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Motivation and Outline

Why should we care about type inference?

Type inference algorithms for KFPTS+seq
for parametric polymorphic types

Typing recursive supercombinators

Iterative type inference

Hindley-Damas-Milner type inference
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Motivation

Why should we use a type system?

for untyped programs, dynamic type errors can occur

runtime errors are programming errors

strong and static typing no type errors during runtime

types as documentation

types usually lead to a better program structure

types as specification in the design phase
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Motivation (Cont’d)

Minimal requirements:

typing should be decided during compile time

well-typed programs have no type errors during runtime

Desirable properties

the type system does not restrict the programmer

the compiler can compute types = type inference
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Motivation (Cont’d)

Not all type systems satisfy all the properties:

Simply typed lambda calculus:
typed language is no longer Turing-complete, since all well-typed programs
converge

Type system extensions in Haskell:
typing / type inference is undecidable
in some cases the compiler does not terminate!
requires effort / precaution of the programmer
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Naive Approach

Naive definition:

A KFPTSP+seq-program is well-typed, if it cannot lead to a dynamic type
error during runtime.

But, this does not work well, since:

Dynamic typing in KFPTS+seq is undecidable!
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Undecidability of Dynamic Typing

Let tmEncode be a KFPTS+seq-supercombinator that simulates a universal Turing
machine:

Input: an encoding of a Turing machine M and an input w

Output: True, if the TM M halts on w

tmEncode is programmable:

in the lecture notes, there is a Haskell-program that performs this simulation

the program is not dynamically untyped (since it is Haskell-typeable)

thus we can assume tmEncode exists in KFPTS+seq and it is not dynamically
untyped
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Undecidability of Dynamic Typing (Cont’d)

For TM encoding enc and input inp, let the expression s be defined as

s := if tmEncode enc inp
then caseBool Nil of {True → True; False → False}
else caseBool Nil of {True → True; False → False}

Then the following holds:

s is dynamically untyped ⇐⇒ the evaluation of (tmEncode enc inp) ends with True

This shows:

if we can decide whether s is dynamically untyped, then we can decide the halting problem

Thus:

Proposition

The dynamic typing of KFPTS+seq-programs is undecidable.
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Types

Syntax of polymorphic Types:

T ::= TV | TC T1 . . . Tn | T1 → T2

where TV is a type variable, TC type constructor

A base type is a type of the form TC, where TC is of arity 0.

A monomorphic type is a type without type variables

Examples

Int, Bool and Char are base types.

[Int] und Char → Int are monomorphic types, but no base types,

[a] und a → a are neither base nor monomorphic types (but polymorphic types)
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Quantified Types

For polymorphic types, we use the universal quantifier::

If τ is a polymorphic type with occurrences of type variables α1, . . . , αn, then
∀α1, . . . , αn.τ is the universally quantified type for τ

Since the order is irrelevant, we also use ∀X .τ where X is a set of type variables

Later:

universally quantified types can be copied and renamed, while types without
quantifiers cannot be renamed
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Type Substitutions

Type substitution = a mapping {α1 7→ τ1, . . . , αn 7→ τn} of a finite set of type
variables to types.

Written as σ = {α1 7→ τ1, . . . , αn 7→ τn}.

Formally, extension to types: σE mapping from types to types

σE(TV ) := σ(TV ), if σ maps TV
σE(TV ) := TV, if σ does not map TV

σE(TC T1 . . . Tn) := TC σE(T1) . . . σE(Tn)
σE(T1 → T2) := σE(T1) → σE(T2)

In the following, we do not distinguish between σ and its extension σE!
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Semantics of Polymorphic Types

Semantics

Type substitution σ is ground for a type τ iff

σ(X) is a monomorphic type for all X mapped by σ

σ(X) is defined for all X ∈ Vars(τ)

Semantics of type τ :

sem(τ) := {σ(τ) | σ is a ground substitution for τ}

This corresponds to the intuition of schematic types:

a polymorphic type describes the schema of a set of monomorphic types

D. Sabel | PLF – 05 Polymorphic Type Inference | WS 2024/25 13/109 Motivation Unification Expressions Supercombinators



Typing Rules

Rule for Application:
s :: T1 → T2, t :: T1

(s t) :: T2

Problem: Guess the right instance, e.g.

map :: (a -> b) -> [a] -> [b]

not :: Bool -> Bool

Typing of map not:

Before applying the rule, the type of map must be instantiated:

σ = {a 7→ Bool, b 7→ Bool}

Instead of guessing σ, σ can be computed: Using Unification
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Unification

Definition

A unification problem on types is a set E of equations of the form τ1
·
= τ2 where

τ1 and τ2 are polymorphic types.

A solution to a unification problem on types is a substitution σ (called unifier),

such that σ(τ1) = σ(τ2) for all equations τ1
·
= τ2 of E.

A most general solution (most general unifier, mgu) of E is a unifier σ such that
for every unifier ρ of E there is a substitution γ such that ρ(x) = γ ◦ σ(x) for all
x ∈ Vars(E).
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Unification Algorithm

data structure: E = multiset of equations

let E ∪ E′ be the disjoint union of multisets

E[τ/α] is defined as {s[τ/α] ·
= t[τ/α] | (s ·

= t) ∈ E}.

Algorithm: Apply the following inference rules until

a fail occurs, or

no more rule is applicable
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Unification Algorithm: Inference Rules

Fail-rules:

Fail1
E ∪ {(TC1 τ1 . . . τn)

·
= (TC2 τ ′1 . . . τ ′m)}

Fail
if TC1 ̸= TC2

Fail2
E ∪ {(TC1 τ1 . . . τn)

·
= (τ ′1 → τ ′2)}

Fail

Fail3
E ∪ {(τ ′1 → τ ′2)

·
= (TC1 τ1 . . . τn)}
Fail
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Unification Algorithm: Inference Rules (2)

Decomposition:

Decompose1
E ∪ {TC τ1 . . . τn

·
= TC τ ′1 . . . τ ′n}

E ∪ {τ1
·
= τ ′1, . . . , τn

·
= τ ′n}

Decompose2
E ∪ {τ1 → τ2

·
= τ ′1 → τ ′2}

E ∪ {τ1
·
= τ ′1, τ2

·
= τ ′2}
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Unification Algorithm: Inference Rules (3)

Orientation and Elimination:

Orient
E ∪ {τ1

·
= α}

E ∪ {α ·
= τ1}

if τ1 is not a type variable and α is a type variable

Elim
E ∪ {α ·

= α}
E

where α is a type variable
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Unification Algorithm: Inference Rules (4)

Solve and Occurs-Check

Solve
E ∪ {α ·

= τ}
E[τ/α] ∪ {α ·

= τ}
if type variable α does not occur in τ ,

but α occurs in E

OccursCheck
E ∪ {α ·

= τ}
Fail

if τ ̸= α and type variable α occurs in τ
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Examples

Example 1: {(a → b)
·
= Bool → Bool}:

Decompose2
{(a → b)

·
= Bool → Bool}

{a ·
= Bool, b

·
= Bool}

The unifier is {a 7→ Bool, b 7→ Bool}
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Examples

Example 2: {[d] ·
= c, a → [a]

·
= Bool → c}:

{[d] ·
= c, a → [a]

·
= Bool → c}
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Examples

Example 3: {a ·
= [b], b

·
= [a]}

OccursCheck

Solve
{a ·

= [b], b
·
= [a]}

{a ·
= [[a]], b

·
= [a]}

Fail

Example 4: {a → [b]
·
= a → c → d}

Fail2

Elim

Decompose2
{a → [b]

·
= a → c → d}

{a ·
= a, [b]

·
= c → d}

{[b] ·
= c → d}
Fail
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Properties of the Unification Algorithm

The algorithm stops with Fail iff the input has no unifier

The algorithm stops successfully if the input has a unifier
The equation system E then is of the form {α1

·
= τ1, . . . , αn

·
= τn}, where αi are

pairwise distinct and αi does not occur in any τj .
The unifier is σ = {α1 7→ τ1, . . . , αn 7→ τn}.

if the algorithm returns a unifier, then it is a most general unifier

The order of rule application is irrelevant, no branching is necessary.
The algorithm can be implemented in a deterministic way.

The algorithm terminates for every unification problem
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Properties of the Unification Algorithm (Cont’d)

Types in the result can be of exponential size

E.g. {αn
·
= αn−1 → αn−1, αn−1

·
= αn−2 → αn−2, . . . α1

·
= α0 → α0}

The unifier maps αi to a type that contains 2i − 1 type arrows. E.g.
σ(α1) = α0 → α0,
σ(α2) = (α0 → α0) → (α0 → α0),
σ(α3) = ((α0 → α0) → (α0 → α0)) → ((α0 → α0) → (α0 → α0))

Using sharing and an adapted Solve-rule, the unification algorithm can be
implemented such that the runtime is O(n log n)
The shared representation of the result types is O(n).

The unification problem is P-complete. I.e.
All PTIME-problems can be presented as unification problem
Unification is not efficiently parallelizable.
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Sketch of the Termination Proof

Let E be a unification problem and

Var(E) = number of unsolved type variables in E
a variable α is solved iff it occurs once in E as the left hand side of an equation
(i.e. E = E′ ∪ {α ·

= τ} where α ̸∈ Vars(E′) ∪Vars(τ)).

Size(E) = sum of all sizes of types on right-hand and left sides of equations in E
the size of a type is tsize defined as: tsize(TV ) = 1,
tsize(TC T1 . . . Tn) = 1 +

∑n
i=1 tsize(Ti) and

tsize(T1 → T2) = 1 + tsize(T1) + tsize(T2)

OEq(E) = number of not oriented equations in E

an equation is oriented, if it is of the form α
·
= τ where α is a type variable.

