE2

Unification Algorithm: Inference Rules (3) *Hochschule RheinMain

Orientation and Elimination:

EU{ﬁia}

EU {a = T1}
if 7 is not a type variable and « is a type variable

ORIENT

Eu{a=a}
E
where « is a type variable

ELim

Unification Algorithm: Inference Rules (4) *Hochschule RhelnMaln

Solve and Occurs-Check

EU{a=r7}

Elr/a]U{a =1}
if type variable o does not occur in T,
but o occurs in E

SOLVE

Eu{a=r}
Fail
if 7 # « and type variable « occurs in T

OccURSCHECK

Exa m pIeS a I Hochschule RheinMain

Example 1: {(a — b) = Bool — Bool}:

{(a — b) = Bool — Bool}
{a = Bool,b = Bool}

DECOMPOSE2

The unifier is {a — Bool,b — Bool}

Exa m pIeS a I Hochschule RheinMain

Example 2: {[d] = ¢,a — [a] = Bool — c}:

{[d] = ¢,a — [a] = Bool — ¢}

Exa m pIeS a I Hochschule RheinMain

Example 2: {[d] = ¢,a — [a] = Bool — ¢}:

{[d] = ¢,a — [a] = Bool — ¢}
{ld] = ¢,a = Bool, [a] = ¢}

DECOMPOSE2

Exa m pIeS a I Hochschule RheinMain

Example 2: {[d] = ¢,a — [a] = Bool — ¢}:

d] = ¢,a — [a] = Bool — ¢}
{[d] = ¢,a = Bool, [a] = ¢}
{ld] = ¢,a = Bool, c = [a]}

DECOMPOSE2

—
[

ORIENT

Exa m pIeS a I Hochschule RheinMain

Example 2: {[d] = ¢,a — [a] = Bool — c}:

{[d] = ¢,a — [a] = Bool — ¢}

DECOMPOSE2 - - -
{[d] = ¢,a = Bool, [a] = ¢}
ORIENT - - -
{[d] = ¢,a = Bool,c = [a]}
SOLVE

{[d] = [a],a = Bool,c = [a]}

Exa m pIeS a I Hochschule RheinMain

Example 2: {[d] = ¢,a — [a] = Bool — c}:

{[d] = ¢,a — [a] = Bool — ¢}

DECOMPOSE2 - - -
ORIENT {[d] = ¢,a = Bool, [a] = ¢}
%o {ld] = ¢,a = Bool,c = [a]}
LVE . : ;
= (o) 0 = Boolc = [u])
OLVE

{[d] = [Bool],a = Bool,c = [Bool]}

Exa m pIeS a I Hochschule RheinMain

Example 2: {[d] = ¢,a — [a] = Bool — c}:

{[d] = ¢,a — [a] = Bool — ¢}

DECOMPOSE2 - - -
ORIENT {[d] = ¢,a = Bool, [a] = ¢}
Sorv {[d] = ¢,a = Bool, ¢ = [a]}
%o {[d] = la],a = Bool,c = [a]}
LVE

{[d] = [Bool],a = Bool,c = [Bool]}
{d = Bool, a = Bool, ¢ = [Bool]}

DECOMPOSE1

Exa m pIeS a I Hochschule RheinMain

Example 2: {[d] = ¢,a — [a] = Bool — c}:

{ld] = ¢,a — [a] = Bool — ¢}

DECOMPOSE2 - - -
[d] = ¢,a = Bool, [a] = ¢}
ORIENT - - ,
{ld] = ¢,a = Bool,c = [a]}
SOLVE - - -
{[d] = [a],a = Bool, c = [a]}
SOLVE

{[d] = [Bool],a = Bool, c = [Bool]|}
{d = Bool,a = Bool, ¢ = [Bool]}

DECOMPOSE1

The unifier is {d — Bool,a — Bool,c > [Booll}.

Exa m pIeS *Hochschule RheinMain
Example 3: {a = [b],b = [a]}

OccursSCHECK

Exa m pIeS *Hoohschule RheinMain
Example 3: {a = [b],b = [a]}

{a = [b],b = [al}

SOLVE

OccursSCHECK

Example 4: {a — [b] =a — ¢ — d}

a—=[bl=a—c—d}

DECOMPOSE2 - -
{a =a,[b] = c— d}
ErLim o2 y
FaiL2 b = C__> !
Fail

Properties of the Unification Algorithm *Hoohschule RheinMain

@ The algorithm stops with Fail iff the input has no unifier

@ The algorithm stops successfully if the input has a unifier
The equation system E then is of the form {a = 71,...,a,, = 7,,}, where «; are
pairwise distinct and «; does not occur in any 7;.
The unifieris 0 = {1 — 71, ..., = Ty}

@ if the algorithm returns a unifier, then it is a most general unifier

@ The order of rule application is irrelevant, no branching is necessary.
The algorithm can be implemented in a deterministic way.

@ The algorithm terminates for every unification problem

Properties of the Unification Algorithm (Cont'd) *Hochschule RheinMain

@ Types in the result can be of exponential size

Eg {an=an_1 = an_1,0p-1 = ap_2 — Qn—2,...01 =ap— ap}
The unifier maps «; to a type that contains 2* — 1 type arrows. E.g.
olar) = ap = ayp,
0(042) = (Ck() — 040) — (Oéo — Oé(]),
olaz) = ((ag = ap) = (g =) = (g =) = (g =)

@ Using sharing and an adapted Solve-rule, the unification algorithm can be
implemented such that the runtime is O(nlogn)
The shared representation of the result types is O(n).

@ The unification problem is P-complete. |.e.
@ All PTIME-problems can be presented as unification problem
@ Unification is not efficiently parallelizable.

Sketch of the Termination Proof *Hoohschule RheinMain

Let E be a unification problem and

e Var(FE) = number of unsolved type variables in E
a variable « is solved iff it occurs once in E as the left hand side of an equation
(i,e. E=FE' U{a =7} where a &€ Vars(E') U Vars(r)).

e Size(E) = sum of all sizes of types on right-hand and left sides of equations in E
the size of a type is tsize defined as: tsize(TV) =1,
tsize(TC Ty ... T,) =1+ ", tsize(T;) and
tsize(Th — To) = 1 + tsize(T1) + tsize(1?)

e OFq(E) = number of not oriented equations in E
an equation is oriented, if it is of the form a = 7 where « is a type variable.

o M(FE)= (Var(E), Size(E), OEq(E)), where M(Fail) := (—1,—-1,—1).

Sketch of the Termination Proof (Cont'd) *Hoohschule RheinMain

Change of the measure per rule
Var(E) Size(E) OFEq(E)

Fail-rules < < <
OccursCheck < < <
Decompose < <

Orient < = <
Elim < <

Solve <

E
Thus: for each rule o we have M(E') <je; M(E), where <, is the lexicographic

order on triples.

a Hochschule RheinMain

TYPING OF
KFPTS+seq-EXPRESSIONS

Typlng a Hochschule RheinMain

We now consider the
polymorphic typing of KFPTS+seq-expressions

For now, we ignore the typing of supercombinators

Rule for Application with Unification >
suT, tiuTo

(st):o(a)

if o is an mgu for 71 = 79 — « and « is a fresh type variable

Rule for Application with Unification v T

suT, tiuTo
(st):o(a)
if o is an mgu for 71 = 79 — « and « is a fresh type variable

Example:

map :: (a — b) — [a] — [b], not :: Bool — Bool

(map not) :: o(«)

if o is an mgu for (a — b) — [a] = [b] = (Bool — Bool) — «
and « is a fresh type variable

Rule for Application with Unification v T

suT, tiuTo
(st):o(a)
if o is an mgu for 71 = 79 — « and « is a fresh type variable

Example:

map :: (a — b) — [a] — [b], not :: Bool — Bool

(map not) :: o(«)
if o is an mgu for (a — b) — [a] = [b] = (Bool — Bool) — «

and « is a fresh type variable

Unification results in {a — Bool, b +— Bool, « + [Bool] — [Bool]}

Thus: o(a) = [Bool] — [Bool]
D. Sabel | PLF — 05 Polymorphic Type Inference | WS 2024/25 [0 =~ Motivation Unification Expressions Supercombinators

Typlng W|th Binders *Hoohschule RheinMain

How to type an abstraction A\zx.s?
@ Type the body s
o lets:T
@ Then Az.s has a function type 71 — 7
@ How corresponds 71 with 77
@ 71 is the type of x

@ If x occurs in s, then we need 11 for typing 7!

Typ|ng W|th Binders (Cont'd) *Hochschule RheinMain

Informal rule for abstractions:

Typing s with assumption “x is of type 71" results in s :: 7

AL.STL — T

How do we get 77

Typ|ng W|th Binders (Cont'd) *Hoohschule RheinMain

Informal rule for abstractions:

Typing s with assumption “x is of type 71" results in s :: 7

AL.S T — T
How do we get 77
Start with the most general type for z, and restrict it by the type inference

Example:
Az.(x True)
Typing (z True) starts with = :: «

°
@ Since x is applied, the typing has to result in @ = Bool — o/
e Type of the abstraction: Az.(z True) :: (Bool — o) — «/.

