

Hochschule RheinMain

• Why should we care about type inference?

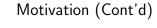
Motivation and Outline

- Type inference algorithms for KFPTS+seq for parametric polymorphic types
- Typing recursive supercombinators
- Iterative type inference

. Sabel | PLF - 05 Polymorphic Type Inference | WS 2024/25

• Hindley-Damas-Milner type inference

Motivation


Hochschule RheinMain

Why should we use a type system?

- for untyped programs, dynamic type errors can occur
- runtime errors are programming errors
- strong and static typing no type errors during runtime

3/109

- types as documentation
- types usually lead to a better program structure
- types as specification in the design phase

Hochschule RheinMain

Hochschule RheinMai

Minimal requirements:

- typing should be decided during compile time
- well-typed programs have no type errors during runtime

2/109

4/109

Desirable properties

- the type system does not restrict the programmer
- the compiler can compute types = type inference

Motivation (Cont'd)	Hochschule RheinMain	Naive Approach	Hochschule RheinMain
 Not all type systems satisfy all the properties: Simply typed lambda calculus: typed language is no longer Turing-complete, since all well converge Type system extensions in Haskell: typing / type inference is undecidable in some cases the compiler does not terminate! requires effort / precaution of the programmer 	-typed programs	Naive definition: A KFPTSP+seq-program is well-typed, if it cannot lea error during runtime. But, this does not work well, since: Dynamic typing in KFPTS+seq is undec	
D. Sabel PLF – 05 Polymorphic Type Inference WS 2024/25 5/109 Motivation	ion Unification Expressions Supercombinators D.	Sabel PLF - 05 Polymorphic Type Inference WS 2024/25 6/109 Mot	ivation Unification Expressions Supercombinators

Undecidability of Dynamic Typing

Let tmEncode be a KFPTS+seq-supercombinator that simulates a universal Turing machine:

- Input: an encoding of a Turing machine M and an input w
- \bullet Output: True, if the TM M halts on w

tmEncode is programmable:

- in the lecture notes, there is a Haskell-program that performs this simulation
- the program is not dynamically untyped (since it is Haskell-typeable)
- thus we can assume tmEncode exists in KFPTS+seq and it is not dynamically untyped

7/109

Motivation Unification

Undecidability of Dynamic Typing (Cont'd)

For TM encoding enc and input inp, let the expression s be defined as

$$\begin{split} s := & \text{if tmEncode } enc \; inp \\ & \text{then case}_{\mathsf{Bool}} \; \texttt{Nil of } \{\texttt{True} \to \texttt{True}; \texttt{False} \to \texttt{False} \} \\ & \text{else case}_{\mathsf{Bool}} \; \texttt{Nil of } \{\texttt{True} \to \texttt{True}; \texttt{False} \to \texttt{False} \} \end{split}$$

Then the following holds:

s is dynamically untyped \iff the evaluation of $(\texttt{tmEncode} \ enc \ inp)$ ends with True

This shows:

if we can decide whether s is dynamically untyped, then we can decide the halting problem Thus:

Proposition

The dynamic typing of KFPTS+seq-programs is undecidable.

Types

Syntax of polymorphic Types:

$$\mathbf{T} ::= TV \mid TC \mathbf{T}_1 \ldots \mathbf{T}_n \mid \mathbf{T}_1 \to \mathbf{T}_2$$

where TV is a type variable, TC type constructor

- A base type is a type of the form TC, where TC is of arity 0.
- A monomorphic type is a type without type variables

Examples

- Int, Bool and Char are base types.
- [Int] und Char \rightarrow Int are monomorphic types, but no base types,
- [a] und a \rightarrow a are neither base nor monomorphic types (but polymorphic types)

10/109

. Sabel | PLF – 05 Polymorphic Type Inference | WS 2024/25

Motivation Unification Expressions Supercombinate

Quantified Types

For polymorphic types, we use the universal quantifier::

- If τ is a polymorphic type with occurrences of type variables $\alpha_1, \ldots, \alpha_n$, then $\forall \alpha_1, \ldots, \alpha_n . \tau$ is the universally quantified type for τ
- Since the order is irrelevant, we also use $\forall \mathcal{X}. \tau$ where \mathcal{X} is a set of type variables

Later:

• universally quantified types can be copied and renamed, while types without quantifiers cannot be renamed

11/109

Type Substitutions

Type substitution = a mapping $\{\alpha_1 \mapsto \tau_1, \ldots, \alpha_n \mapsto \tau_n\}$ of a finite set of type variables to types.