M (E) = (Var(E),Size(E),OEq(E)), where M(Fail) := (−1,−1,−1).
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Sketch of the Termination Proof (Cont’d)

Change of the measure per rule
Var(E) Size(E) OEq(E)

Fail-rules < < <
OccursCheck < < <
Decompose ≤ <
Orient ≤ = <
Elim ≤ <
Solve <

Thus: for each rule
E

E′ we have M(E′) <lex M(E), where <lex is the lexicographic

order on triples.
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Typing

We now consider the

polymorphic typing of KFPTS+seq-expressions

For now, we ignore the typing of supercombinators
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Rule for Application with Unification

s :: τ1, t :: τ2

(s t) :: σ(α)

if σ is an mgu for τ1
·
= τ2 → α and α is a fresh type variable

Example:

map :: (a → b) → [a] → [b], not :: Bool → Bool

(map not) :: σ(α)

if σ is an mgu for (a → b) → [a] → [b]
·
= (Bool → Bool) → α

and α is a fresh type variable

Unification results in {a 7→ Bool, b 7→ Bool, α 7→ [Bool] → [Bool]}

Thus: σ(α) = [Bool] → [Bool]
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Typing with Binders

How to type an abstraction λx.s?

Type the body s

Let s :: τ

Then λx.s has a function type τ1 → τ

How corresponds τ1 with τ?

τ1 is the type of x

If x occurs in s, then we need τ1 for typing τ !
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Typing with Binders (Cont’d)

Informal rule for abstractions:

Typing s with assumption “x is of type τ1” results in s :: τ

λx.s :: τ1 → τ

How do we get τ1?

Start with the most general type for x, and restrict it by the type inference

Example:

λx.(x True)

Typing (x True) starts with x :: α

Since x is applied, the typing has to result in α = Bool → α′

Type of the abstraction: λx.(x True) :: (Bool → α′) → α′.
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Typing of Expressions

Typing judgement:

Γ ⊢ s :: τ, E
Meaning:

Given a set Γ of type assumptions, for expression s the type τ and the type
equations E can be derived

Γ contains type assumptions for constructors, supercombinators, and variables

In E type equations are collected, they will be unified later
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Typing of Expressions (Cont’d)

Type derivation rules are written as

Premise(s)

Conclusion

or more concrete:

Γ1 ⊢ s1 :: τ1, E1 . . . Γk ⊢ sk :: τk, Ek

Γ ⊢ s :: τ, E
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Typing of Expressions (Cont’d)

As a simplification:

for typing constructor applications (c s1 . . . sn) they are treated
like nested applications (((c s1) . . .) sn))
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Typing Rules for KFPTS+seq-Expressions (1)

Axiom for variables:

(AxV)
Γ ∪ {x :: τ} ⊢ x :: τ, ∅

Axiom for constructors:

(AxC)
Γ ∪ {c :: ∀α1 . . . αn.τ} ⊢ c :: τ [β1/α1, . . . , βn/αn], ∅

where βi are fresh type variables

Note that each time a freshly renamed copy of the type is used!
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Typing Rules for KFPTS+seq-Expressions (2)

Axiom for supercombinators (with already know type):

(AxSC)
Γ ∪ {SC :: ∀α1 . . . αn.τ} ⊢ SC :: τ [β1/α1, . . . , βn/αn], ∅

where βi are fresh type variables

Note that each time a freshly renamed copy of the type is used!
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Typing Rules for KFPTS+seq-Expressions (3)

Rule for applications:

(RApp)
Γ ⊢ s :: τ1, E1 und Γ ⊢ t :: τ2, E2

Γ ⊢ (s t) :: α,E1 ∪ E2 ∪ {τ1
·
= τ2 → α}

where α is a fresh type variable

Rule for seq:

(RSeq)
Γ ⊢ s :: τ1, E1 und Γ ⊢ t :: τ2, E2

Γ ⊢ (seq s t) :: τ2, E1 ∪ E2
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Γ ⊢ s :: τ1, E1 und Γ ⊢ t :: τ2, E2

Γ ⊢ (s t) :: α,E1 ∪ E2 ∪ {τ1
·
= τ2 → α}

where α is a fresh type variable

Rule for seq:

(RSeq)
Γ ⊢ s :: τ1, E1 und Γ ⊢ t :: τ2, E2

Γ ⊢ (seq s t) :: τ2, E1 ∪ E2
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Typing Rules for KFPTS+seq-Expressions (4)

Rule for abstractions:

(RAbs)
Γ ∪ {x :: α} ⊢ s :: τ, E

Γ ⊢ λx.s :: α → τ, E
where α is a fresh type variable
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Typing Rules for KFPTS+seq-Expressions (5)

Typing of case: ideas


caseT s of {

(c1 x1,1 . . . x1,ar(c1)) → t1;

. . . ;
(cm xm,1 . . . xm,ar(cm)) → tm}


The patterns and the expression s are of the same type.
This type matches the type index T of caseT (due to the patterns )

The expressions t1, . . . , tn are of the same type.
This type is the type of the case-expression
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Typing Rules for KFPTS+seq-Expressions (5)

Rule for case:

(RCase)

Γ ⊢ s :: τ, E
for i = 1, . . . ,m: Γ ∪ {xi,1 :: αi,1, . . . , xi,ar(ci) :: αi,ar(ci)} ⊢ (ci xi,1 . . . xi,ar(ci)) :: τi, Ei

for i = 1, . . . ,m: Γ ∪ {xi,1 :: αi,1, . . . , xi,ar(ci) :: αi,ar(ci)} ⊢ ti :: τ
′
i , E

′
i

Γ ⊢


caseT s of {

(c1 x1,1 . . . x1,ar(c1)) → t1;

. . . ;
(cm xm,1 . . . xm,ar(cm)) → tm}

 :: α,E′

where E′ = E ∪
m⋃
i=1

Ei ∪
m⋃
i=1

E′
i ∪

m⋃
i=1

{τ ·
= τi} ∪

m⋃
i=1

{α ·
= τ ′i}

and αi,j , α are fresh type variables
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Case-Rule for Bool

(RCase)

Γ ⊢ s :: τ, E Γ ⊢ True :: τ1, E1 Γ ⊢ False :: τ2, E2 Γ ⊢ t1 :: τ
′
1, E

′
1 Γ ⊢ t2 :: τ

′
2, E

′
2

Γ ⊢ (caseBool s of {True → t1; False → t2}) :: α,E′

where E′ = E ∪ E1 ∪ E2 ∪ E′
1 ∪ E′

2 ∪ {τ ·
= τ1, τ

·
= τ2} ∪ {α ·

= τ ′1, α
·
= τ ′2}

and αi,j , α are fresh type variables
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Case-Rule for Lists

(RCase)

Γ ⊢ s :: τ, E
Γ ⊢ Nil :: τ1, E1

Γ ∪ {x1 :: α1, x2 :: α2} ⊢ Cons x1 x2 :: τ2, E2

Γ ⊢ t1 :: τ
′
1, E

′
1

Γ ∪ {x1 :: α1, x2 :: α2} ⊢ t2 :: τ
′
2, E

′
2

Γ ⊢ (caseList s of {Nil → t1; (Cons x1 x2) → t2}) :: α,E′

where E′ = E ∪ E1 ∪ E2 ∪ E′
1 ∪ E′

2 ∪ {τ ·
= τ1, τ

·
= τ2} ∪ {α ·

= τ ′1, α
·
= τ ′2}

and αi,j , α are fresh type variables
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Algorithm: Type Inference of KFPTS+seq-Expressions

Let s be a closed KFPTS+seq-expression, where the types of all supercombinators and
all constructors occurring in s are known

1 Start with assumption Γ containing the types of the constructors and
supercombinators

2 Derive Γ ⊢ s :: τ, E using the typing rules

3 Solve E with unification

4 If unification ends with Fail, then s is not typeable; otherwise let σ be an mgu of
E. Then the type of s is s :: σ(τ).
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Optimization

Additional rule to unify inbetween:

(RUnif)
Γ ⊢ s :: τ, E

Γ ⊢ s :: σ(τ), Eσ

where Eσ is the solved equation system of E and σ is the corresponding unifier
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Well-Typedness

Definition

A KFPTSP+seq-expression s is well-typed iff it can be typed by given algorithm.
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Example: Typing of (Cons True Nil)

Start with:
Type assumption: Γ0 = {Cons :: ∀a.a → [a] → [a], Nil :: ∀a.[a], True :: Bool}

(RApp)

Γ0 ⊢ (Cons True) :: τ1, E1, Γ0 ⊢ Nil :: τ2, E2

Γ0 ⊢ (Cons True Nil) :: α4, E1 ∪ E2 ∪ {τ1
·
= τ2 → α4}

Solve {α1 → [α1] → [α1]
·
= Bool → α2, α2

·
= [α3] → α4} with unification

Results in: σ = {α1 7→ Bool, α2 7→ ([Bool] → [Bool]), α3 7→ Bool, α4 7→ [Bool]}

Thus (Cons True Nil) :: σ(α4) = [Bool]
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Example: Typing of (Cons True Nil)

Start with:
Type assumption: Γ0 = {Cons :: ∀a.a → [a] → [a], Nil :: ∀a.[a], True :: Bool}

(RApp)

Γ0 ⊢ (Cons True) :: τ1, E1,
(AxC)

Γ0 ⊢ Nil :: [α3], ∅
Γ0 ⊢ (Cons True Nil) :: α4, E1 ∪ ∅ ∪ {τ1

·
= [α3] → α4}

Solve {α1 → [α1] → [α1]
·
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·
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Example: Typing of (Cons True Nil)

Start with:
Type assumption: Γ0 = {Cons :: ∀a.a → [a] → [a], Nil :: ∀a.[a], True :: Bool}
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Example: Typing of (Cons True Nil)