Typing of Expressions *Hochschule RheinMain

Typing judgement:

I'Fsa7m, E |

Meaning:
Given a set I' of type assumptions, for expression s the type T and the type
equations E can be derived

o I contains type assumptions for constructors, supercombinators, and variables

@ In E type equations are collected, they will be unified later

Typlng Of Expressions (Cont’d) *Hochschule RheinMain

Type derivation rules are written as

Premise(s)
Conclusion

or more concrete:

Fll—sl :ZT1,E1 Fkl—sk::Tk,Ek
I'tsur E

Typlng Of Expressions (Cont’d) *Hochschule RheinMain

As a simplification:

for typing constructor applications (¢ s1 ... s,) they are treated
like nested applications (((¢ s1) ...) spn))

Typing Rules for KFPTS+seq-Expressions (1) *Hmhschule RheinMain

Axiom for variables:

(AxV) Frv{zarttazar,0

Typing Rules for KFPTS+seq-Expressions (1) *Hoohschule RheinMain

Axiom for variables:

(AxV) ruf{z:rtraz:r0

Axiom for constructors:

(AxC)

FTU{c:Vay...an1hEcutfi/at,. .., Bu/an),d
where 3; are fresh type variables

@ Note that each time a freshly renamed copy of the type is used!

Typing Rules for KFPTS+seq-Expressions (2) *Hoohschule RheinMain

Axiom for supercombinators (with already know type):

(AXSC) FU{SC =Vou...an.7} = SC7[B1/a, ..., Bn/on], B

where [3; are fresh type variables

@ Note that each time a freshly renamed copy of the type is used!

Typing Rules for KFPTS+seq-Expressions (3) *Hochschule RheinMain

Rule for applications:

I'tsum, By und T'Ht:m, FEy

'+ (S t) :2OJ,E1UE2U{T1 =Ty —)Oé}
where « is a fresh type variable

(RAPP)

Typing Rules for KFPTS+seq-Expressions (3) *Hoohschule RheinMain

Rule for applications:

I'tsum, By und T'Ht:m, FEy

'+ (S t) :2OJ,E1UE2U{T1 =Ty —)Oé}
where « is a fresh type variable

(RAPP)

Rule for seq:
'tsa:m,E1y und T'Ht::m, Ey

RSE
() 't (seqst)::m, E1UE,

Typing Rules for KFPTS+seq-Expressions (4) *Hmhschule RheinMain

Rule for abstractions:

Fv{z:alkFsuTE
''Fxes:a—T1FE
where « is a fresh type variable

(RABS)

Typing Rules for KFPTS+seq-Expressions (5) *Hoohschule RheinMain

Typing of case: ideas

caser s of {
(Cl r11 .- xl,ar(q)) — t1;
-
(em Im,1 - mm,m(cm)) — tm}
@ The patterns and the expression s are of the same type.
This type matches the type index T" of caser (due to the patterns)

@ The expressions t1,...,t, are of the same type.
This type is the type of the case-expression

Typing Rules for KFPTS+seq-Expressions (5) *Hoohschule RheinMain

Rule for case:

'tsur E
for 7 = 1,...,m: 'y {-Tz 15 Qs T ar(eg) O‘i,ar(ci)} F (Ci Ti1l «-- xi,ar(ci)) " Tiin
(RCASE)for i=1,....m:TU {-Tz 150405 T ar(eg) ** O‘i,ar(ci)} Eiin Ti/7 E:
caser s of {
e (c1 .xl,l . xl,ar(q)) — 11 o B
BN
(Cm T, 1 cee Ty ar(cm)) - tm}

where B/ = EUUEUUE/UU{T—TZ}UU{Q—T}

and am, « are fresh type variables

Case'RUIe for BOOI al Hochschule RheinMain

I'tsu:7,F I'tFTrue: m,E; T'FFalse:m,FEy 't T{,Ei 'ty Té,Eé
I'F (casepoo1 5 of {True — t1;False — t2}) o, B/
where ' = EUFE|UE,UE|UESU{T =1, 7 =} U{a="1,a="15}
and a; j, a are fresh type variables

(RCASE)

Case'RUIe for LlSts al Hochschule RheinMain

'soerm B

I'FNil: 7, By

ru {Jfl o, T9 CL’Q} F Cons x1 x2 :: 19, F

Lkt Bl

TU{x1:a1,m9 : ag} b tg 75, B
I' (caserisy s of {Nil — t1;(Cons m1 x2) — to}) =t , B/
where ' = EUE; UE,UE|UE,U{r =1, T=n}tU{a="1,a="1}}

and «; j, o are fresh type variables

(RCASE)

Algorithm: Type Inference of KFPTS-seq-Expressions *Hoohschule RheinMain

Let s be a closed KFPTS+seq-expression, where the types of all supercombinators and
all constructors occurring in s are known

@ Start with assumption I' containing the types of the constructors and
supercombinators

@ Derive I' - s :: 7, E using the typing rules
O Solve E with unification

@ If unification ends with Fail, then s is not typeable; otherwise let o be an mgu of
E. Then the type of s is s :: o (7).

Opt|m|zat|on al Hochschule RheinMain

Additional rule to unify inbetween:

I'tsun B
I'ts:to(r), By
where E, is the solved equation system of E and o is the corresponding unifier

(RUNIF)

Wel I‘Typed ness a I Hochschule RheinMain

A KFPTSP+seq-expression s is well-typed iff it can be typed by given algorithm. I

Example: Typing of (Cons True Nil) *Hochschule RheinMain

Start with:
Type assumption: Ty = {Cons :: Va.a — [a] — [a],Nil :: Va.[a], True :: Bool}

Tg F (Cons True) :: 1y, By, To b Nil 7y, By

(RAPP) -
ToF (Cons True Nil) oy, By UEyU {T1 =T — a4}

Example: Typing of (Cons True Nil) *Hochschule RheinMain

Start with:
Type assumption: Ty = {Cons :: Va.a — [a] — [a],Nil :: Va.[a], True :: Bool}

Iy - (Cons True) :: 71, F, e o FNil :: [ag),0

Ty (Cons True Nil) :: ay, By U U {1 = [a3] — au}

(RAPP)

Example: Typing of (Cons True Nil) *Hochschule RheinMain

Start with:
Type assumption: Ty = {Cons :: Ya.a — [a] — [a],Nil :: Va.[a], True :: Bool}

T'g F Cons :: 73, F)3, Ty F True :: 74, Fy
Ty F (Cons True) :: ao, {T3 =74 = as} UE3 U B4 ,(AXL) o FNil :: [ag), 0
IV (Cons True Nil) oy, {T3 =74 = Oéz} UFE3sUE4U {az = [O¢3] — 0&4}

(RAPP)

(RAPP)

Example: Typing of (Cons True Nil) *Hochschule RheinMain

Start with:
Type assumption: Ty = {Cons :: Ya.a — [a] — [a],Nil :: Va.[a], True :: Bool}

(AxC)
Tk Cons :: a1 — [aq] = [a1],0 ,To b True :: 74, Ey

(RAPP) N xC) ————
Ty F (Cons True) :: ag, {a1 = [a1] = [a1] =74 — o} U Ey ,(A ¢ To F Nil = (o], @

(RAPP) R B
I F (Cons True Nil) :: au, {aqg — [ou] — [a1] = T4 = av} U By U {a2 = [a3] = a4}

Example: Typing of (Cons True Nil) *Hochschule RheinMain

Start with:
Type assumption: Ty = {Cons :: Ya.a — [a] — [a],Nil :: Va.[a], True :: Bool}

(AXC) (AxC)

Ty F True :: Bool,

[o F (Cons True) :: ag, {aq — [a1] — 1] = Bool — an} ,(AXC) Lo F Nil :: [ag), 0

Ty F Coms :: a1 — [a1] = [a1],0

(RAPP)

(RAPP) B B
Iy F (Cons True Nil) :: o, {a1 — [ou] — [a1] = Bool — a} U {a = [a3] = au}

Example: Typing of (Cons True Nil) *Hochschule RheinMain

Start with:
Type assumption: Ty = {Cons :: Ya.a — [a] — [a],Nil :: Va.[a], True :: Bool}

(AXC) (AxC)
o Cons :: ag — [aq] — [e1],0 T F True :: Bool, ()
(RAPP) E (AXC) = 7
Ty F (Cons True) :: ag, {aq — [a1] — [@1] = Bool — an} T FNil :: [ag), 0
(RAPP)

Ty F (Cons True Nil) :: ay, {a1 — [a1] = [@1] = Bool — a9, s = [a3] — ay}

Example: Typing of (Cons True Nil) *Hochschule RheinMain

Start with:
Type assumption: Ty = {Cons :: Ya.a — [a] — [a],Nil :: Va.[a], True :: Bool}

(AXC) (AxC)
o Cons :: ag — [aq] — [e1],0 T F True :: Bool, ()
(RAPP) E (AXC) = 7
Ty F (Cons True) :: ag, {aq — [a1] — [@1] = Bool — an} T FNil :: [ag), 0
(RAPP)

Ty F (Cons True Nil) :: ay, {a1 — [a1] = [@1] = Bool — a9, s = [a3] — ay}

Solve {1 — [a1] = [1] = Bool — a2, 2 = [a3] — e} with unification

Example: Typing of (Cons True Nil) *Hoohschule RheinMain

Start with:
Type assumption: Ty = {Cons :: Ya.a — [a] — [a],Nil :: Va.[a], True :: Bool}