Written as $\sigma = \{\alpha_1 \mapsto \tau_1, \ldots, \alpha_n \mapsto \tau_n\}.$

Formally, extension to types: σ_E mapping from types to types

$$\begin{array}{rcl} \sigma_E(TV) &:= & \sigma(TV), \text{ if } \sigma \text{ maps } TV \\ \sigma_E(TV) &:= & TV, \text{ if } \sigma \text{ does not map } TV \\ \sigma_E(TC \ T_1 \ \dots \ T_n) &:= & TC \ \sigma_E(T_1) \ \dots \ \sigma_E(T_n) \\ \sigma_E(T_1 \to T_2) &:= & \sigma_E(T_1) \to \sigma_E(T_2) \end{array}$$

12/109

In the following, we do not distinguish between σ and its extension $\sigma_E!$

Semantics of Polymorphic Types

Semantics

Type substitution σ is ground for a type τ iff

- $\sigma(X)$ is a monomorphic type for all X mapped by σ
- $\sigma(X)$ is defined for all $X \in Vars(\tau)$

Semantics of type τ :

```
sem(\tau) := \{\sigma(\tau) \mid \sigma \text{ is a ground substitution for } \tau\}
```

This corresponds to the intuition of schematic types:

a polymorphic type describes the schema of a set of monomorphic types

13/109

Typing Rules

Rule for Application:

$$\frac{s::T_1 \to T_2, \quad t::T_1}{(s \ t)::T_2}$$

Problem: Guess the right instance, e.g.

-> [a] -> [b] map :: (a -> b) not :: Bool -> Bool

Typing of map not:

Before applying the rule, the type of map must be instantiated:

$$\sigma = \{ \mathtt{a} \mapsto \mathtt{Bool}, \mathtt{b} \mapsto \mathtt{Bool} \}$$

14/109

16/109

Instead of guessing σ , σ can be computed: Using Unification

| PLF - 05 Polymorphic Type Inference | WS 2024/25

Sabel | PLF – 05 Polymorphic Type Inference | WS 2024/25

Hochschule RheinMai

Unification

Definition

- A unification problem on types is a set E of equations of the form $\tau_1 = \tau_2$ where τ_1 and τ_2 are polymorphic types.
- A solution to a unification problem on types is a substitution σ (called unifier), such that $\sigma(\tau_1) = \sigma(\tau_2)$ for all equations $\tau_1 = \tau_2$ of E.
- A most general solution (most general unifier, mgu) of E is a unifier σ such that for every unifier ρ of E there is a substitution γ such that $\rho(x) = \gamma \circ \sigma(x)$ for all $x \in Vars(E).$

15/109

Unification Algorithm

- data structure: E =multiset of equations
- let $E \cup E'$ be the disjoint union of multisets
- $E[\tau/\alpha]$ is defined as $\{s[\tau/\alpha] \doteq t[\tau/\alpha] \mid (s \doteq t) \in E\}$.