Start with:
Type assumption: Γ0 = {Cons :: ∀a.a → [a] → [a], Nil :: ∀a.[a], True :: Bool}
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Example: Typing of (Cons True Nil)

Start with:
Type assumption: Γ0 = {Cons :: ∀a.a → [a] → [a], Nil :: ∀a.[a], True :: Bool}
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Example: Typing of (Cons True Nil)

Start with:
Type assumption: Γ0 = {Cons :: ∀a.a → [a] → [a], Nil :: ∀a.[a], True :: Bool}
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Example: Typing of (Cons True Nil)

Start with:
Type assumption: Γ0 = {Cons :: ∀a.a → [a] → [a], Nil :: ∀a.[a], True :: Bool}

(RApp)

(RApp)

(AxC)

Γ0 ⊢ Cons :: α1 → [α1] → [α1], ∅ ,
(AxC)

Γ0 ⊢ True :: Bool, ∅
Γ0 ⊢ (Cons True) :: α2, {α1 → [α1] → [α1]

·
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Γ0 ⊢ Nil :: [α3], ∅
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·
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·
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Solve {α1 → [α1] → [α1]
·
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Results in: σ = {α1 7→ Bool, α2 7→ ([Bool] → [Bool]), α3 7→ Bool, α4 7→ [Bool]}
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Example: Typing of (Cons True Nil)

Start with:
Type assumption: Γ0 = {Cons :: ∀a.a → [a] → [a], Nil :: ∀a.[a], True :: Bool}

(RApp)

(RApp)

(AxC)

Γ0 ⊢ Cons :: α1 → [α1] → [α1], ∅ ,
(AxC)

Γ0 ⊢ True :: Bool, ∅
Γ0 ⊢ (Cons True) :: α2, {α1 → [α1] → [α1]

·
= Bool → α2} ,

(AxC)

Γ0 ⊢ Nil :: [α3], ∅
Γ0 ⊢ (Cons True Nil) :: α4, {α1 → [α1] → [α1]

·
= Bool → α2, α2

·
= [α3] → α4}

Solve {α1 → [α1] → [α1]
·
= Bool → α2, α2

·
= [α3] → α4} with unification

Results in: σ = {α1 7→ Bool, α2 7→ ([Bool] → [Bool]), α3 7→ Bool, α4 7→ [Bool]}

Thus (Cons True Nil) :: σ(α4) = [Bool]
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Example: Typing of (Cons True Nil)

Start with:
Type assumption: Γ0 = {Cons :: ∀a.a → [a] → [a], Nil :: ∀a.[a], True :: Bool}

(RApp)

(RApp)

(AxC)

Γ0 ⊢ Cons :: α1 → [α1] → [α1], ∅ ,
(AxC)

Γ0 ⊢ True :: Bool, ∅
Γ0 ⊢ (Cons True) :: α2, {α1 → [α1] → [α1]

·
= Bool → α2} ,

(AxC)

Γ0 ⊢ Nil :: [α3], ∅
Γ0 ⊢ (Cons True Nil) :: α4, {α1 → [α1] → [α1]

·
= Bool → α2, α2

·
= [α3] → α4}

Solve {α1 → [α1] → [α1]
·
= Bool → α2, α2

·
= [α3] → α4} with unification

Results in: σ = {α1 7→ Bool, α2 7→ ([Bool] → [Bool]), α3 7→ Bool, α4 7→ [Bool]}

Thus (Cons True Nil) :: σ(α4) = [Bool]
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Example: Typing λx.x

Start with: Type assumption: Γ0 = ∅

(RAbs)

Γ0 ∪ {x :: α} ⊢ x :: τ, E

Γ0 ⊢ (λx.x) :: α → τ, E

Nothing to unify, thus (λx.x) :: α → α
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Example: Typing λx.x

Start with: Type assumption: Γ0 = ∅

(RAbs)

(AxV)

Γ0 ∪ {x :: α} ⊢ x :: α, ∅
Γ0 ⊢ (λx.x) :: α → α, ∅

Nothing to unify, thus (λx.x) :: α → α

D. Sabel | PLF – 05 Polymorphic Type Inference | WS 2024/25 48/109 Motivation Unification Expressions Supercombinators



Example: Typing λx.x

Start with: Type assumption: Γ0 = ∅

(RAbs)

(AxV)

Γ0 ∪ {x :: α} ⊢ x :: α, ∅
Γ0 ⊢ (λx.x) :: α → α, ∅

Nothing to unify, thus (λx.x) :: α → α
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Example: Typing of Ω

Typing of (λx.(x x)) (λy.(y y))

Start with: Type assumption: Γ0 = ∅

(RApp)

∅ ⊢ (λx.(x x)) :: τ1, E1, ∅ ⊢ (λy.(y y)) :: τ2, E2

∅ ⊢ (λx.(x x)) (λy.(y y)) :: α1, E1 ∪ E2 ∪ {τ1
·
= τ2 → α1}

Inspecting the equations shows:
Unification fails, since: α2

·
= α2 → α3

Thus: (λx.(x x)) (λy.(y y)) is not typeable!

Note: (λx.(x x)) (λy.(y y)) is not dynamically untyped but not well-typed
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Example: Typing of Ω

Typing of (λx.(x x)) (λy.(y y))

Start with: Type assumption: Γ0 = ∅

(RApp)

(RAbs)

{x :: α2} ⊢ (x x) :: τ1, E1

∅ ⊢ (λx.(x x)) :: α2 → τ1, E1 , ∅ ⊢ (λy.(y y)) :: τ2, E2
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Example: Typing of Ω

Typing of (λx.(x x)) (λy.(y y))

Start with: Type assumption: Γ0 = ∅

(RApp)

(RAbs)

(RApp)

{x :: α2} ⊢ x :: τ3, E3, {x :: α2} ⊢ x :: τ4, E4,

{x :: α2} ⊢ (x x) :: α3, {τ3
·
= τ4 → α3} ∪ E3 ∪ E4

∅ ⊢ (λx.(x x)) :: α2 → α3, {τ3
·
= τ4 → α3} ∪ E3 ∪ E4 , ∅ ⊢ (λy.(y y)) :: τ2, E2

∅ ⊢ (λx.(x x)) (λy.(y y)) :: α1, {τ3
·
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·
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·
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Example: Typing of Ω

Typing of (λx.(x x)) (λy.(y y))

Start with: Type assumption: Γ0 = ∅

(RApp)

(RAbs)

(RApp)

(AxV)

{x :: α2} ⊢ x :: α2, ∅ , {x :: α2} ⊢ x :: τ4, E4,
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·
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·
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Note: (λx.(x x)) (λy.(y y)) is not dynamically untyped but not well-typed
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Example: Typing of Ω

Typing of (λx.(x x)) (λy.(y y))
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Example: Typing of Ω

Typing of (λx.(x x)) (λy.(y y))

Start with: Type assumption: Γ0 = ∅
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(RAbs)

(RApp)
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{x :: α2} ⊢ (x x) :: α3, {α2
·
= α2 → α3}
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·
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. . .
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·
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Example: Typing of Ω

Typing of (λx.(x x)) (λy.(y y))

Start with: Type assumption: Γ0 = ∅

(RApp)

(RAbs)

(RApp)
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·
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·
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∅ ⊢ (λx.(x x)) (λy.(y y)) :: α1, {α2
·
= α2 → α3} ∪ E2 ∪ {α3

·
= τ2 → α1}

Inspecting the equations shows:
Unification fails, since: α2

·
= α2 → α3

Thus: (λx.(x x)) (λy.(y y)) is not typeable!

Note: (λx.(x x)) (λy.(y y)) is not dynamically untyped but not well-typed
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Example: Expression with Supercombinators (1)

Assumption: map and length are already typed.
We type:

t := λxs.caseList xs of {Nil → Nil; (Cons y ys) → map length ys}

We use the start assumption:

Γ0 = {map :: ∀a, b.(a → b) → [a] → [b],
length :: ∀a.[a] → Int,
Nil :: ∀a.[a]
Cons :: ∀a.a → [a] → [a]
}
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Example: Expression with Supercombinators (2)

Derivation tree:

(RAbs)

(RCase)

(AxV)
B3 ,

(AxC)
B4 ,

(RApp)

(RApp)

(AxC)
B8 ,

(AxV)
B9

B6 ,
(AxV)

B7

B5 ,
(AxC)

B10 ,
(RApp)

(RApp)

(AxSC)
B14 ,

(AxSC)
B15

B12 ,
(AxV)

B13

B11

B2

B1

Labels: B1 = Γ0 ⊢ t :: α1 → α13,

{α5 → [α5] → [α5]
·
= α3 → α6, α6

·
= α4 → α7,

(α8 → α9) → [α8] → [α9]
·
= ([α10] → Int) → α11, α11

·
= α4 → α12,

α1
·
= [α2], α1 = α7, α13

·
= [α14], α13 = α12, }

B2 = Γ0 ∪ {xs :: α1} ⊢
caseList xs of {Nil → Nil; (Cons y ys) → map length ys} :: α13,

{α5 → [α5] → [α5]
·
= α3 → α6, α6

·
= α4 → α7,

(α8 → α9) → [α8] → [α9]
·
= ([α10] → Int) → α11, α11

·
= α4 → α12,

α1
·
= [α2], α1 = α7, α13

·
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Example: Expression with Supercombinators (3)

(RAbs)

(RCase)

(AxV)
B3 ,

(AxC)
B4 ,

(RApp)

(RApp)

(AxC)
B8 ,

(AxV)
B9

B6 ,
(AxV)

B7

B5 ,
(AxC)

B10 ,
(RApp)

(RApp)

(AxSC)
B14 ,

(AxSC)
B15

B12 ,
(AxV)