(AXC) (AxC)
o Cons :: ag — [aq] — [e1],0 T F True :: Bool, ()
(RAPP) (

Ty F (Cons True) :: ag, {oy — [a1] = [a1] = Bool — an} e T FNil :: [ag), 0

(RAPP) B B
Ty F (Cons True Nil) :: ay,{aq — [a1] = [@1] = Bool — g, a2 = 3] = au}

Solve {1 — [a1] = [1] = Bool — a2, 2 = [a3] — e} with unification

Results in: 0 = {a1 + Bool, oz — ([Bool] — [Bool]), a3 — Bool, ay — [Bool]}

Example: Typing of (Cons True Nil) *Hoohschule RheinMain

Start with:
Type assumption: Ty = {Cons :: Ya.a — [a] — [a],Nil :: Va.[a], True :: Bool}

(AXC) (AxC)
o Cons :: ag — [aq] — [e1],0 T F True :: Bool, ()
(RAPP) (

Ty F (Cons True) :: ag, {oy — [a1] = [a1] = Bool — an} e T FNil :: [ag), 0

(RAPP) B B
Ty F (Cons True Nil) :: ay,{aq — [a1] = [@1] = Bool — g, a2 = 3] = au}

Solve {1 — [a1] = [1] = Bool — a2, 2 = [a3] — e} with unification
Results in: 0 = {a1 + Bool, oz — ([Bool] — [Bool]), a3 — Bool, ay — [Bool]}

Thus (Cons True Nil) :: o(au) = [Bool]

Examp|eZ Typ|ng)\.Tx *Hochschule RheinMain
Start with: Type assumption: T'g = ()

Fou{zzalFzurnE
o (A\rx) ta— 1, FE

(RABS)

Example: Typing \z.x *Hochschule RheinMain

Start with: Type assumption: I'g = ()

(AxV

)FOU{x::a}I—x::a,Q)

(RABS)

ToF (A\z.z) i — a,)

Example: Typing \z.x *Hochschule RheinMain

Start with: Type assumption: I'g = ()

(AxV

)FOU{x::a}I—x:: a, ()
(RABS)
ToF (A\z.z) i — a,)

Nothing to unify, thus (A\z.z) :: @ = «

EXample: Typ'”g Of Q *Hochschule RheinMain

Typing of (Az.(z 2)) (Ay.(y v))

Start with: Type assumption: I'g = ()

. OF Az 2)) 1, B, 0 (A\y.(y y)) = T2, Eo
0k Az.(z2) Ay.(yy) ma, EEUE U{m =17 — a1}

(R

EXample: Typ'”g Of Q *Hoohschule RheinMain

Typing of (\z.(z z)) (Ay.(y y))
Start with: Type assumption: 'y = ()
{x oot b () m, By

) 0 Mz(z2) sae =7, B ,0F Qy.(y y)) : 72, Eo
0 z.(zz) MN(yy) so, EIUEBsU{m =7 — a1}

(RABS)

(RAP!

EXample: Typ'”g Of Q *Hoohschule RheinMain

Typing of (\z.(z z)) (Ay.(y y))
Start with: Type assumption: 'y = ()

{z b aar, By, {x:atba:my, By,
{zralb(ra)ag,{mm=n— a3} UE3UE,
" O Mz 2) e —as,{m=m—as}UEB3sUEy ,0F \y.(y y)) = 2, Eo
"OF O (@ 2) 0wy 9)) = an {78 = 71— a3t U B3 U EsU B2 U fag = 7 — an)

(RAPP)

(RA

EXample: Typ'”g Of Q *Hoohschule RheinMain

Typing of (\z.(z z)) (Ay.(y y))

Start with: Type assumption: I'g = ()

(AXV)

{z bt oal {o: oy, By,

{z:wbbk(2):ag,{ce=m — a3} UEy

AP:RS) 0 Mz(z)t = ag,{aea=74 > a3t UEs ,0F (Ay.(y y)) = 2, Ea
0 z.(z2) Ay.(yy) = a,{as =1 = as}UEB,UFE U{as =7 — a1}

(RAPP)

(R.

(R.

EXample: Typ'”g Of Q *Hoohschule RheinMain

Typing of (\z.(z z)) (Ay.(y y))

Start with: Type assumption: I'g = ()

B {z:atba:al, B {z:amtba::anl,
(RAPP) B
{z o} b (z2) a3, {ae =as = as}
(RABS) B
OF (Az.(z 2)) :: ag = as, {as = a2 — a3} O E (Ay.(y y)) 12, By
(RAPP)

0 Az(z 2) Qy.(yy) = o, {as=as 3 az}UEU{ag =70 — a1}

EXample: Typ'”g Of Q *Hochschule RheinMain

Typing of (\z.(z z)) (Ay.(y y))

Start with: Type assumption: I'g = ()

B {z oo} bFaal ,(AXV) {z o} Faual,
(RAPP) B
{z s} b (z) as, {ae = as = as} ..
(RABS) -
OF Az.(z) =t ag = a3, {aa = aa — as} L0 (My(y y)) 2 2, B
(RAPP)

0F z.(z2) Ay.(yy) = o, {as=as > aztUE,U{as =1 — a1}

EXample: Typ'”g Of Q *Hochschule RheinMain

Typing of (\z.(z z)) (Ay.(y y))

Start with: Type assumption: I'g = ()

B {z oo} bFaal ,(AXV) {z o} Faual,
(RAPP) B
{z s} b (z) as, {ae = as = as} ..
(RABS) -
OF Az.(z) =t ag = a3, {aa = aa — as} L0 (My(y y)) 2 2, B
(RAPP)

0F (Az.(zz) M\y(yy) o, {as=as »az}UEsU{as =17 — a1}

Inspecting the equations shows:
Unification fails, since: as = a9 — as

Thus: (Az.(z x)) (A\y.(y y)) is not typeable!
Note: (Az.(z z)) (Ay.(y y)) is not dynamically untyped but not well-typed

Example: Expression with Supercombinators (1) *Hmhschule RheinMain
Assumption: map and length are already typed.
We type:
t := \zs.caserjst xS of {Nil — Nil;(Cons y ys) — map length ys}
We use the start assumption:
'y = {map :: Va,b.(a — b) — [a] — [b],
length :: Va.[a] — Int,
Nil :: Va.[a]

Cons :: Va.a — [a] — [d]

}

Example: Expression with Supercombinators (2) *Hmhschule RheinMain

Derivation tree:

(AxC) (AxV) (AXSC) 5— (AXSC) Yo
8. 9 14 15
(RAPP) ——————— (AXV) 45— (RAPP) —=1 — 722 (AxV)
(AXV) =5~ (AXC) 55— RAPP) BG ’ By (AXC) (RAPP) Bis) B13
(RCASE) 3 B Bs BlO) B
(RABs) 32
By

Labels: Bi= TogkFt:a — 13,
{as = [as] = [as] = as — a6, a6 = a4 — arx,
(as = ag) = [as] = [ag] = ([a10] = Int) = a1, a11 = as — a2,
a1 = o], 00 = oy, a13 = [a14), 13 = 02, }
By = ToU{zs:ai}hk
caserist s of {Nil — Nil;(Cons y ys) — map length ys} :: ais,
{as = [as] = [as] = az — as, a6 = aa — ax,
(Ozg — 049) — [Oés] — [Oég] ([0610] — Int) — 11, 11 = Q4 — 12,

Example: Expression with Supercombinators (3) *Hoohschule RheinMain

(AXC) 5— (AXV) o (AXSC) —=— (AXSC) —5—
(RAPP) 3’79 (AXV) =5— (RAPP) —BIE’ (AXV) ==—
(AXV) =—s— (AXC) —5— (RAPP) B6 ’ B7 (AXC) =— (RAPP) Bio ’ 313
Bs | By, Bs : B , Bn
(RCASE)
(RABS) B2
By
Labels: Bs= ToU{zs:ai}F zs:ai,l
By = F()U{l's : CM1}|—Ni1:: [CMQL@
Bs = ToU{ws: ai,y: as,ys:as} b (Cons y ys) :: ar,
{a5 — [055] — [055] = a3 — 6, Q6 = a4 —r 057}
Bs= ToU{xs: ai,y: as,ys:as} b (Cons y) :: as,
{Oé5 — [O¢5] — [O¢5] = a3 — 0[6}
Br= ToU{xs:ai,y:as,ys:as}bys:asd
Bs= ToU{ws:ai,y: as,ys:as} b Cons:: as — [as] = [as], 0
By= ToU{zs:ai,y:as,ys:oa}by:asl

BlO = F() U {,’.ES o 011} = Nil :: [0114],®

Example: Expression with Supercombinators (4) *Hmhschule RheinMain

(AXC) =— (AXV) oo (AXSC) = (AXSC) = —
Bg | By Bis Bis
(RAPP) Bi (AxV) F (RAPP) B— (AXV) Bf
(AXV) =—s— (AxC) —— (RAPP) 6 : 7 (AXC) =— (RAPP) 12 : 13
(RCase) Bs | By, Bs : By . By,
(RABS) B2
By