Algorithm: Apply the following inference rules until

- a fail occurs, or
- no more rule is applicable

Unification Algorithm: Inference Rules

Unification Algorithm: Inference Rules (2)

Fail-rules:

$$FAIL1 \frac{E \cup \{(TC_1 \ \tau_1 \ \dots \ \tau_n) \doteq (TC_2 \ \tau'_1 \ \dots \ \tau'_m)\}}{\mathsf{Fail}}$$

$$FAIL2 \frac{E \cup \{(TC_1 \ \tau_1 \ \dots \ \tau_n) \doteq (\tau'_1 \rightarrow \tau'_2)\}}{\mathsf{Fail}}$$

$$FAIL3 \frac{E \cup \{(TC_1 \ \tau_1 \ \dots \ \tau_n) \doteq (TC_1 \ \tau_1 \ \dots \ \tau_n)\}}{\mathsf{Fail}}$$

$$FAIL3 \frac{E \cup \{(\tau'_1 \rightarrow \tau'_2) \doteq (TC_1 \ \tau_1 \ \dots \ \tau_n)\}}{\mathsf{Fail}}$$

17/109

Decomposition:

DECOMPOSE1
$$\frac{E \cup \{TC \ \tau_1 \ \dots \ \tau_n \doteq TC \ \tau'_1 \ \dots \ \tau'_n\}}{E \cup \{\tau_1 \doteq \tau'_1, \dots, \tau_n \doteq \tau'_n\}}$$
$$DECOMPOSE2 \frac{E \cup \{\tau_1 \to \tau_2 \doteq \tau'_1 \to \tau'_2\}}{E \cup \{\tau_1 \doteq \tau'_1, \tau_2 \doteq \tau'_2\}}$$

. Sabel | PLF – 05 Polymorphic Type Inference | WS 2024/25

Motivation Unification Expressions Supercombin

D. Sabel | PLF - 05 Polymorphic Type Inference | WS 2024/25

WS 2024/25 18/109

Motivation Unification Expressions Supercombinate

Unification Algorithm: Inference Rules (3)

Hochschule RheinMain

Orientation and Elimination:

$$\begin{array}{l} \text{ORIENT} \ \frac{E \cup \{\tau_1 \doteq \alpha\}}{E \cup \{\alpha \doteq \tau_1\}} \\ \text{if } \tau_1 \text{ is not a type variable and } \alpha \text{ is a type variable} \end{array}$$

$$\underset{E \text{ LIM }}{\text{ ELIM }} \frac{E \cup \{\alpha \doteq \alpha\}}{E}$$
 where α is a type variable

19/109

Unification Algorithm: Inference Rules (4)

Solve and Occurs-Check

Solve
$$\frac{E \cup \{\alpha \doteq \tau\}}{E[\tau/\alpha] \cup \{\alpha \doteq \tau\}}$$
if type variable α does not occur in τ , but α occurs in E