B13

B11

B2

B1

Labels: B3 = Γ0 ∪ {xs :: α1} ⊢ xs :: α1, ∅
B4 = Γ0 ∪ {xs :: α1} ⊢ Nil :: [α2], ∅
B5 = Γ0 ∪ {xs :: α1, y :: α3, ys :: α4} ⊢ (Cons y ys) :: α7,

{α5 → [α5] → [α5]
·
= α3 → α6, α6

·
= α4 → α7}

B6 = Γ0 ∪ {xs :: α1, y :: α3, ys :: α4} ⊢ (Cons y) :: α6,

{α5 → [α5] → [α5]
·
= α3 → α6}

B7 = Γ0 ∪ {xs :: α1, y :: α3, ys :: α4} ⊢ ys :: α4, ∅
B8 = Γ0 ∪ {xs :: α1, y :: α3, ys :: α4} ⊢ Cons :: α5 → [α5] → [α5], ∅
B9 = Γ0 ∪ {xs :: α1, y :: α3, ys :: α4} ⊢ y :: α3, ∅
B10 = Γ0 ∪ {xs :: α1} ⊢ Nil :: [α14], ∅

D. Sabel | PLF – 05 Polymorphic Type Inference | WS 2024/25 52/109 Motivation Unification Expressions Supercombinators



Example: Expression with Supercombinators (4)

(RAbs)

(RCase)

(AxV)
B3 ,

(AxC)
B4 ,

(RApp)

(RApp)

(AxC)
B8 ,

(AxV)
B9

B6 ,
(AxV)

B7

B5 ,
(AxC)

B10 ,
(RApp)

(RApp)

(AxSC)
B14 ,

(AxSC)
B15

B12 ,
(AxV)

B13

B11

B2

B1

Labels: B11 = Γ0 ∪ {xs :: α1, y :: α3, ys :: α4} ⊢ (map length) ys :: α12,

{(α8 → α9) → [α8] → [α9]
·
= ([α10] → Int) → α11, α11

·
= α4 → α12}

B12 = Γ0 ∪ {xs :: α1, y :: α3, ys :: α4} ⊢ (map length) :: α11,

{(α8 → α9) → [α8] → [α9]
·
= ([α10] → Int) → α11}

B13 = Γ0 ∪ {xs :: α1, y :: α3, ys :: α4} ⊢ ys :: α4, ∅
B14 = Γ0 ∪ {xs :: α1, y :: α3, ys :: α4} ⊢ map :: (α8 → α9) → [α8] → [α9], ∅
B15 = Γ0 ∪ {xs :: α1, y :: α3, ys :: α4} ⊢ length :: [α10] → Int, ∅
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Example: Expression with Supercombinators (5)

Labels:

B1 = Γ0 ⊢ t :: α1 → α13,

{α5 → [α5] → [α5]
·
= α3 → α6, α6

·
= α4 → α7,

(α8 → α9) → [α8] → [α9]
·
= ([α10] → Int) → α11, α11

·
= α4 → α12,

α1
·
= [α2], α1 = α7, α13

·
= [α14], α13 = α12, }

Solve using unification:

{α5 → [α5] → [α5]
·
= α3 → α6, α6

·
= α4 → α7,

(α8 → α9) → [α8] → [α9]
·
= ([α10] → Int) → α11, α11

·
= α4 → α12,

α1
·
= [α2], α1 = α7, α13

·
= [α14], α13 = α12}

Results in:
σ = {α1 7→ [[α10]], α2 7→ [α10], α3 7→ [α10], α4 7→ [[α10]], α5 7→ [α10],

α6 7→ [[α10]] → [[α10]], α7 7→ [[α10]], α8 7→ [α10], α9 7→ Int,
α11 7→ [[α10]] → [Int], α12 7→ [Int], α13 7→ [Int], α14 7→ Int}

Thus t :: σ(α1 → α13) = [[α10]] → [Int].
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Example: Typing of Lambda-Bound Variables (1)

const is defined as

const :: a -> b -> a

const x y = x

Typing of λx.const (x True) (x ’A’)

Type assumption:
Γ0 = {const :: ∀a, b.a → b → a, True :: Bool, ’A’ :: Char}.
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Example: Typing of Lambda-Bound Variables (2)

(RAbs)

(RApp)

(RApp)

(AxSC)

Γ1 ⊢ const :: α2 → α3 → α2, ∅ ,
(RApp)

(AxV)

Γ1 ⊢ x :: α1 ,
(AxC)

Γ1 ⊢ True :: Bool

Γ1 ⊢ (x True) :: α4, E1

Γ1 ⊢ const (x True) :: α5, E2 ,
(RApp)

(AxV)

Γ1 ⊢ x :: α1 ,
(AxC)

Γ1 ⊢ ’A’ :: Char

Γ1 ⊢ (x ’A’) :: α6, E3

Γ1 ⊢ const (x True) (x ’A’) :: α7, E4

Γ0 ⊢ λx.const (x True) (x ’A’) :: α1 → α7, E4

where Γ1 = Γ0 ∪ {x :: α1} and:

E1 = {α1
·
= Bool → α4}

E2 = {α1
·
= Bool → α4, α2 → α3 → α2

·
= α4 → α5}

E3 = {α1
·
= Char → α6}

E4 = {α1
·
= Bool → α4, α2 → α3 → α2

·
= α4 → α5, α1

·
= Char → α6,

α5
·
= α6 → α7}

Unification fails, since Char ̸= Bool
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Example: Typing of Lambda-Bound Variables (3)

In Haskell-interpreter:

Main> \x -> const (x True) (x ’A’)

<interactive>:1:23:

Couldn’t match expected type ‘Char’ against inferred type ‘Bool’

Expected type: Char -> b

Inferred type: Bool -> a

In the second argument of ‘const’, namely ‘(x ’A’)’

In the expression: const (x True) (x ’A’)

Example shows: Lambda-bound variables are monomorphically typed!

The same applies to variables bound by case-patterns

Hence, one speaks of let-polymorphism, since only
let-bound variables are typed polymorphically.

In KFPTS+seq, there is no let, but supercombinators which are similar to let
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Recursive Supercombinators

Definition

Let SC be a set of supercombinators, SCi, SCj ∈ SC
SCi ⪯ SCj iff the rhs of the definition of SCj uses the supercombinator SCi.

⪯+ is the transitive closure of ⪯ (and ⪯∗ is the reflexive-transitive closure)

SCi is directly recursive iff SCi ⪯ SCi and recursive iff SCi ⪯+ SCi

SC1, . . . , SCm are mutually recursive if SCi ⪯+ SCj for all i, j ∈ {1, . . . ,m}.

Example

f x y = if x≤1 then y else f (x-y) (y + h x)

g x = if x==0 then (f 1 x) + (h 2) else 10

h x = if x==1 then 0 else g (x-1)

k x y = if x==1 then y else k (x-1) (y+(g x))

k

g

f h

f and k are directly recursive, f, g, h are mutually recursive, f, g, h, k are recursive
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Typing Non-Recursive Supercombinators

Non-recursive Supercombinators can be typed like abstractions

Notation: Γ ⊢T SC :: τ means:
With assumption Γ, SC can be typed with type τ

Typing rule for (closed) non-recursive supercombinators:

(RSC1)
Γ ∪ {x1 :: α1, . . . , xn :: αn} ⊢ s :: τ, E

Γ ⊢T SC :: ∀X .σ(α1 → . . . → αn → τ)

if σ is the solution of E,

SC x1 . . . xn = s is the definition of SC

and SC is non-recursive,

and X = Vars(σ(α1 → . . . → αn → τ))
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Example: Typing of (.)

(.) f g x = f (g x)

Γ0 is empty, since no constructors or supercombinators occur

(RSC1)

(RApp)

(AxV)

Γ1 ⊢ f :: α1, ∅ ,
(RApp)

(AxV)

Γ1 ⊢ g :: α2, ∅ ,
(AxV)

Γ1 ⊢ x :: α3, ∅
Γ1 ⊢ (g x) :: α5, {α2

·
= α3 → α5}

Γ1 ⊢ (f (g x)) :: α4, {α2
·
= α3 → α5, α1 = α5 → α4}

∅ ⊢T (.) :: ∀X .σ(α1 → α2 → α3 → α4)

where Γ1 = {f :: α1, g :: α2, x :: α3}

Unification results in σ = {α2 7→ α3 → α5, α1 7→ α5 → α4}.
Thus: σ(α1 → α2 → α3 → α4) = (α5 → α4) → (α3 → α5) → α3 → α4

Now X = {α3, α4, α5} and we may rename this to:

(.) :: ∀a, b, c.(a → b) → (c → a) → c → b
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Typing of Recursive Supercombinators

Assume SC x1 . . . xn = e and SC occurs in e (SC is recursive)

What is the problem when typing SC?

To type the body e, the type of SC must be known!
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Idea of the Iterative Type Inference

Start with the most general type for SC (i.e. a type variable)

Type the body using this assumption

This results in a newly derived type for SC

Continue (iterate) with this type

Stop if new type = old type:
Then we found a consistent type assumption

Most general type: Type T , such that sem(T ) = {all monomorphic types}.

The type α satisfies this (as quantified type ∀α.α)
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Iterative Type Inference

Rule to compute new assumptions:

(SCRec)
Γ ∪ {x1 :: α1, . . . , xn :: αn} ⊢ s :: τ, E

Γ ⊢T SC :: σ(α1 → . . . αn → τ)

if SC x1 . . . xn = s is the definition of SC, σ the solution of E

The same as RSC1, but Γ has to contain an assumption for SC
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Iterative Typing: Preparatory Work

Because of mutual recursion:

Dependency analysis of the supercombinators

Compute the strongly connected components in the call graph

Let ≃ be the equivalence relation of ⪯∗. The strongly connected components are
the equivalence classes of ≃
Each equivalence class is typed together

The order of the typing is according to ⪯∗ modulo ≃.
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Example

f x y = if x≤1 then y else f (x-y) (y + g x)

g x = if x==0 then (f 1 x) + (h 2) else 10

h x = if x==1 then 0 else h (x-1)

k x y = if x==1 then y else k (x-1) (y+(f x y))

The call graph is:
g

����
h-- f

^^

ee

k

@@

%%

The equivalence classes (ordered) are {h} ⪯+ {f, g} ⪯+ {k}.
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Iterative Type Inference Algorithm

Iterative Type Inference Algorithm

Input: Mutually recursive supercombinators SC1, . . . , SCm

1 Start assumption Γ contains types of the constructors and the already typed SCs

2 Γ0 := Γ ∪ {SC1 :: ∀α1.α1, . . . , SCm :: ∀αm.αm} and j = 0.