Labels: Biy = ToU{zs: a1,y as,ys:: s} - (map length) ys :: aiz,
{(ag — Oég) — [ag} — [ag] = ([am] — Int) — o111, 011 = a4 — 012}
Bis = ToU{zs: a1,y : as,ys:: as}t (map length) :: ai1,
{(CMS — Oég) — [ag} — [ag] = ([alo] — Int) — a11}
Bis= ToU{zs:ai,y:as,ys:aa}bys:asd
Do U{xs a1,y 2 as,ys it aa} Fmap :: (as — ag) — [as] — [ag], 0
Bis = ToU{ws: ai,y:: as,ys: as} b length :: [ar0] — Int, 0

&
'S
Il

Example: Expression with Supercombinators (5) *Hochschule RheinMain

Labels:
Blz Fol—t::a1—>a13,
{as = [as] = [as] = a3 = ag, a6 = a4 — ar,
(ag = ag) — [ag] = [ag] = ([a10] — Int) — a1, @11 = g — 12,

a1 = [ag], a1 = ar,aq3 = [14], 13 = aa2, }

Example: Expression with Supercombinators (5) *Hochschule RheinMain

Labels:
Blz Fol—t::a1—>a13,
{as = [as] = [as] = a3 = ag, a6 = a4 — ar,
(ag = ag) — [ag] = [ag] = ([a10] — Int) — a1, @11 = g — 12,
a1 =[], = a7, 13 = [a14], 13 = a1, }
Solve using unification:

{as = [as] = [as] = as = as, a6 = a4 — az,
(Ozs — 0(9) — [0[8] — [0[9] = ([0610] — Int) — 011,011 = 4 —> 12,

a1 = [ag], a1 = ar, 13 = [14], 13 = @12}

Example: Expression with Supercombinators (5) *Hochschule RheinMain

Labels:
Blz Fol—t::a1—>a13,

{as = [as] = [as] = a3 — ag, a6 = ay — ar,
(Ozg — ag) — [Oég] — [ag] = ([0410] — IIlt) — 11, 11 = a4 — (19,
a1 = [ag], a1 = a7, a13 = [o4], 13 = a1, }

Solve using unification:
{as = [as] = [as] = as = as, a6 = a4 — az,
(s = ag) = [as] — [ag] = ([a10] = Int) = 11,011 = au4 — a1,
a1 = [az], a1 = a7, 13 = [oa4], a3 = a2}

Results in:

o = {011 — [[0[10]],0[2 — [0&10],0(3 — [alo],a4 — [[0&10”,0(5 — [Oqo},
a > [[ato]] = [[ao]], a7 = [[aa0]], as — [a10], a9 — Int,
a11 + [[aao]] = [Int], @12 — [Int], @13 — [Int], @1a — Int}

Thus t :: o(a1 = a13) = [[aqg]] — [Int].

Example: Typing of Lambda-Bound Variables (1) v

const is defined as

const :: a -> b -> a
const Xy = X

Typing of A\z.const (z True) (z ’A?)

Type assumption:
I'p = {const :: Va,b.a — b — a,True :: Bool, A’ :: Char}.

Example: Typing of Lambda-Bound Variables (2) v

(AxV (AXC)
I'yFax:ap, T'1F True:: Bool
(RAPP) (AxV (AXC)
I'; F const :: ag — agz — an, Ty F (z True) = auq, Fy I'i+Fz:a;, T1F’A’: Char
(RAPP) (RAPP

Ty F const (« True) :: as, By , Ty (x°A°) :: ap, B3
Ty const (z True) (z ’A’) :: a7, Fy
o+ Az.const (z True) (z ’A’) :: a1 — a7, By

(AXSC

(RAPP)

(RABS)

where I'y = To U {x :: a1 } and:

Ei = {ai1 =Bool — au}

E; = {a1 =Bool - au,a2 = a3 —> a2 = a4 —> a5}

Es = {ai =Char — ag}

E; = {ai1 =Bool — au,as — az — a2 = a4 — a5, a1 = Char — ag,

Qs iaa —>O£7}

Example: Typing of Lambda-Bound Variables (2) v

(AxV (AXC)
I'yFax:ap, T'1F True:: Bool
(RAPP) (AxV (AXC)
I'; F const :: ag — agz — an, Ty F (z True) = auq, Fy I'i+Fz:a;, T1F’A’: Char
(RAPP) (RAPP

Ty F const (« True) :: as, By , Ty (x°A°) :: ap, B3
Ty const (z True) (z ’A’) :: a7, Fy
o+ Az.const (z True) (z ’A’) :: a1 — a7, By

(AXSC

(RAPP)

(RABS)

where I'y = To U {x :: a1 } and:

Ei = {ai1 =Bool — au}

E; = {a1 =Bool - au,a2 = a3 —> a2 = a4 —> a5}

Es = {ai =Char — ag}

E; = {ai1 =Bool — au,as — az — as = a4 — a5, aq = Char — ag,

Qs iaa —>O£7}

Unification fails, since Char # Bool

Example: Typing of Lambda-Bound Variables (3) v T

In Haskell-interpreter:

Main> \x -> const (x True) (x ’A’)

<interactive>:1:23:
Couldn’t match expected type ‘Char’ against inferred type ‘Bool’
Expected type: Char -> b
Inferred type: Bool -> a
In the second argument of ‘const’, namely ‘(x ’A’)’
In the expression: const (x True) (x ’A’)

Example: Typing of Lambda-Bound Variables (3) v T

In Haskell-interpreter:

Main> \x -> const (x True) (x ’A’)

<interactive>:1:23:
Couldn’t match expected type ‘Char’ against inferred type ‘Bool’
Expected type: Char -> b
Inferred type: Bool -> a
In the second argument of ‘const’, namely ‘(x ’A’)’
In the expression: const (x True) (x ’A’)

@ Example shows: Lambda-bound variables are monomorphically typed!
@ The same applies to variables bound by case-patterns

Example: Typing of Lambda-Bound Variables (3) v T

In Haskell-interpreter:

Main> \x -> const (x True) (x ’A’)

<interactive>:1:23:

Couldn’t match expected type ‘Char’ against inferred type ‘Bool’
Expected type: Char -> b
Inferred type: Bool -> a

In the second argument of ‘const’, namely ‘(x ’A’)’

In the expression: const (x True) (x ’A’)

@ Example shows: Lambda-bound variables are monomorphically typed!
@ The same applies to variables bound by case-patterns
@ Hence, one speaks of let-polymorphism, since only
let-bound variables are typed polymorphically.
o In KFPTS+seq, there is no let, but supercombinators which are similar to let
D, Sabel | PLF - 05 Polymorphic Type inference | wo 2czayzs T T s S

a Hochschule RheinMain

TYPING
SUPERCOMBINATORS

Recursive Supercombinators *Hochschule RheinMain

Let SC be a set of supercombinators, SC;, SC; € SC
o SC; = SCj iff the rhs of the definition of SC; uses the supercombinator SCj.
o =<7 is the transitive closure of < (and =<* is the reflexive-transitive closure)
o SC; is directly recursive iff SC; < SC; and recursive iff SC; <* SC;
e SCy,...,SCy, are mutually recursive if SC; <t SC; for all 4,5 € {1,...,m}.

Example ok
f x y=1if x<1 then y else f (x-y) (y + h x) l

g x = if x=0 then (f 1 x) + (h 2) else 10

h x =if x=1 then O else g (x-1) / x
k x y = if x==1 then y else k (x-1) (y+(g %)) S f——

f and k are directly recursive, f, g, h are mutually recursive, f, g, h, k are recursive

Typing Non-Recursive Supercombinators *Hochschule RheinMain

@ Non-recursive Supercombinators can be typed like abstractions

@ Notation: I' =7 SC :: 7 means:
With assumption I', SC can be typed with type 7

Typing Non-Recursive Supercombinators *Hoohschule RheinMain

@ Non-recursive Supercombinators can be typed like abstractions

@ Notation: I' =7 SC :: 7 means:
With assumption I', SC can be typed with type 7

Typing rule for (closed) non-recursive supercombinators:

Tru{z; taq,...,zpmantkFsu7E
Lhp SC:VX0(ag — ... > ap —T)

(RSC1)

if o is the solution of E,
SC z1 ... z, = s is the definition of SC
and SC' is non-recursive,

and X = Vars(o(ag = ... = an = 7))

v

Example: Typlng Of (-) *Hoohschule RheinMain
() fgx=1£f (gx)

Iy is empty, since no constructors or supercombinators occur

(AXV) (AxV

Iikg:asl,)I’l Fa:ooasz,0
(Axwl"l Ffoag,0 :Hm) I'iF(gx):as {a=a3— as}
Ty F(f (92) g, {ae =a3 = as,a; = a5 — ay}
Db (1) 2 VX.o(ar = ag = a3 — ay)
where Ty = {f 1 1,9 = ao,z :: s}

(RAPP)

(RSC1)

Unification results in 0 = {a2 — a3 — as, a1 — a5 — aq}.

Thus: o(a1 = a2 = az — aq) = (a5 = @) = (a3 = as5) = a3 = o
Now X = {as, a4, a5} and we may rename this to:

(.) =Va,b,c.(la—b) = (¢c—a) >c—b
TN ooy PN YV ., R ———————

Typing of Recursive Supercombinators *Hochschule RheinMain

@ Assume SC z1 ... x, = e and SC occurs in e (SC' is recursive)

@ What is the problem when typing SC?