OCCURSCHECK
$$\frac{E \cup \{\alpha \doteq \tau\}}{\mathsf{Fail}}$$

if $\tau \neq \alpha$ and type variable α occurs in τ

Examples	Hochschule RheinMain	Examples	Hochschule RheinMain
		Example 2: $\{[d] \doteq c, a \rightarrow [a] \doteq \texttt{Bool} \rightarrow c\}$:	
		$\{[d] \stackrel{.}{=} c, a \rightarrow [a] \stackrel{.}{=} \texttt{Bool} \rightarrow$	$c\}$
Example 1: $\{(a \rightarrow b) \doteq \texttt{Bool} \rightarrow \texttt{Bool}\}$: $\{(a \rightarrow b) \doteq \texttt{Bool} \rightarrow \texttt{Bool}\}$	}	$\begin{array}{c} \text{Decompose2} \\ \hline \left\{ [d] \stackrel{.}{=} c, a \rightarrow [a] \stackrel{.}{=} \texttt{Bool} \rightarrow \\ \hline \left\{ [d] \stackrel{.}{=} c, a \stackrel{.}{=} \texttt{Bool}, [a] \stackrel{.}{=} c \right\} \end{array}$	<u>c}</u>
$\begin{array}{l} \text{Decompose2} \ \frac{\{(a \rightarrow b) \doteq \texttt{Bool} \rightarrow \texttt{Bool}\}}{\{a \doteq \texttt{Bool}, b \doteq \texttt{Bool}\}}\\ \end{array}$ The unifier is $\{a \mapsto \texttt{Bool}, b \mapsto \texttt{Bool}\}$	<u>~</u>	Decompose2 $\frac{\{[d] \doteq c, a \rightarrow [a] \doteq \texttt{Bool} \rightarrow c, a \rightarrow [a] = \texttt{Bool} \rightarrow c, a \rightarrow [a] = \texttt{Bool}, a \rightarrow c, a \rightarrow [a] = [$	<u>}</u>
		DECOMPOSE2 $\frac{\{[d] = c, a \rightarrow [a] = \text{Bool} \rightarrow c, a \rightarrow [a] = \text{Bool} \rightarrow c, a \rightarrow [a] = \text{Bool} \rightarrow c, a \rightarrow [a] = c, a$	<u>}</u>
el PLF – 05 Polymorphic Type Inference WS 2024/25 21/109 Motiva	tion Unification Expressions Supercombinators	D. Sabel PLF – 05 Polymorphic Type Inference WS 2024/25 22/109 SOLVE $\frac{1}{\{[d] = [a], a = \text{Bool}, c = [a]\}}$	Motivation Unification Expressions Supercombinat
		DECOMPOSE2 $\frac{\{[d] \doteq c, a \rightarrow [a] \doteq \texttt{Bool} \rightarrow c\}}{\{[d] \doteq c, a \doteq \texttt{Bool}, [a] \doteq c\}}$ ORIENT SOLVE	}
Examples	Hochschule RheinMain	Properties of the Unification Algorithm	Hochschule RheinMain
Example 3: $\{a \doteq [b], b \doteq [a]\}$		• The algorithm stops with Fail iff the input has no u	nifier
OCCURSCHECK $\frac{\begin{cases} a \doteq [b], b \doteq [a] \\ \\ \hline \{a \doteq [[a]], b \doteq [a] \\ \\ \hline Fail \end{cases}}$ Example 4: $\{a \rightarrow [b] \doteq a \rightarrow c \rightarrow d\}$		 The algorithm stops successfully if the input has a π The equation system E then is of the form {α₁ = τ pairwise distinct and α_i does not occur in any τ_j. The unifier is σ = {α₁ ↦ τ₁,, α_n ↦ τ_n}. 	
$\{a \to [b] \doteq a \to c \to d\}$		\bullet if the algorithm returns a unifier, then it is a most ${}_{g}$	general unifier
DECOMPOSE2 $\frac{\{a \rightarrow [b] \doteq a \rightarrow c \rightarrow d\}}{\{a = a, [b] = c \rightarrow d\}}$ FAIL2 $\frac{\{[b] = c \rightarrow d\}}{[b] = c \rightarrow d\}}$ Fail		• The order of rule application is irrelevant, no branch The algorithm can be implemented in a determinist	0
FAIL2 — Fail		• The algorithm terminates for every unification probl	

Properties of the Unification Algorithm (Cont'd)

• Types in the result can be of exponential size

E.g. $\{\alpha_n \doteq \alpha_{n-1} \rightarrow \alpha_{n-1}, \alpha_{n-1} \doteq \alpha_{n-2} \rightarrow \alpha_{n-2}, \dots, \alpha_1 \doteq \alpha_0 \rightarrow \alpha_0\}$ The unifier maps α_i to a type that contains $2^i - 1$ type arrows. E.g. $\sigma(\alpha_1) = \alpha_0 \to \alpha_0,$ $\sigma(\alpha_2) = (\alpha_0 \to \alpha_0) \to (\alpha_0 \to \alpha_0),$ $\sigma(\alpha_3) = ((\alpha_0 \to \alpha_0) \to (\alpha_0 \to \alpha_0)) \to ((\alpha_0 \to \alpha_0) \to (\alpha_0 \to \alpha_0))$

• Using sharing and an adapted Solve-rule, the unification algorithm can be implemented such that the runtime is $O(n \log n)$ The shared representation of the result types is O(n).

25/109

- The unification problem is P-complete. I.e.
- All PTIME-problems can be presented as unification problem
- Unification is not efficiently parallelizable.