3 For each SCi (i = 1, . . . ,m) apply rule (SCRec) for Γj , to infer the type of SCi.

4 If the m type derivations are successful (for all i: Γj ⊢T SCi :: τi)
Then quantify: SC1 :: ∀X1.τ1, . . . , SCm :: ∀Xm.τm
Set Γj+1 := Γ ∪ {SC1 :: ∀X1.τ1, . . . , SCm :: ∀Xm.τm}

5 If Γj ̸= Γj+1, then set j := j + 1 and go to step (3).
Otherwise, Γj = Γj+1, and thus Γj is consistent

.

Output: quantified polymorphic types of the SCi of the consistent type assumption.
If a single unification fails, then SC1, . . . , SCm are not typeable.
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Iterative Type Inference Algorithm
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Properties of the Algorithm

The computed types are unique up to renaming for each iteration and thus:
if the algorithm terminates, then the types of the supercombinators are unique.

In each step: newly computed types are more specific or remain the same
(computation is monotonic w.r.t. sem: “sem(Tj+1) ⊆ sem(Tj)”)

If the algorithm does not terminate, then no polymorphic type for the
supercombinators exists
(since computation is monotonic w.r.t. sem and starts with the largest set)

The algorithm computes the greatest fixpoint w.r.t. sem:
Suppose that F is the operator that performs one iteration of the algorithm on
the set of monomorphic types. If the algorithm stops with set S, then F (S) = S
(so S is a fixpoint) and S is the largest set M such that F (M) = M .

This shows, that the iterative type inference algorithm computes the most general
polymorphic type (w.r.t. sem)
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Example: length (1)

length xs = caseList xs of{Nil → 0; (y : ys) → 1 + length ys}
Assumption:

Γ = {Nil :: ∀a.[a], (:) :: ∀a.a → [a] → [a], 0, 1 :: Int, (+) :: Int → Int → Int}
1.Iteration: Γ0 = Γ ∪ {length :: ∀α.α}

(SCRec)

(RCase)

(a) Γ0 ∪ {xs :: α1} ⊢ xs :: τ1, E1

(b) Γ0 ∪ {xs :: α1} ⊢ Nil :: τ2, E2

(c) Γ0 ∪ {xs :: α1, y :: α4, ys :: α5} ⊢ (y : ys) :: τ3, E3

(d) Γ0 ∪ {xs :: α1} ⊢ 0 :: τ4, E4

(e) Γ0 ∪ {xs :: α1, y :: α4, ys :: α5}} ⊢ (1 + length ys) :: τ5, E5

Γ0 ∪ {xs :: α1} ⊢ (caseList xs of{Nil → 0; (y : ys) → 1 + length xs}) :: α3,

E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5 ∪ {τ1
·
= τ2, τ1

·
= τ3, α3

·
= τ4, α3

·
= τ5}

Γ0 ⊢T length :: σ(α1 → α3)

where σ is the solution of
E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5 ∪ {τ1

·
= τ2, τ1

·
= τ3, α3

·
= τ4, α3

·
= τ5}
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Example: length (2)

(a):
(AxV)

Γ0 ∪ {xs :: α1} ⊢ xs :: α1, ∅
I.e. τ1 = α1 and E1 = ∅

(b):
(AxC)

Γ0 ∪ {xs :: α1} ⊢ Nil :: [α6], ∅
I.e. τ2 = [α6] and E2 = ∅

(c)
(RApp)

(RApp)

(AxC)
Γ′
0 ⊢ (:) :: α9 → [α9] → [α9], ∅ ,

(AxV)
Γ′
0 ⊢ y :: α4, ∅

Γ′
0 ⊢ ((:) y) :: α8, {α9 → [α9] → [α9]

·
= α4 → α8} ,

(AxV)
Γ′
0 ⊢ ys :: α5, ∅

Γ′
0 ⊢ (y : ys) :: α7, {α9 → [α9] → [α9]

·
= α4 → α8, α8

·
= α5 → α7}

where Γ0 = Γ0 ∪ {xs :: α1, y :: α4, ys :: α5}
I.e.,. τ3 = α7 and E3 = {α9 → [α9] → [α9]

·
= α4 → α8, α8

·
= α5 → α7}
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Example: length (3)

(d)
(AxC)

Γ0 ∪ {xs :: α1} ⊢ 0 :: Int, ∅
I.e. τ4 = Int und E4 = ∅

(e)
(RApp)

(RApp)

(AxC)

Γ′
0 ⊢ (+) :: Int → Int → Int, ∅ ,

(AxC)

Γ′
0 ⊢ 1 :: Int, ∅

Γ′
0 ⊢ ((+) 1) :: α11, {Int → Int → Int

·
= Int → α11} ,

(RApp)

(AxSC)

Γ′
0 ⊢ length :: α13, ∅ ,

(AxV)

Γ′
0 ⊢ (ys) :: α5, ∅

Γ′
0 ⊢ (length ys) :: α12, {α13

·
= α5 → α12}

Γ′
0 ⊢ (1 + length ys) :: α10, {Int → Int → Int

·
= Int → α11, α13

·
= α5 → α12, α11

·
= α12 → α10}

where Γ0 = Γ0 ∪ {xs :: α1, y :: α4, ys :: α5}

I.e., τ5 = α10 and

E5 = {Int → Int → Int
·
= Int → α11, α13

·
= α5 → α12, α11

·
= α12 → α10}
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Example: length (4)

In summary: Γ0 ⊢T length :: σ(α1 → α3)
where σ is the solution of

{α9 → [α9] → [α9]
·
= α4 → α8, α8

·
= α5 → α7,

Int → Int → Int
·
= Int → α11, α13

·
= α5 → α12, α11

·
= α12 → α10,

α1
·
= [α6], α1

·
= α7, α3

·
= Int, α3

·
= α10}

Unification results in the unifier:

{α1 7→ [α9], α3 7→ Int, α4 7→ α9, α5 7→ [α9], α6 7→ α9, α7 7→ [α9], α8 7→ [α9] → [α9],
α10 7→ Int, α11 7→ Int → Int, α12 7→ Int, α13 7→ [α9] → Int}

thus σ(α1 → α3) = [α9] → Int

Γ1 = Γ ∪ {length :: ∀α.[α] → Int}

Since Γ0 ̸= Γ1 another iteration is required.
2. iteration: It results in the same type, hence Γ1 is consistent.
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Iterative Typing is More General than Haskell

Example

g x = 1 : (g (g ’c’))

Γ = {1 :: Int, Cons :: ∀a.a → [a] → [a], ’c’ :: Char}
Γ0 = Γ ∪ {g :: ∀α.α} (and Γ′

0 = Γ0 ∪ {x :: α1}):

(SCRec)

(RApp)

(RApp)

(AxC)

Γ′
0 ⊢ Cons :: α5 → [α5] → [α5], ∅ ,

(AxC)

Γ′
0 ⊢ 1 :: Int, ∅

Γ′
0 ⊢ (Cons 1) :: α3, α5 → [α5] → [α5]

·
= Int → α3 ,

(RApp)

(AxSC)

Γ′
0 ⊢ g :: α6, ∅ ,

(RApp)

(AxSC)

Γ′
0 ⊢ g :: α8, ∅ ,

(AxC)

Γ′
0 ⊢ ’c’ :: Char, ∅ ,

Γ′
0 ⊢ (g ’c’) :: α7, {α8

·
= Char → α7}

Γ′
0 ⊢ (g (g ’c’)) :: α4, {α8

·
= Char → α7, α6

·
= α7 → α4}

Γ′
0 ⊢ Cons 1 (g (g ’c’)) :: α2, {α8

·
= Char → α7, α6

·
= α7 → α4, α5 → [α5] → [α5]

·
= Int → α3, α3

·
= α4 → α2}

Γ0 ⊢T g :: σ(α1 → α2) = α1 → [Int]
where σ = {α2 7→ [Int], α3 7→ [Int] → [Int], α4 7→ [Int], α5 7→ Int, α6 7→ α7 → [Int], α8 7→ Char → α7} is the solution of

{α8
·
= Char → α7, α6

·
= α7 → α4, α5 → [α5] → [α5]

·
= Int → α3, α3

·
= α4 → α2}

I.e. Γ1 = Γ ∪ {g :: ∀α.α → [Int]}.