Typing of Recursive Supercombinators *Hmhschule RheinMain

@ Assume SC z1 ... x, = e and SC occurs in e (SC' is recursive)
@ What is the problem when typing SC?
@ To type the body ¢, the type of SC must be known!

a Hochschule RheinMain

ITERATIVE TYPE INFERENCE
ALGORITHM

|dea of the Iterative Type Inference *Hoohschule RheinMain

Start with the most general type for SC' (i.e. a type variable)
Type the body using this assumption

This results in a newly derived type for SC

Continue (iterate) with this type

Stop if new type = old type:
Then we found a consistent type assumption

Most general type: Type T', such that sem(7") = {all monomorphic types}.

The type « satisfies this (as quantified type Va.a)

Iterative Type Inference *Hochschule RheinMain

Rule to compute new assumptions:

Tu{zy:aq,...,2nay}tFsu, E

(SCREC)
'y SC:o(ag = ...an — 7)

if SC z1 ... x, = s is the definition of SC, o the solution of E

The same as RSC1, but I' has to contain an assumption for SC

Iterative Typing: Preparatory Work *Hoohschule RheinMain

Because of mutual recursion:
@ Dependency analysis of the supercombinators
@ Compute the strongly connected components in the call graph

@ Let ~ be the equivalence relation of <*. The strongly connected components are
the equivalence classes of ~

@ Each equivalence class is typed together

The order of the typing is according to <* modulo ~~.

Example

f x y=if x<1 then y else f (x-y) (y + g x)
g x = if x=0 then (f 1 x) + (h 2) else 10

h x = if x=1 then 0 else h (x-1)

k x y = if x==1 then y else k (x-1) (y+(f x y))

The call graph is:
/g \
Q) ;

Ck

The equivalence classes (ordered) are {h} <+ {f, g} =T {k}.

J

D. Sabel | PLF — 05 Polymorphic Type Inference | WS 2024 /25 67/109

a Hochschule RheinMain

Supercombinators

Iterative Type Inference Algorithm *Hochschule RheinMain

Input: Mutually recursive supercombinators SC,...,SCy,

@ Start assumption I' contains types of the constructors and the already typed SCs

v

Iterative Type Inference Algorithm *Hochschule RheinMain

Input: Mutually recursive supercombinators SC,...,SCy,

@ Start assumption I' contains types of the constructors and the already typed SCs
QIly=Tu {SCl mVoq.aq, ..., 80, : Vam.am} and j = 0.

v

Iterative Type Inference Algorithm *Hochschule RheinMain

Input: Mutually recursive supercombinators SC,...,SCy,

@ Start assumption I' contains types of the constructors and the already typed SCs
QIly=Tu {SCl mVoq.aq, ..., 80, : Vam.am} and j = 0.
@ For each SC; (i =1,...,m) apply rule (SCREC) for I';, to infer the type of SC;.

v

Iterative Type Inference Algorithm *Hochschule RheinMain

Input: Mutually recursive supercombinators SC,...,SCy,

@ Start assumption I' contains types of the constructors and the already typed SCs
QIly=Tu {SCl mVoq.aq, ..., 80, : Vam.am} and j = 0.
@ For each SC; (i =1,...,m) apply rule (SCREC) for I';, to infer the type of SC;.

Q If the m type derivations are successful (for all i: T'; -7 SC; :: 1)
Then quantify: SCy :: VA1.71q,...,5C, - VX0, Tm
Set I'j41 :=TU{SCy = VX1.71,...,58Cy, : VX7 }

v

Iterative Type Inference Algorithm *Hochschule RheinMain

Input: Mutually recursive supercombinators SC,...,SCy,

@ Start assumption I' contains types of the constructors and the already typed SCs
QIly=Tu {SCl mVoq.aq, ..., 80, : Vam.am} and j = 0.

@ For each SC; (i =1,...,m) apply rule (SCREC) for I';, to infer the type of SC;.
Q If the m type derivations are successful (for all i: T'; -7 SC; :: 1)

Then quantify: SCy :: VA1.71q,...,5C, - VX0, Tm

Set I'j41 :=TU{SCy = VX1.71,...,58Cy, : VX7 }
Q IfI'; #1141, then set j := j + 1 and go to step (3).

Otherwise, I'; = I'j;1, and thus I'; is consistent.

v

Iterative Type Inference Algorithm *Hochschule RheinMain

Input: Mutually recursive supercombinators SC,...,SCy,

@ Start assumption I' contains types of the constructors and the already typed SCs
QIly=Tu {SCl mVoq.aq, ..., 80, : VOém.Oém} and j = 0.

@ For each SC; (i =1,...,m) apply rule (SCREC) for I';, to infer the type of SC;.
Q If the m type derivations are successful (for all i: T'; -7 SC; :: 1)

Then quantify: SCy :: VA1.71q,...,5C, - VX0, Tm

Set I'j41 :=TU{SCy = VX1.71,...,58Cy, : VX7 }
Q IfI'; #1141, then set j := j + 1 and go to step (3).

Otherwise, I'; = I'j;1, and thus I'; is consistent.

Output: quantified polymorphic types of the SC; of the consistent type assumption.
If a single unification fails, then SC1, ..., SC,, are not typeable.

v

Properties of the Algorithm *Hoohschule RheinMain

@ The computed types are unique up to renaming for each iteration and thus:
if the algorithm terminates, then the types of the supercombinators are unique.

@ In each step: newly computed types are more specific or remain the same

(computation is monotonic w.r.t. sem: “sem(7j11) C sem(7})")

@ If the algorithm does not terminate, then no polymorphic type for the
supercombinators exists
(since computation is monotonic w.r.t. sem and starts with the largest set)

@ The algorithm computes the greatest fixpoint w.r.t. sem:
Suppose that F' is the operator that performs one iteration of the algorithm on
the set of monomorphic types. If the algorithm stops with set S, then F'(S) =S
(so S'is a fixpoint) and S is the largest set M such that F'(M) = M.

@ This shows, that the iterative type inference algorithm computes the most general
polymorphic type (w.r.t. sem)

Example: length (1) *Hochschule RheinMain

length xs = caserisy 5 0f{Nil — 0; (y : ys) — 1 + length ys}
Assumption:
I’ = {Nil :: Va.[a], (}) :: Va.a — [a] — [a],0,1 :: Int, (+) :: Int — Int — Int}
1.lteration: I'p = I' U {length :: Va.a}

a) ToU{zs:ar}tasan, Ep
b) ToU{xs:ai}tNil: 7, Ey
¢) ToU{zs:al,y:aq,ysastt (y:ys)::7s,Es
d) ToU{zs:ar}b0:my,Ey
(e) ToU{xs:aq,y:as,ys:asttt (1+ length ys) = 75, E5
FoU{xs :: a1} - (caserist o5 of{Nll — 0; (y : ys) = 1 + length xs}) =:
Fq UEQUE3UE4UE5U{T] 77’2,7'1 77'37(13 77'4 Qg *7—5}
Ty b length :: oo — ag)
where ¢ is the solution of

E1UE2UE3UE4UE5U{7‘1 57'2,7‘1 57'3,013 57'4,043 57'5}
T Ty oo K 7y - . A T

—~ o~ —

(RCasE)

(SCREC)

Example: length (2) *Hochschule RheinMain

(a): (AxV) ToU{xs a1} b as:ag,l

le. 1 =a7 and By =0

(b): (AxC) FoU{zs a1} FNil :: [og), 0

l.e. T2 = [056] and E2 = @

AxC
(c) (P({A):p)) 0 F() a9 fag] = [ag),0

(RAPP)

AXV) ————
()F'OFy::a4,®

o () y) = as, {ag = [ag] = [ag] = ay — ag}

AXV) 77—
,()Fél—yszzas,@

Lok (y:ys) = ar, {ag — [ag] = [ag] = au — as,as = a5 — ar}
where Tg = To U {xs :: a1,y : aq,ys = as}

I.e.,. T3 = Q7 and E3 = {ag — [Ozg] — [ag] = Q4 — (g, 08 = a5 — 047}

Exa m p|e Iength (3) *Hoohschule RheinMain

(d) (4xC) TFouU{zs:a;}F0: Int,0

le. y =Intund B4 =0

(AXC)

(RAPP)

(A

Iy (+) :: Int — Int — Int,0 ,Mm Iy 1:Int, 0 e Ty length :: a3, 0 Ty F (ys) = as,0

5 (RA -
IyF ((+) 1) = aq1, {Int — Int — Int = Int — an} , Ty F (Length ys) = aja, {13 = a5 — a12}

(AXV)

F6 = (1 + length ys) o Oqg,{Int — Int — Int = Int — 11,0013 = a5 — 12, 011 =g — (}10}
where T'g =ToU{zs :: a1,y : aq,ys :: a5}

I.e., T5 = (10 and

E5 = {Int — Int — Int = Int — aq1, 13 = Q5 — Q12, Q11 = Q12 — 0&10}

Example: length (4) *Hoohschule RheinMain

In summary: I'g Fp length :: o(a; — a3)
where o is the solution of
{ag = [ag] = [ag] = ag = ag, a8 = a5 — ar,
Int — Int — Int = Int — 11,13 = a5 — 19, 011 = 12 — 019,
a1 = [ag], a1 = ar, a3 = Int, a3 = a0}
Unification results in the unifier:
{a1 = [ag], a3 — Int, ay — ag, a5 — (o], a6 — g, a7 — [agl, ag — [ag] —],
a0 — Int,aq1 — Int — Int, a2 — Int, aq3 — [ag] — Int}
thus o(a; — a3) = [ag] — Int
I'y =T U{length :: Va..[o] — Int}

Since I'g # T'y another iteration is required.
2. iteration: It results in the same type, hence I'; is consistent.