D. Sabel PLF - 05 Polymorphic Type Inferen	nce WS 2024/25
--	------------------

Sabel | PLF - 05 Polymorphic Type Inference | WS 2024/25

Unificatio

Sketch of the Termination Proof

Let E be a unification problem and

- Var(E) = number of unsolved type variables in E a variable α is solved iff it occurs once in E as the left hand side of an equation (i.e. $E = E' \cup \{\alpha = \tau\}$ where $\alpha \notin Vars(E') \cup Vars(\tau)$).
- Size(E) = sum of all sizes of types on right-hand and left sides of equations in Ethe size of a type is tsize defined as: tsize(TV) = 1, $tsize(TC T_1 \ldots T_n) = 1 + \sum_{i=1}^n tsize(T_i)$ and $tsize(T_1 \rightarrow T_2) = 1 + tsize(T_1) + tsize(T_2)$
- OEq(E) = number of not oriented equations in E an equation is oriented, if it is of the form $\alpha = \tau$ where α is a type variable.
- M(E) = (Var(E), Size(E), OEq(E)), where M(Fail) := (-1, -1, -1).

abel | PLF – 05 Polymorphic Type Inference | WS 2024/25

Sketch of the Termination Proof (Cont'd)

Change of the measure per rule Var(E) Size(E)OEq(E)Fail-rules < <<OccursCheck < <<Decompose \leq < \leq Orient = < < Flim < Solve < Thus: for each rule $\frac{E}{E'}$ we have $M(E') <_{lex} M(E)$, where $<_{lex}$ is the lexicographic order on triples.