The next iteration shows that Γ1 is consistent.
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Iterative Typing is More General than Haskell (Cont’d)

Haskell cannot infer a type for g:

Prelude> let g x = 1:(g(g ’c’))

<interactive>:1:13:

Couldn’t match expected type ‘[t]’ against inferred type ‘Char’

Expected type: Char -> [t]

Inferred type: Char -> Char

In the second argument of ‘(:)’, namely ‘(g (g ’c’))’

In the expression: 1 : (g (g ’c’))

But: Haskell can check the type if it is given:

let g::a -> [Int]; g x = 1:(g(g ’c’))

Prelude> :t g

g :: a -> [Int]

Reason: If the type is present, Haskell performs type checking and no type inference.
Then g is treated like an already typed supercombinator.
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Example: Multiple Iterations are Required (1)

g x = x : (g (g ’c’))

Γ = {Cons :: ∀a.a → [a] → [a], ’c’ :: Char}.
Γ0 = Γ ∪ {g :: ∀α.α}

(SCRec)

(RApp)

(RApp)

(AxC)

Γ′
0 ⊢ Cons :: α5 → [α5] → [α5], ∅ ,

(AxV)

Γ′
0 ⊢ x :: α1, ∅

Γ′
0 ⊢ (Cons x) :: α3, α5 → [α5] → [α5]

·
= α1 → α3 ,

(RApp)

(AxSC)

Γ′
0 ⊢ g :: α6, ∅ ,

(RApp)

(AxSC)

Γ′
0 ⊢ g :: α8, ∅ ,

(AxC)

Γ′
0 ⊢ ’c’ :: Char, ∅ ,

Γ′
0 ⊢ (g ’c’) :: α7, {α8

·
= Char → α7}

Γ′
0 ⊢ (g (g ’c’)) :: α4, {α8

·
= Char → α7, α6

·
= α7 → α4}

Γ′
0 ⊢ Cons x (g (g ’c’)) :: α2, {α8

·
= Char → α7, α6

·
= α7 → α4, α5 → [α5] → [α5]

·
= α1 → α3, α3

·
= α4 → α2}

Γ0 ⊢T g :: σ(α1 → α2) = α5 → [α5]
where σ = {α1 7→ α5, α2 7→ [α5], α3 7→ [α5] → [α5], α4 7→ [α5], α6 7→ α7 → [α5], α8 7→ Char → α7} is the solution of

{α8
·
= Char → α7, α6

·
= α7 → α4, α5 → [α5] → [α5]

·
= α1 → α3, α3

·
= α4 → α2}

I.e. Γ1 = Γ ∪ {g :: ∀α.α → [α]}.
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Example: Multiple Iterations are Required (2)

Since Γ0 ̸= Γ1 another iteration is required.
Let Γ′

1 = Γ1 ∪ {x :: α1}:

(SCRec)

(RApp)

(RApp)

(AxC)

Γ′
1 ⊢ Cons :: α5 → [α5] → [α5], ∅ ,

(AxV)

Γ′
1 ⊢ x :: α1, ∅

Γ′
1 ⊢ (Cons x) :: α3, α5 → [α5] → [α5]

·
= α1 → α3 ,

(RApp)

(AxSC)

Γ′
1 ⊢ g :: α6 → [α6], ∅ ,

(RApp)

(AxSC)

Γ′
1 ⊢ g :: α8 → [α8], ∅ ,

(AxC)

Γ′
1 ⊢ ’c’ :: Char, ∅ ,

Γ′
1 ⊢ (g ’c’) :: α7, {α8 → [α8]

·
= Char → α7}

Γ′
1 ⊢ (g (g ’c’)) :: α4, {α8 → [α8]

·
= Char → α7, α6 → [α6]

·
= α7 → α4}

Γ′
1 ⊢ Cons x (g (g ’c’)) :: α2, {α8 → [α8]

·
= Char → α7, α6 → [α6]

·
= α7 → α4α5 → [α5] → [α5]

·
= α1 → α3, α3

·
= α4 → α2}

Γ1 ⊢T g :: σ(α1 → α2) = [Char] → [[Char]]
where σ = {α1 7→ [Char], α2 7→ [[Char]], α3 7→ [[Char]] → [[Char]], α4 7→ [[Char]], α5 7→ [Char], α6 7→ [Char], α7 7→ [Char], α8 7→ Char}

is the solution of {α8 → [α8]
·
= Char → α7, α6 → [α6]

·
= α7 → α4, α5 → [α5] → [α5]

·
= α1 → α3, α3

·
= α4 → α2}

Hence Γ2 = Γ ∪ {g :: [Char] → [[Char]]}.
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Example: Multiple Iterations are Required (3)

Since Γ1 ̸= Γ2 another iteration is required:
Let Γ′

2 = Γ2 ∪ {x :: α1}:

(SCRec)

(RApp)

(RApp)

(AxC)

Γ′
2 ⊢ Cons :: α5 → [α5] → [α5], ∅ ,

(AxV)

Γ′
2 ⊢ x :: α1, ∅

Γ′
2 ⊢ (Cons x) :: α3, α5 → [α5] → [α5]

·
= α1 → α3 ,

(RApp)

(AxSC)

Γ′
2 ⊢ g :: [Char] → [[Char]], ∅ ,

(RApp)

(AxSC)

Γ′
2 ⊢ g :: [Char] → [[Char]], ∅ ,

(AxC)

Γ′
2 ⊢ ’c’ :: Char, ∅ ,

Γ′
2 ⊢ (g ’c’) :: α7, {[Char] → [[Char]]

·
= Char → α7}

Γ′
2 ⊢ (g (g ’c’)) :: α4, {[Char] → [[Char]]

·
= Char → α7, [Char] → [[Char]]

·
= α7 → α4}

Γ′
2 ⊢ Cons x (g (g ’c’)) :: α2, {[Char] → [[Char]]

·
= Char → α7, [Char] → [[Char]]

·
= α7 → α4α5 → [α5] → [α5]

·
= α1 → α3, α3

·
= α4 → α2}

Γ2 ⊢T g :: σ(α1 → α2)
where σ is the solution of

{[Char] → [[Char]]
·
= Char → α7, [Char] → [[Char]]

·
= α7 → α4, α5 → [α5] → [α5]

·
= α1 → α3, α3

·
= α4 → α2}

Unification:
[Char] → [[Char]]

·
= Char → α7,

. . .

[Char]
·
= Char,

[[Char]]
·
= α7,

. . .

Fail

g is not typeable.
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The Example Shows ...

Proposition

The iterative type inference algorithm sometimes requires multiple iterations until a
result (untyped / consistent assumption) is found.

Note: There are examples where multiple iterations are required to find a consistent
type assumption.
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Non-Termination of the Iterative Typing (1)

f = [g]

g = [f]

Since f ≃ g, the iterative typing types f and g together.
Γ = {Cons :: ∀a.a → [a] → [a], Nil : ∀a.a}.
Γ0 = Γ ∪ {f :: ∀α.α, g :: ∀α.α}

(SCRec)

(RApp)

(RApp)

(AxC)
Γ0 ⊢ Cons :: α4 → [α4] → [α4], ∅ ,

(AxSC)
Γ0 ⊢ g :: α5

Γ0 ⊢ (Cons g) :: α3, {α4 → [α4] → [α4]
·
= α5 → α3} ,

(AxC)
Γ0 ⊢ Nil :: [α2], ∅

Γ0 ⊢ [g] :: α1, {α4 → [α4] → [α4]
·
= α5 → α3, α3

·
= [α2] → α1}

Γ0 ⊢T f :: σ(α1) = [α5]
σ = {α1 7→ [α5], α2 7→ α5, α3 7→ [α5] → [α5], α4 7→ α5} is

the solution of {α4 → [α4] → [α4]
·
= α5 → α3, α3

·
= [α2] → α1}
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Non-Termination of the Iterative Typing (2)

(SCRec)

(RApp)

(RApp)

(AxC)
Γ0 ⊢ Cons :: α4 → [α4] → [α4], ∅ ,

(AxSC)
Γ0 ⊢ f :: α5

Γ0 ⊢ (Cons f) :: α3, {α4 → [α4] → [α4]
·
= α5 → α3} ,

(AxC)
Γ0 ⊢ Nil :: [α2], ∅

Γ0 ⊢ [f] :: α1, {α4 → [α4] → [α4]
·
= α5 → α3, α3

·
= [α2] → α1}

Γ0 ⊢T g :: σ(α1) = [α5]
σ = {α1 7→ [α5], α2 7→ α5, α3 7→ [α5] → [α5], α4 7→ α5} is

the solution of {α4 → [α4] → [α4]
·
= α5 → α3, α3

·
= [α2] → α1}

Hence, Γ1 = Γ ∪ {f :: ∀a.[a], g :: ∀a.[a]}. Since Γ1 ̸= Γ0, another iteration is required.
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Non-Termination of the Iterative Typing (3)

(SCRec)

(RApp)

(RApp)

(AxC)
Γ1 ⊢ Cons :: α4 → [α4] → [α4], ∅ ,

(AxSC)
Γ1 ⊢ g :: [α5]

Γ1 ⊢ (Cons g) :: α3, {α4 → [α4] → [α4]
·
= [α5] → α3} ,

(AxC)
Γ1 ⊢ Nil :: [α2], ∅

Γ1 ⊢ [g] :: α1, {α4 → [α4] → [α4]
·
= [α5] → α3, α3

·
= [α2] → α1}

Γ1 ⊢T f :: σ(α1) = [[α5]]
σ = {α1 7→ [[α5]], α2 7→ [α5], α3 7→ [[α5]] → [[α5]], α4 7→ [α5]} is

the solution of {α4 → [α4] → [α4]
·
= [α5] → α3, α3

·
= [α2] → α1}

(SCRec)

(RApp)

(RApp)

(AxC)
Γ1 ⊢ Cons :: α4 → [α4] → [α4], ∅ ,

(AxSC)
Γ1 ⊢ f :: [α5]

Γ1 ⊢ (Cons f) :: α3, {α4 → [α4] → [α4]
·
= [α5] → α3} ,

(AxC)
Γ1 ⊢ Nil :: [α2], ∅

Γ1 ⊢ [f] :: α1, {α4 → [α4] → [α4]
·
= [α5] → α3, α3

·
= [α2] → α1}

Γ1 ⊢T g :: σ(α1) = [[α5]]
σ = {α1 7→ [[α5]], α2 7→ [α5], α3 7→ [[α5]] → [[α5]], α4 7→ [α5]} is

the solution of {α4 → [α4] → [α4]
·
= [α5] → α3, α3

·
= [α2] → α1}

Hence Γ2 = Γ ∪ {f :: ∀a.[[a]], g :: ∀a.[[a]]}. Since Γ2 ̸= Γ1, another iteration is required.
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Non-Termination of the Iterative Typing (4)