Iterative Typing is More General than Haskell *Hochschule RheinMain

Example
gx=1: (g (g ’c’))

I' ={1:: Int,Cons :: Ya.a — [a] — [a], ’c’ :: Char}
I'o=TU{g:Va.a} (and T =ToU{z :: a1 }):

(AxSC

(AXC
Thtg:as®, TjF’c’:Char,f,

(AXSC) (RAPP

(A‘\C/Ff] F Cons :: a5 — [as] — [as), 0 ‘.A‘\(‘Ff) F1:1Int,0 ToFg:asl, Lok (g ’c?) : ar, {ag = Char — a7}

B (RAPP) B N
Ty F (Cons 1) : a3, a5 — [as] — [a5] = Int — a3 Lok (g (g °c?)) : au, {ag = Char — az7,a6 = a7 — a4}

(RAPP)

(RAPP N N . .
' Iy FCons 1 (g (g ’c’)) = az, {ag = Char — ar,a5 = a7 — as, a5 — [as] = [as] = Int — ag,a3 = ag — az}

(SCREC)
Tobrg:o(ar = az) = a; — [Int]

where o = {ag — [Int], a3 — [Int] — [Int], a4 > [Int], a5 — Int, o — a7 — [Int],ag — Char — a7} is the solution of
{ag = Char — a7, a6 = a7 = a4, a5 — [a5] — [as] = Int — ag, a3 = ay — a2}

le. Ty =T'U{g:: Va.a — [Int]}.

The next iteration shows that I'; is consistent.

lterative Typing is More General than Haskell (Cont'd) *Hoohschule RheinMain

Haskell cannot infer a type for g:
Prelude> let g x = 1:(g(g ’c’))

<interactive>:1:13:
Couldn’t match expected type ‘[t]’ against inferred type ‘Char’
Expected type: Char -> [t]
Inferred type: Char -> Char
In the second argument of ‘(:)’, namely ‘(g (g ’c’))’
In the expression: 1 : (g (g ’c’))

lterative Typing is More General than Haskell (Cont'd) *Hochschule RheinMain

Haskell cannot infer a type for g:
Prelude> let g x = 1:(g(g ’c’))

<interactive>:1:13:
Couldn’t match expected type ‘[t]’ against inferred type ‘Char’
Expected type: Char -> [t]
Inferred type: Char -> Char
In the second argument of ‘(:)’, namely ‘(g (g ’c’))’
In the expression: 1 : (g (g ’c’))
But: Haskell can check the type if it is given:
let g::a => [Int]; g x = 1:(g(g ’c’))
Prelude> :t g
g :: a —-> [Int]
Reason: If the type is present, Haskell performs type checking and no type inference.
Then g is treated like an already typed supercombinator.

Example: Multiple Iterations are Required (1) *Hochschule RhelnMaln

gx=x: (g (g ’c’))

e I' = {Cons :: Va.a — [a] — [a],’c’ :: Char}.
o I'y=TU{g: Va.a}

(AXSC) (AXC

ToFgoas,0, Tk ’c’:Char,(,
(RAPP) -
IyFgeag, Ik (g ’c?) a7, {ag = Char — a7}

(AxC) (AxV)

Ty F Cons = a5 — [as) — [as],0 , e

FfJFx:: ay, 0

n (RA N .
T+ (Cons 7) = ag, a5 — [a5] = [as] = a1 — ag v ToF (g (g 7c’)) t au, {ag = Char — a7, a6 = a7 — auq}

(RAPP)

(RAPP) N N N N
Iy F Cons z (g (g ’c?)) :: ag, {ag = Char — ar,ag = a7 — a4, a5 — [a5] = [as] = a1 = ag,a3 = as — o}

(SCREC)
Lobrg:ola = az) =as — [os)

where o = {a; — a5, a2 — [a5], az — [as] = [as], as — [a5], a6 — a7 — [as], ag — Char — a7} is the solution of
{ag = Char — a7, a6 = a7 = au, a5 = [a5) = [as] = a1 = ag, a3 = g — o}

le. Ty =T U{g: Va.ax — [a]}.

Example: Multiple Iterations are Required (2) *Hochschule RhelnMaln

Since 'y # I'1 another iteration is required.
Let I =T1U{z:an}:

(AxSC

T\ Fg:as— [og),0 i’\“k’l"a ¢’ :: Char,0 ,

(R -
I Fgag— [ag),0 /l"’l F (g ’c?) a7, {ag — [as] = Char — a7}

Axc (axv (axsc
YT Coms ag — [ag] = [as], 0 Ty Fzand
(RA

- (RAPPY - -
I\ F (Cons z) = ag, a5 — [as] = [as] = a1 = a3, I+ (g (g °c’)) = as, {ag — [ag] = Char — a7, a6 — [ag) = a7 — au}

(Rave) - - - -
I\ Cons = (g (g ’c?)) :: as, {as — [as] = Char — a7, a6 — [ag] = a7 = asas — [as] = [as] = a1 = az,a3 = ag — as}

Ty br g o(a; — az) = [Char| — [[Char]]
where o = {a; ~ [Char|, ay ~ [[Char]], a3 +— [[Char]] — [[Char]], a4 > [[Char]], a5 +> [Char], g — [Char|, a7 — [Char|, g — Char}
is the solution of {ag — [as] = Char — a7, a5 — [ag] = ar = au, a5 — [as] = [as] = a1 = ag, a3 = g — as}

(SCRE

Hence I'; = T' U {g :: [Char| — [[Char]]}.

Example: Multiple Iterations are Required (3) *Hochschule RhelnMaln

Since I'1 # I's another iteration is required:
Let I, =ToU{z = an}:

(AxSC (A

T, g = Char] — [[Chax]],0 ;T F ’c’ : Char, 0 ,
<0 v (AxsC: (RA
‘ T I Cons :: a5 — [as] — [as],0 N ‘l"’z Faocand I'y - g :: [Char] — [[Char]],0 , T%F (g ’c’):: ar,{[Char] — [[Char]] = Char — a7}

Rars Ravry
' Ty I (Cons) = ag, a5 — [az] = [as] = a1 = a3 L, T%+ (g (g ’c’)) = au, {[Char] — [[Char]] = Char — a7, [Char] — [[Char]] = a7 — a4}

(RAPP)

(A

T) F Cons = (g (g ’c’)) :: a2, {[Char| — [[Char]] = Char — a7, [Char] — [[Char|] = a7 — auas — [a5] — [as] = a1 = ag, a3 = ay — az}

(SCRec)
Tobrgio(ag — ag)
where o is the solution of
{[char] — [[Char]] = Char — ar, [Char| — [[Char]] = a7 — au, a5 — [a5] = [as] = a1 = a3, a3 = g — as}

Unification:
[Char] — [[Char]] = Char — ar,

[Char]”i' Char,
[[Char]] = az,

Fail
g is not typeable.

The Example Shows ...)' Hochschule RheinMain

The iterative type inference algorithm sometimes requires multiple iterations until a
result (untyped / consistent assumption) is found.

Note: There are examples where multiple iterations are required to find a consistent
type assumption.

Non-Termination of the Iterative Typing (1) *Hoohschule RheinMain

f = [gl
g = [f]

Since f ~ g, the iterative typing types £ and g together.
I' = {Cons :: Va.a — [a] — [a],Nil : Va.a}.
I'p=TU{f :Va.a,g: Va.a}

(AXC) (AXSC) ———
I'g F Coms :: gy — [aa] = [oua], 0 TokFg:as
(RAPP) - (AXC) ———————
(RAPP) o - (Cons g) :: a3, {ou — [ou] = [ou] = a5 = a3z} o Nil :: [ag], @
PP
FO [[g] o al,{a4 — [Oad — [a4] = Qa5 — 03,03 = [ag] — Oél}
(SCREC)

Tobrfo(ar) = [as]
o ={a1 — [as], a2 = a5, a3 — [as] = [as], 04 — a5} is
the solution of {ay — [a4] = [a4] = a5 — a3, a3 = [ae] = a1}

Non-Termination of the Iterative Typing (2) *Hochschule RheinMain

(AXSC)

To F Cons :: g — [ag] = [uq], 0 TokFf:ias
(RAPP) ; (AXC) m—F—————F———
(RAPP) ot (Cons £) :: as, {as — [ay] = [ca] = a5 — as} T - Nil :: [ag], 0
(SCREC) To I [f] o, {Oé4 — [a4] — [054] = a5 — 3,03 = [062] — 051}

Tobrg:o(ar) = [as)
o={a1 — [as],as = a5, a3 — [as] = [as], 04 — a5} is
the solution of {ay — [ay] = [a4] = a5 — a3, a3 = [ae] = a1}

Hence, I'y = T'U {f :: Va.[a], g :: Va.[a]}. Since I'1 # Ty, another iteration is required.