Conjecture: The iterative typing does not terminate
Proof (by induction): iteration i: Γi = Γ ∪ {f :: ∀a.[a]i, g :: ∀a.[a]i} where [a]i i-fold nested list

(SCRec)

(RApp)

(RApp)

(AxC)
Γi ⊢ Cons :: α4 → [α4] → [α4], ∅ ,

(AxSC)
Γi ⊢ g :: [α5]

i

Γi ⊢ (Cons g) :: α3, {α4 → [α4] → [α4]
·
= [α5]

i → α3} ,
(AxC)

Γi ⊢ Nil :: [α2], ∅
Γi ⊢ [g] :: α1, {α4 → [α4] → [α4]

·
= [α5]

i → α3, α3
·
= [α2] → α1}

Γi ⊢T f :: σ(α1) = [[α5]
i]

σ = {α1 7→ [[α5]
i], α2 7→ [α5]

i, α3 7→ [[α5]
i] → [[α5]

i], α4 7→ [α5]
i} is

the solution of {α4 → [α4] → [α4]
·
= [α5]

i → α3, α3
·
= [α2] → α1}

(SCRec)

(RApp)

(RApp)

(AxC)
Γi ⊢ Cons :: α4 → [α4] → [α4], ∅ ,

(AxSC)
Γi ⊢ f :: [α5]

i

Γi ⊢ (Cons f) :: α3, {α4 → [α4] → [α4]
·
= [α5]

i → α3} ,
(AxC)

Γi ⊢ Nil :: [α2], ∅
Γi ⊢ [f] :: α1, {α4 → [α4] → [α4]

·
= [α5]

i → α3, α3
·
= [α2] → α1}

Γi ⊢T g :: σ(α1) = [[α5]
i]

σ = {α1 7→ [[α5]
i], α2 7→ [α5]

i, α3 7→ [[α5]
i] → [[α5]

i], α4 7→ [α5]
i} is

the solution of {α4 → [α4] → [α4]
·
= [α5]

i → α3, α3
·
= [α2] → α1}

I.e. Γi+1 = Γ ∪ {f :: ∀a.[a]i+1, g :: ∀a.[a]i+1}.
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Thus ...

Proposition

The iterative type inference algorithm may not terminate.

Moreover, the following holds (the proof can be found in the literature)

Theorem

Iterative typing is undecidable.

This follows from the undecidability of so-called semi unification of first-order terms.
(works of Kfoury, Tiuryn, and Urzyczyn and Henglein)
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Call Hierachy

The iterative typing does not need the information of the call hierarchy:

The same types are inferred independently in which order they are computed
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Type Safety

A typed program calculus fulfills type safety iff

Typing is preserved by reduction (type preservation):

For monomorphic type τ : If t :: τ and t → t′, then t′ :: τ

This includes the case that a polymorphic type becomes more general.

Typed, closed expressions are reducible if they are not a WHNF
(well-typed programs don’t get stuck) (progress lemma)
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Type Safety (2)

Lemma

Let s be a directly dynamically untyped KFPTS+seq-expression. Then the iterative
typing cannot type s.

Proof. Assume s is directly dynamically untyped:

s = R[caseT (c s1 . . . sn) of Alts] and c is not of type T .
iterative typing adds equations ensuring the types of (c s1 . . . sn) and of the
patterns in Alts are equal. Since c is not of type T , unification fails.

s = R[caseT λx.t of Alts]: iterative typing add ensuring the type of λx.t is
equal to the type of the patterns in Alts, and that it is a function type.
Unification fails, since the patterns do not have a function type.

R[(c s1 . . . sar(c)) t]: ((c s1 . . . sar(c)) t) is typed as a nested application
(((c s1) . . .) sar(c)) t). Equations are added implying that c can receive at most
ar(c) arguments. Since there is one more argument, unification will fail.
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Type Safety (3)

Lemma (Type Preservation)

Let s be a well-typed and closed KFPTSP+seq-expression (of a well-typed
KFPTSP+seq-program) and s

name−−−→ s′. Then s′ is well-typed.

Proof (Sketch): Inspect the (β)-, (SC − β)- and (case)-reduction and the typing of
the expressions before and after the reduction.
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Type Safety (4)

The two lemmas show:

Proposition

Let s be a well-typed, closed KFPTSP+seq-expression. Then s is not dynamically
untyped.

Progress Lemma

Let s be a well-typed, closed KFPTSP+seq-expression. Then

s is a WHNF, or

s is call-by-name-reducible, i.e. s
name−−−→ s′ for some s′.

Proof. A closed KFPTS+seq-expression s is irreducible iff s is a WHNF or s is directly
dynamically untyped (and thus not well-typed).
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Type Safety (5)

Theorem

Type safety holds for the iterative typing of KFPTSP+seq.
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Forcing Termination of Type Inference

Let SC1, . . . , SCm be mutually recursive supercombinators

Let Γi ⊢T SC1 :: τ1, . . . ,Γi ⊢T SCm :: τm be the types derived in the ith iteration

Milner-Step: Type SC1, . . . , SCm together with the type assumption:
ΓM = Γ ∪ {SC1 :: τ1, . . . , SCm :: τm}; without quantifiers
and the following rule (SCRecM) . . .
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Forcing Termination (Cont’d)

(SCRecM)
for i = 1, . . . ,m: ΓM ∪ {xi,1 :: αi,1, . . . , xi,ni :: αi,ni} ⊢ si :: τ

′
i , Ei

ΓM ⊢T for i = 1, . . . ,m SCi :: σ(αi,1 → . . . → αi,ni → τ ′i)

if σ is the solution of E1 ∪ . . . ∪ Em ∪
m⋃
i=1

{τi
·
= αi,1 → . . . → αi,ni → τ ′i}

and SC1 x1,1 . . . x1,n1 = s1
. . .
SCm xm,1 . . . xm,nm = sm

are the definitions of SC1, . . . , SCm

As additional typing rule we add:

(AxSC2)
Γ ∪ {SC :: τ} ⊢ SC :: τ

if τ is not universally quantified
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Forcing Termination (Cont’d)

Differences to an iterative step:

Types of to-be-typed SCs are not quantified

No copies of these types are made

At the end, the assumed types are unified with the derived types

This ensures: the new type assumption derived by (SCRecM) is always consistent

After a Milner-step the iterative algorithm terminates.
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HINDLEY-DAMAS-MILNER-
TYPING



The Hindley-Damas-Milner Typing

The algorithm is similar to iterative typing, with the differences:

Only one iteration step is performed

The type assumption assumes for each to-be-typed supercombinator SC i the type
αi (without quantifier!)

consistency is enfored by additional unification equations

Haskell uses Hindley-Damas-Milner-typing

D. Sabel | PLF – 05 Polymorphic Type Inference | WS 2024/25 95/109 Motivation Unification Expressions Supercombinators



The Hindley-Damas-Milner Typing

The algorithm is similar to iterative typing, with the differences:

Only one iteration step is performed

The type assumption assumes for each to-be-typed supercombinator SC i the type
αi (without quantifier!)

consistency is enfored by additional unification equations

Haskell uses Hindley-Damas-Milner-typing

D. Sabel | PLF – 05 Polymorphic Type Inference | WS 2024/25 95/109 Motivation Unification Expressions Supercombinators



The Hindley-Damas-Milner Type Inference Algorithm

SC1, . . . , SCm are mutually recursive supercombinators ofan equivalence class w.r.t. ≃
supercombinators strictly less than SC1, . . . , SCm w.r.t. ⪯ are already typed

1 Assumption Γ contains types of the already typed SCs and of the constructors (all
universally quantified)

2 Type SC1, . . . , SCm with the rule (MSCRec):

(MSCRec)
for i = 1, . . . ,m: Γ ∪ {SC1 :: β1, . . . , SCm :: βm} ∪ {xi,1 :: αi,1, . . . , xi,ni :: αi,ni} ⊢ si :: τi, Ei

Γ ⊢T for i = 1, . . . ,m SCi :: σ(αi,1 → . . . → αi,ni → τi)

if σ solution of E1 ∪ . . . ∪ Em ∪
m⋃
i=1

{βi
·
= αi,1 → . . . → αi,ni → τi}

and SC1 x1,1 . . . x1,n1 = s1
. . .
SCm xm,1 . . . xm,nm = sm

are the definitions of SC1, . . . , SCm

If unification fails, then SC1, . . . , SCm are not Hindley-Damas-Milner typeable
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The Hindley-Damas-Milner Type Inference Algorithm

Simplification: Rule for one single recursive supercombinator:

(MSCRec1)
Γ ∪ {SC :: β, x1 :: α1, . . . , xn :: αn} ⊢ s :: τ, E

Γ ⊢T SC :: σ(α1 → . . . → αn → τ)

if σ is the solution of E ∪ {β ·
= α1 → . . . → αn → τ}

and SC x1 . . . xn = s is the definition of SC
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Properties of the Hindley-Damas-Milner Typing

the algorithm terminates

the algorithm computes unique types

Hindley-Damas-Milner typing is decidable

the decision problem whether an expression is Hindley-Damas-Milner-typeable is
DEXPTIME-complete

the types may be more restrictive than the iterative type, in particular, an
expression may be iteratively typeable but not Hindley-Damas-Milner-typeable.

The Hindley-Damas-Milner algorithm needs knowledge of the call hierarchy of the
SCs:
It may return more restrictive types if the typing is not along the hierarchy
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Example

Sometimes exponentially many type variables are required:

(let x0 = \z->z in

(let x1 = (x0,x0) in

(let x2 = (x1,x1) ins

(let x3 = (x2,x2) in

(let x4 = (x3,x3) in

(let x5 = (x4,x4) in

(let x6 = (x5,x5) in x6)))))))

Requires 26 type variables, the generalized example requires 2n.
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Example: map

map f xs = case xs of {

[] → []

(y:ys) → (f y):(map f ys)

}

Γ0 = {Cons :: ∀a.a → [a] → [a], Nil :: ∀a.[a]}

Sei Γ = Γ0 ∪ {map :: β, f :: α1, xs :: α2} and Γ′ = Γ ∪ {y : α3, ys :: α4}.

(MSCRec1)

(RCase)

(a) Γ ⊢ xs :: τ1, E1

(b) Γ ⊢ Nil :: τ2, E2

(c) Γ′ ⊢ (Cons y ys) :: τ3, E3

(d) Γ ⊢ Nil :: τ4, E4

(e) Γ′ ⊢ (Cons (f y) (map f ys)) :: τ5, E5

Γ ⊢ case xs of {Nil → Nil; Cons y ys → Cons y (map f ys)} :: α,E

Γ ⊢T map :: σ(α1 → α2 → α)

if σ is the solution of E ∪ {β ·
= α1 → α2 → α}

where E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5 ∪ {τ1
·
= τ2, τ1

·
= τ3, α

·
= τ4, α

·
= τ5}.
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Example: map (2)

(a)
(AxV)

Γ ⊢ xs :: α2, ∅
I.e. τ1 = α2 and E1 = ∅.

(b)
(AxC)

Γ ⊢ Nil :: [α5], ∅
I.e. τ2 = [α5] and E2 = ∅

(c)
(RApp)

(RApp)

(AxC)
Γ′ ⊢ Cons :: α6 → [α6] → [α6] ,

(AxV)
Γ′ ⊢ y :: α3, ∅

Γ′ ⊢ (Cons y) :: α7, {α6 → [α6] → [α6]
·
= α3 → α7} ,

(AxV)
Γ′ ⊢ ys :: α4, ∅

Γ′ ⊢ (Cons y ys) :: α8, {α6 → [α6] → [α6]
·
= α3 → α7, α7

·
= α4 → α8}

I.e. τ3 = α8 and E3 = {α6 → [α6] → [α6]
·
= α3 → α7, α7

·
= α4 → α8}

(d)
(AxC)

Γ ⊢ Nil :: [α9], ∅
I.e. τ4 = [α9] and E4 = ∅.
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Example: map (3)

(e)

(RApp)

(RApp)

(AxC)
Γ′ ⊢ Cons :: α10 → [α10] → [α10], ∅ ,

(RApp)

(AxV)
Γ′ ⊢ f :: α1, ∅ ,

(AxV)
Γ′ ⊢ y :: α3, ∅

Γ′ ⊢ (f y) :: α15, {α1
·
= α3 → α15}

Γ′ ⊢ (Cons (f y)) :: α11, {α10 → [α10] → [α10]
·
= α15 → α11, α1

·
= α3 → α15} ,

(RApp)

(RApp)

(AxSC2)
Γ′ ⊢ map :: β, ∅ ,

(AxV)
Γ′ ⊢ f :: α1, ∅ ,

Γ′ ⊢ (map f) :: α12, {β
·
= α1 → α12} ,

(AxV)
Γ′ ⊢ ys :: α4, ∅

Γ′ ⊢ (map f ys) :: α13, {β
·
= α1 → α12, α12

·
= α4 → α13}

Γ′ ⊢ (Cons (f y) (map f ys)) :: α14,

{α11
·
= α13 → α14, α10 → [α10] → [α10]

·
= α15 → α11, α1

·
= α3 → α15, β

·
= α1 → α12, α12

·
= α4 → α13}

I.e. τ5 = α14 and

E5 = {α11
·
= α13 → α14, α10 → [α10] → [α10]

·
= α15 → α11, α1

·
= α3 → α15,

β
·
= α1 → α12, α12

·
= α4 → α13}
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Example: map (4)

Unifiy equations E ∪ {β ·
= α1 → α2 → α}:

{α6 → [α6] → [α6]
·
= α3 → α7, α7

·
= α4 → α8, α11

·
= α13 → α14,

α10 → [α10] → [α10]
·
= α15 → α11, α1

·
= α3 → α15, β

·
= α1 → α12,

α12
·
= α4 → α13, α2

·
= [α5], α2

·
= α8, α

·
= α9, α

·
= α14,

β
·
= α1 → α2 → α}

Unification results in

σ = {α 7→ [α10], α1 7→ α6 → α10, α2 7→ [α6], α3 7→ α6, α4 7→ [α6], α5 7→ α6,
α7 7→ [α6] → [α6], α8 7→ [α6], α9 7→ [α10], α11 7→ [α10] → [α10],
α12 7→ [α6] → [α10], α13 7→ [α10], α14 7→ [α10], α15 7→ α10,
β 7→ (α6 → α10) → [α6] → [α10],

I.e. map :: σ(α1 → α2 → α) = (α6 → α10) → [α6] → [α10].
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Examples Known from Iterative Typing

g x = x : (g (g ’c’))

Iterative typing results in Fail (after multiple iterations)
Hindley-Damas-Milner: Γ = {Cons :: ∀a.a → [a] → [a], ’c’ :: Char}.
Let Γ′ = Γ ∪ {x :: α, g :: β}.

(MSCRec)

(RApp)

(RApp)

(AxC)

Γ ⊢ Cons :: α5 → [α5] → [α5], ∅ ,
(AxV)

Γ ⊢ x :: α, ∅
Γ ⊢ (Cons x) :: α3, α5 → [α5] → [α5]

·
= α → α3 ,

(RApp)

(AxSC2)

Γ ⊢ g :: β, ∅ ,
(RApp)

(AxSC2)

Γ ⊢ g :: β, ∅ ,
(AxC)

Γ ⊢ ’c’ :: Char, ∅ ,

Γ ⊢ (g ’c’) :: α7, {β
·
= Char → α7}

Γ ⊢ (g (g ’c’)) :: α4, {β
·
= Char → α7, β

·
= α7 → α4}

Γ ⊢ Cons x (g (g ’c’)) :: α2, {β
·
= Char → α7, β

·
= α7 → α4α5 → [α5] → [α5]

·
= α → α3, α3

·
= α4 → α2}

Γ ⊢T g :: σ(α → α2)
where σ is the solution of

{β ·
= Char → α7, β

·
= α7 → α4, α5 → [α5] → [α5]

·
= α → α3, α3

·
= α4 → α2, β

·
= α → α2}

Unification fails, since Char should be made equal to a list. Thus, g ist not
Hindley-Damas-Milner-typeable.
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Examples Known from Iterative Typing (2)

g x = 1 : (g (g ’c’))

Iterative type: g :: ∀α.α → [Int]
Hindley-Damas-Milner: Let Γ′ = Γ ∪ {x :: α, g :: β}.

(SCRec)

(RApp)

(RApp)

(AxC)

Γ ⊢ Cons :: α5 → [α5] → [α5], ∅ ,
(AxC)

Γ ⊢ 1 :: Int, ∅
Γ ⊢ (Cons 1) :: α3, α5 → [α5] → [α5]

·
= Int → α3 ,

(RApp)

(AxSC2)

Γ ⊢ g :: β, ∅ ,
(RApp)

(AxSC2)

Γ ⊢ g :: β, ∅ ,
(AxC)

Γ ⊢ ’c’ :: Char, ∅ ,

Γ ⊢ (g ’c’) :: α7, {β
·
= Char → α7}

Γ ⊢ (g (g ’c’)) :: α4, {β
·
= Char → α7, β

·
= α7 → α4}

Γ ⊢ Cons 1 (g (g ’c’)) :: α2, {β
·
= Char → α7, β

·
= α7 → α4, α5 → [α5] → [α5]

·
= Int → α3, α3

·
= α4 → α2}

Γ ⊢T g :: σ(α → α2)
where σ is the solution of

{β ·
= Char → α7, β

·
= α7 → α4, α5 → [α5] → [α5]

·
= Int → α3, α3

·
= α4 → α2, β

·
= α → α2}

Unification fails since [α5]
·
= Char should be unified.
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Iterative Typing May Return More General Types

data Tree a = Empty | Node a (Tree a) (Tree a)

Types of the constructors
Empty :: ∀a. Tree a and
Node :: ∀a. a → Tree a → Tree a → Tree a

g x y = Node True (g x y) (g y x)

Hindley-Damas-Milner: g :: a → a → Tree Bool

Iterative Typing:: g :: a → b → Tree Bool

Reason:
Iterative typing uses copies of the type of g,
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Hindley-Damas-Milner Typing and Type Safety

Hindley-Damas-Milner typed programs are always iteratively typeable

Hence Hindley-Damas-Milner typed programs are never dynamically untyped

Also the progress lemma holds: Hindley-Damas-Milner typed (closed) programs
are WHNFs or reducible

D. Sabel | PLF – 05 Polymorphic Type Inference | WS 2024/25 107/109 Motivation Unification Expressions Supercombinators



Hindley-Damas-Milner Typing and Type Safety (2)

Type-Preservation: Does hold in KFPTSP+seq, but not in Hskell:

let x = (let y = \u -> z in (y [], y True, seq x True))

z = const z x

in x

is Hindley-Damas-Milner typeable

After a so-called (llet)-reduction:

let x = (y [], y True, seq x True)

y = \u -> z

z = const z x

in x

This expression is not Hindley-Damas-Milner-typeable (but iteratively)

Reason: After the reduction x,y,z have to be typed together, before they can be
typed separately
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Conclusion: Type Safety

Not a real problem, since

Type-Preservation holds for the iterative typing.

well-typed programs are dynamically typed

Hindley-Damas-Milner-typeable implies iterative typeable

reduction preserve the iterative type
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