Non-Termination of the Iterative Typing (3) *Hochschule RheinMain

(AXC) (AXSC) ==
(RAPP) Ty F Cons g — [ca] — [aua], 0, I kg os) (AxC) —
(RAPP) Ty + (Cons g) :: a3, {ag — [as] = [ou] = [as] = az} Ty FNil: [aol], 0
(SCR,EC) '+ [g] Lo, {a4 — [044] — [a4] = [as] — Q3,03 = [042] — al}
Ty bpfao(on) = [[as]]
o ={on = [las]], 02 = [as], a3 = [[as] = [[as]], 0 = [as]} s
the solution of {ay — [au] — [au] = [a5] = as, a3 = [as] = a1}
(éi:);f; Ty F Cons i aig — [cug] — [awa], 0 ,(AXSC> Ty k£ fas) A
Ty F (Cons £) :: a3, {ay — [ag] — [ou] = [as] = a3} ,(*C) Iy FNil (o), 0
(RAPP) - -
Ty b [f] o, {ow = [ou] = [oua] = [as] = as, a3 = [ae] = a1}
(SCREC)

Tibrgio(ar) = [[as]]
o ={o1 — [las]], a2 = [as], a3 = [[as] = [[as]], a4 = [as]} is
the solution of {ay — [au] — [au] = [as] = a3, a3 = [as] = a1}

Hence T'y =T U {f :: Va.[[d]], g :: Va.[[a]]}. Since Ty # I'1, another iteration is required.
D Sabel | PLr s Pemoren e merenee | e anenzs e

Non-Termination of the Iterative Typing (4) *Hoohschule RheinMain

Conjecture: The iterative typing does not terminate
Proof (by induction): iteration i: I'; = T'U {£ :: Va.[a]’, g :: Va.[a]'} where [a]® i-fold nested list

(AXC) (AXSC) ————
(RAPP) I'; - Cons :: o — [aua] = [au], 0, i g [os) (AXC)
(RA) T; - (Cons g) :: a3, {ay — [aa] — [au] = [as]' — a3} [; FNil = [as), 0
PP -
N Ly = [g] o, {ou = [aa] = [ou] = [a5]" = a3,a3 = [az] = a1}
(SCREC) ! :
» Libr £ o(on) = [[as]] ‘
o ={ar = [[as]'], a2 = [as]', a3 = [[as]'] = [las]'], as = [as]'} is
the solution of {ay — [ay] — [a4] = [as])! — a3, a3 = [ag] — a1}
(I({AA);S)) T; - Cons :: ag — [cua] — [, 0, (AXSC) ik 1 o)
T, I (Cons £) = ap, {os — o] — o] = [os]l > a5},) T, F Wil a0
(RAPP) ; - ;
i b [£] = o, {ay = [ou] = [au] = [as]” = a3, 03 = [aa] = an}
(SCREC)

v T; F_T g o’(m)_ = [[r},;]i]_ _
o ={a1+ [[as]'], a2 = [as]', a5 = [[as]'] = [[as]'], 0q = [as]'} is
the solution of {ay — [aug] = [au] = [as]’ — a3, a3 = [as] = a;}

lLe. Tj41 = T U{f :: Va.[a]", g :: Va.[a] T}
T oy PN VYV ., R ———————

Th us ... a I Hochschule RheinMain

The iterative type inference algorithm may not terminate.

Th us ... a I Hochschule RheinMain

The iterative type inference algorithm may not terminate. I

Moreover, the following holds (the proof can be found in the literature)

Iterative typing is undecidable. I

This follows from the undecidability of so-called semi unification of first-order terms.
(works of Kfoury, Tiuryn, and Urzyczyn and Henglein)

Ca” H|eraChy al Hochschule RheinMain

@ The iterative typing does not need the information of the call hierarchy:

The same types are inferred independently in which order they are computed

Type Safety *Hoohschule RheinMain

A typed program calculus fulfills type safety iff

e Typing is preserved by reduction (type preservation):
For monomorphic type 7: If t :: 7 and t — t/, then ¢/ :: 7

This includes the case that a polymorphic type becomes more general.

@ Typed, closed expressions are reducible if they are not a WHNF
(well-typed programs don't get stuck) (progress lemma)

Type Safety (2) *Hochschule RheinMain

Let s be a directly dynamically untyped KFPTS+seq-expression. Then the iterative
typing cannot type s.

Proof. Assume s is directly dynamically untyped:

@ s = R[caser (¢ s1 ... sp) of Alts] and c is not of type 7.
iterative typing adds equations ensuring the types of (¢ s1 ... s,) and of the
patterns in Alts are equal. Since c is not of type T, unification fails.

@ s = R[caser A\z.t of Alts]: iterative typing add ensuring the type of A\x.t is
equal to the type of the patterns in Alts, and that it is a function type.
Unification fails, since the patterns do not have a function type.

® R[(cs1 ... Sar(e) t]: ((¢ 81 ... Sap(e)) t) is typed as a nested application
(((e¢ s1) ---) Sar(e)) t). Equations are added implying that ¢ can receive at most
ar(c) arguments. Since there is one more argument, unification will fail.

Type Safety (3) *Hochschule RheinMain

Let s be a well-typed and closed KFPTSP+seg-expression (of a well-typed

KFPTSP-+seq-program) and s —— s’. Then s’ is well-typed.

Proof (Sketch): Inspect the (53)-, (SC' — 3)- and (case)-reduction and the typing of
the expressions before and after the reduction.

Type Safety (4) *Hochschule RheinMain

The two lemmas show:

Let s be a well-typed, closed KFPTSP+seg-expression. Then s is not dynamically
untyped.

Let s be a well-typed, closed KFPTSP+seg-expression. Then
o s is a WHNF, or

. o o name
o s is call-by-name-reducible, i.e. s —— s’ for some s'.

Proof. A closed KFPTS+seq-expression s is irreducible iff s is a WHNF or s is directly
dynamically untyped (and thus not well-typed).

Type Safety (5) *Hochschule RheinMain

Type safety holds for the iterative typing of KFPTSP+seq. I

Forcing Termination of Type Inference *Hoohschule RheinMain

o Let SC4,...,SC), be mutually recursive supercombinators
o Let'; Fp SCy iy, ..., Iy Fp SCy, 2 7y, be the types derived in the it iteration

Milner-Step: Type SC4,...,SC,, together with the type assumption:
Ty =TU{SCy i 11,...,SCy, 2 Ty }i without quantifiers
and the following rule (SCRecM) ...

Forcing Termination (Cont'd) y R

oo . /
fori=1,...,m: T U {xi,l N1y, Tim, ai,ni} Fsiom, B

(SCRECM) - ;
Cybpfori=1,...,m SC; =o(ai1 — ... = qjp, — 7))

m
if o is the solution of By U...UE, U U{ri =ai1 — ... > ajpn, — 7/}

=1
and SCl 1,1 --- Ting = 51
SCn Tmi - Tmmn, = Sm

are the definitions of SC4,...,5C,,
As additional typing rule we add:

AxSC2
(Ax)FU{SC::T}I—SC’::T

if 7 is not universally quantified

Forcing Termination (Cont'd) y R

Differences to an iterative step:
@ Types of to-be-typed SCs are not quantified
@ No copies of these types are made

@ At the end, the assumed types are unified with the derived types

Forcing Termination (Cont'd) y R

Differences to an iterative step:
@ Types of to-be-typed SCs are not quantified
@ No copies of these types are made
@ At the end, the assumed types are unified with the derived types
This ensures: the new type assumption derived by (SCRECM) is always consistent

After a Milner-step the iterative algorithm terminates. J

a Hochschule RheinMain

HINDLEY-DAMAS-MILNER-
TYPING

The Hindley-Damas-Milner Typing *Hoohschule RheinMain

The algorithm is similar to iterative typing, with the differences:
@ Only one iteration step is performed
@ The type assumption assumes for each to-be-typed supercombinator SC; the type
a; (without quantifier!)
@ consistency is enfored by additional unification equations

The Hindley-Damas-Milner Typing *Hoohschule RheinMain

The algorithm is similar to iterative typing, with the differences:
@ Only one iteration step is performed
@ The type assumption assumes for each to-be-typed supercombinator SC; the type
a; (without quantifier!)
@ consistency is enfored by additional unification equations

Haskell uses Hindley-Damas-Milner-typing

The Hindley-Damas-Milner Type Inference Algorithm *Hoohschule RheinMain

SCq,...,SC,, are mutually recursive supercombinators ofan equivalence class w.r.t. ~
supercombinators strictly less than SC1,...,SC,, w.r.t. < are already typed

@ Assumption I' contains types of the already typed SCs and of the constructors (all
universally quantified)

Q@ Type SC4,...,SC,, with the rule (MSCREC):

fori=1,...,m:TU{SCy: p1,...,S Bm}U{mll Qilyees Timy o Qi t 1 850 Ty, By

(MSCREC)
Tkpfori=1,...,m SC’ olail = ... = Qip, > T)

if o solution of E4U...UE,, UU{Bz—Oézl—> _>Oéinz_>7—i}

and SCyz11 ... T1, =51 are the definitions of SC1,...,SC,,

SChm Tm1 -+ Tmon, =5Sm

If unification fails, then SC4, ..., SC,, are not Hindley-Damas-Milner typeable

The Hindley-Damas-Milner Type Inference Algorithm *Hochschule RheinMain

Simplification: Rule for one single recursive supercombinator:

Tru{scC :p,z1=ai,...,xpaptbsum E
Ly SC:o(ag — ... = ap —7)

if o is the solution of FU{f=a1 — ... = ap, = T}
and SC =1 ... x, = s is the definition of SC'

(MSCRECc1)

Properties of the Hindley-Damas-Milner Typing *Hochschule RheinMain

the algorithm terminates
the algorithm computes unique types
Hindley-Damas-Milner typing is decidable

the decision problem whether an expression is Hindley-Damas-Milner-typeable is
DEXPTIME-complete

@ the types may be more restrictive than the iterative type, in particular, an
expression may be iteratively typeable but not Hindley-Damas-Milner-typeable.

@ The Hindley-Damas-Milner algorithm needs knowledge of the call hierarchy of the
SCs:

It may return more restrictive types if the typing is not along the hierarchy

Exa m ple a I Hochschule RheinMain

Sometimes exponentially many type variables are required:

(let x0 = \z->z in
(let x1 = (x0,x0) in
(let x2 = (x1,x1) ins
(let x3 = (x2,x2) in
(let x4 = (x3,x3) in
(let x5 = (x4,x4) in
(let x6 = (x5,x5) in x6)))))))

Requires 26 type variables, the generalized example requires 2.

Example: map *Hochschule RheinMain

map f xs = case xs of {
10— 0
(y:ys) — (£ y):(map £ ys)
}

I'o = {Cons :: Va.a — [a] — [a],Nil :: Va.[a]}

SeiT =ToU{map:: B, f nai,zs saztand IV =T U{y : as,ys :: as}.

(a) Thas:m, By
(b) THNil: T, By
(¢) T'F (Cons yys):Ts Es
(d) THNil:my, By
(RCAsE) () T'F (Cons (f y) (map f ys)) : 75, Es
(MSCR ‘1) I'l- case x5 of {Nil — Nil;Cons y ys — Cons y (map f ys)} =, E
EC

Thprmap oo = a2 —)
if o is the solution of EU {8 =a; — az — a}

WhereE:E1UE2UE3UE4UE5U{7157'2,7'1 57'370457'4,0457'5}.

Exa m ple ma p (2) al Hochschule RheinMain

AXV) —————————
(a) (X)Fl—xs::ag,@

I.e. T1 = Q2 and E1 = @

AXC) —————————
ax)FI—Nil:: [as], 0

l.e. 2 =[as] and E2 =0

(b)

(AxC (AxV)

)
T’ F Cons :: as — [as] — [ae] 'y as,0
(RAPP) ; B (AXV) 77—
I'" F (Cons y) :: ar, {ag — 6] — (6] = s — a7} T'Fys:ag,l
(RAPP) - -
(C) '+ (Cons y ys) :: ag, {as — [as] — [a6] = a3 — a7, a7 = 4 — o}

l.e. 73 = as and B3 = {as — [ag] — [as] = a3 = ar,ar = au — as}

AxC) —————————————
x)FI—Nil:: [ao], @

l.e. 74 = [aw] and E4 = 0.

(d)

Example: map (3) y

(e)

(AxV) (AxV) (AxSC2) (AXV)

T'F [0, IFy:aszd T’ F map :: 3,0 , 'k foan,0,
(AXC) = (RAPP) — (RAPP)— - (AXV) =
")F I Coms :: a10 — [a10] = [a10],0 ' (fy) = ais, {ar = as — ais}) I'F (map f) a2, {8 =01 = a12} , T'Fys:ag,d
A - - Arp - -
I I (Cons (f y)) : cu1, {0 — [e10] = [ov10] = 15 = a1, a1 = as — ais} '+ (map f ys) oz, {B = a1 — cuz, 002 = au — oz}

(RAPP)

I I (Cons (f y) (map f ys)) :: o4,
{0111 = a1z — Q14,0010 — [Otlu] — [(‘110] = a5 — 11, Q1 = a3 — a5, 3 = — 12, 12 =y — 0113}

l.e. T5 — (14 and
Es = {a11 = 13 — 14, X190 — [Oélo] — [0410] = Q15 — 11, X1 = 3 — 15,

B8 =a; — Q12,0012 =y — a13}

Exa m ple ma p (4‘) al Hochschule RheinMain

Unifiy equations EU {8 = a1 — az — a}:

{ae — [a6] = [ae] = a3 — ar, a7 = au — as, @11 = Q13 — Q4,
@10 — [alo] — [am] = a5 — a1, 1 = az — ais, B =a; — 12,
a12 = a4 — 13, Q2 = [CM5],Q2 = ag, = Qg, = Qa14,

B=a1 = as— a}

Unification results in

o ={awmr [ai], a1 = as = 1o, a2 — [ag], a3 — as, o — [as], as — ag,
o7 [ae] — [ae],ag = [Cze],ag = [alo],au = [Ollo] — [alo],
Q12 — [Otﬁ} — [a10]7a13 = [alo],oé14 — [0610],0415 — (1o,
ﬁ — (Oéﬁ — alo) — [Otﬁ] — [Oélo},

l.e. map :: o(a1 = a2 = a) = (ag — a@10) — [as] = [@10].

Examples Known from lterative Typing *Hoohschule RheinMain

gx=x: (g (g ’c’))

Iterative typing results in Fail (after multiple iterations)
Hindley-Damas-Milner: I' = {Cons :: Va.a — [a] — [a], >c”’ :: Char}.
LetI" =T U{x: a,g: [}

(AXSC2

AxC

)FFg::BJZ) 7(‘T :: Char, () ,
(AXC) (AXV) (AXSC2) (RAPP) N
It Cons :: a5 — [as] — [as],0 , 'tz 'tg:p,0, I't (g ’c?)::ar, {# =Char — ar}
(RAPP) - (RAPP) - -
'k (Cons z) :: az, a5 — [as] = [as] = — a3, 't (g(g’c?)):aq,{B =Char — a7, = a7 — a4}
(Ravr) - - - ;
'k Cons z (g (g ’c?)) :: ag, {8 = Char — a7, 8 = a7 = aqas — [as] = [as] = a = a3, a3 = ag — ao}
(MSCREC)

Fbpg:ola— az)
where ¢ is the solution of
{B =Char = a7, =ar = as, a5 = [as] = [as] =a = az,a3 = ag = a2, 8 =@ — as}
Unification fails, since Char should be made equal to a list. Thus, g ist not
Hindley-Damas-Milner-typeable.

Examples Known from lIterative Typing (2) *Hoohschule RheinMain

gx=1: (g (g ’c”))

Iterative type: g :: Va.ao — [Int]
Hindley-Damas-Milner: Let IV =T U {z :: o, g :: 8}.

AXSC2 AxC
()F#g::ﬁ,@,()F#’c’::Char,@,
(AXC) (AXC) (AxSC2) (RAPP) N
'k Cons :: a5 — [as] — [as],0 'F1:Int,0 F'tg:p,0, 't (g’c?): a7, {8 =Char — ar}
(RAPP) - (RAPP) - -
'k (Coms 1) :: a3, a5 — [as] — [as] = Int — a3 't (g(g’c?)):aq{B =Char — a7, 8 = a7 — as}
(RAPP) N " " N
I'kCons 1 (g (g ’c?))::ag,{f =Char — a7, = a7 — a4, a5 — [as] — [as] = Int — a3,a3 = ag — a2}
(SCREC)

Phrg:o(a— a)
where ¢ is the solution of
{B = Char = a7, = a7 = as, a5 — [as] = [as] = Int = ag,a3 = ag — a9, B = — as}

Unification fails since [a5] = Char should be unified.

Iterative Typing May Return More General Types *Hmhschule RheinMain

data Tree a = Empty | Node a (Tree a) (Tree a)

Types of the constructors
Empty :: Va. Tree a and
Node :: Va. a — Tree a — Tree a — Tree a

g x y = Node True (g x y) (g y x)

Hindley-Damas-Milner: g :: a — a — Tree Bool
Iterative Typing:: g:: a — b — Tree Bool

Reason:

Iterative typing uses copies of the type of g,

Hindley-Damas-Milner Typing and Type Safety *Hoohschule RheinMain

@ Hindley-Damas-Milner typed programs are always iteratively typeable
@ Hence Hindley-Damas-Milner typed programs are never dynamically untyped

@ Also the progress lemma holds: Hindley-Damas-Milner typed (closed) programs
are WHNFs or reducible

Hindley-Damas-Milner Typing and Type Safety (2) *Hochschule RheinMain

@ Type-Preservation: Does hold in KFPTSP+seq, but not in Hskell:

let x = (let y = \u -> z in (y [], y True, seq x True))
z = const z x

in x

is Hindley-Damas-Milner typeable

After a so-called (llet)-reduction:
let x = (y [0, y True, seq x True)
y=\u->z
z = const z X

in x
This expression is not Hindley-Damas-Milner-typeable (but iteratively)

@ Reason: After the reduction x,y,z have to be typed together, before they can be
typed separately

Conclusion: Type Safety *Hoohschule RheinMain

Not a real problem, since
@ Type-Preservation holds for the iterative typing.
o well-typed programs are dynamically typed
o Hindley-Damas-Milner-typeable implies iterative typeable
@ reduction preserve the iterative type

	Motivation
	Types: Notations and Unification
	Typing of KFPTS+seq-Expressions
	Typing Supercombinators