27/109

TYPING OF KFPTS+seq-EXPRESSIONS

Typing	Hochschule RheinMain	Rule for Application with Unification	Hochschule RheinMa
		$rac{s:: au_1, \ \ t:: au_2}{(s\ t):: \sigma(lpha)}$	
			turne unviciele
We now consider the		if σ is an mgu for $\tau_1 = \tau_2 \rightarrow \alpha$ and α is a fresh Example:	type variable
polymorphic typing of KFPTS+seq-expres	ssions		
For now, we ignore the typing of supercombinators		$\frac{\texttt{map}::(a \to b) \to [a] \to [b], \ \texttt{not}::\texttt{Bool} \to \texttt{Bool}}{(\texttt{map not})::\sigma(\alpha)}$	
		if σ is an mgu for $(a \rightarrow b) \rightarrow [a] \rightarrow [b] = (Bool - and \alpha$ is a fresh type variable	$\rightarrow \texttt{Bool}) \rightarrow \alpha$
		Unification results in $\{a \mapsto \texttt{Bool}, b \mapsto \texttt{Bool}, \alpha \mapsto [\texttt{Bool}] \rightarrow [\texttt{R}$	3001]}
		Thus: $\sigma(\alpha) = [\texttt{Bool}] \rightarrow [\texttt{Bool}]$	
PLF – 05 Polymorphic Type Inference WS 2024/25 29/109 Motiv	vation Unification Expressions Supercombinators		ivation Unification Expressions Supercombi
PLF – 05 Polymorphic Type Inference WS 2024/25 29/109 Motiv	vation Unification Expressions Supercombinators		ivation Unification Expressions Supercomb
	vation Unification Expressions Supercombinators		<u>×</u> _
	<u> </u>	D. Sabel PLF – 05 Polymorphic Type Inference WS 2024/25 30/109 Mot	<u>×</u>
Гуping with Binders	<u> </u>	D. Sabel PLF - 05 Polymorphic Type Inference WS 2024/25 30/109 Mot	Hochschule RheinMa
Typing with Binders How to type an abstraction $\lambda x.s$?	<u> </u>	D. Sabel PLF - 05 Polymorphic Type Inference WS 2024/25 30/109 Mot Typing with Binders (Cont'd) Informal rule for abstractions:	Hochschule RheinMa
Typing with Binders	<u> </u>	D. Sabel PLF - 05 Polymorphic Type Inference WS 2024/25 30/109 Mot Typing with Binders (Cont'd) Informal rule for abstractions: Typing s with assumption "x is of type τ_1 " res	Hochschule RheinMa
Typing with Binders How to type an abstraction $\lambda x.s$? • Type the body s • Let $s :: \tau$ • Then $\lambda x.s$ has a function type $\tau_1 \rightarrow \tau$	<u> </u>	D. Sabel PLF - 05 Polymorphic Type Inference WS 2024/25 30/109 Mot Typing with Binders (Cont'd) Informal rule for abstractions: $\frac{\text{Typing } s \text{ with assumption } "x \text{ is of type } \tau_1" \text{ res}}{\lambda x.s :: \tau_1 \to \tau}$	Hochschule RheinMa $ults \ in \ s :: au$
Typing with Binders How to type an abstraction $\lambda x.s$? • Type the body s • Let $s :: \tau$ • Then $\lambda x.s$ has a function type $\tau_1 \rightarrow \tau$ • How corresponds τ_1 with τ ?	<u> </u>	D. Sabel PLF - 05 Polymorphic Type Inference WS 2024/25 30/100 Mot Typing with Binders (Cont'd) Informal rule for abstractions: Typing s with assumption "x is of type τ_1 " res $\lambda x.s :: \tau_1 \to \tau$ How do we get τ_1 ?	Hochschule RheinMa $ults \ in \ s :: au$
Typing with Binders How to type an abstraction $\lambda x.s$? • Type the body s • Let $s :: \tau$ • Then $\lambda x.s$ has a function type $\tau_1 \rightarrow \tau$ • How corresponds τ_1 with τ ? • τ_1 is the type of x	<u> </u>	D. Sabel PLF - 05 Polymorphic Type Inference WS 2024/25 30/100 Mot Typing with Binders (Cont'd) Informal rule for abstractions: Typing s with assumption "x is of type τ_1 " res $\lambda x.s :: \tau_1 \rightarrow \tau$ How do we get τ_1 ? Start with the most general type for x, and restrict it by the	Hochschule RheinMa $ults$ in $s:: au$
Typing with Binders How to type an abstraction $\lambda x.s$? • Type the body s • Let $s :: \tau$ • Then $\lambda x.s$ has a function type $\tau_1 \rightarrow \tau$ • How corresponds τ_1 with τ ?	<u> </u>	D. Sabel PLF - 05 Polymorphic Type Inference WS 2024/25 30/100 Mot Typing with Binders (Cont'd) Informal rule for abstractions: $\frac{\text{Typing } s \text{ with assumption } "x \text{ is of type } \tau_1" \text{ res}}{\lambda x.s :: \tau_1 \rightarrow \tau}$ How do we get τ_1 ? Start with the most general type for x , and restrict it by the Example:	Hochschule RheinMa

Typing of Expressions

Typing judgement:

 $\Gamma \vdash s :: \tau, E$

Meaning:

Given a set Γ of type assumptions, for expression s the type τ and the type equations E can be derived

• Γ contains type assumptions for constructors, supercombinators, and variables

33/109

35/109

• In E type equations are collected, they will be unified later

Typing of Expressions (Cont'd)

Type derivation rules are written as

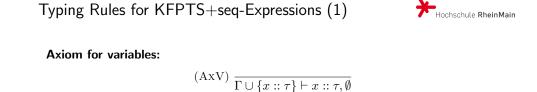
 $\frac{\mathsf{Premise}(\mathsf{s})}{\mathsf{Conclusion}}$

or more concrete:

Sabel | PLF - 05 Polymorphic Type Inference | WS 2024/25

 $\frac{\Gamma_1 \vdash s_1 :: \tau_1, E_1 \quad \dots \quad \Gamma_k \vdash s_k :: \tau_k, E_k}{\Gamma \vdash s :: \tau, E}$

34/109


Typing of Expressions (Cont'd)

Sabel | PLF - 05 Polymorphic Type Inference | WS 2024/25

Hochschule RheinMain

As a simplification:

for typing constructor applications $(c \ s_1 \ \dots \ s_n)$ they are treated like nested applications $(((c \ s_1) \ \dots) \ s_n))$

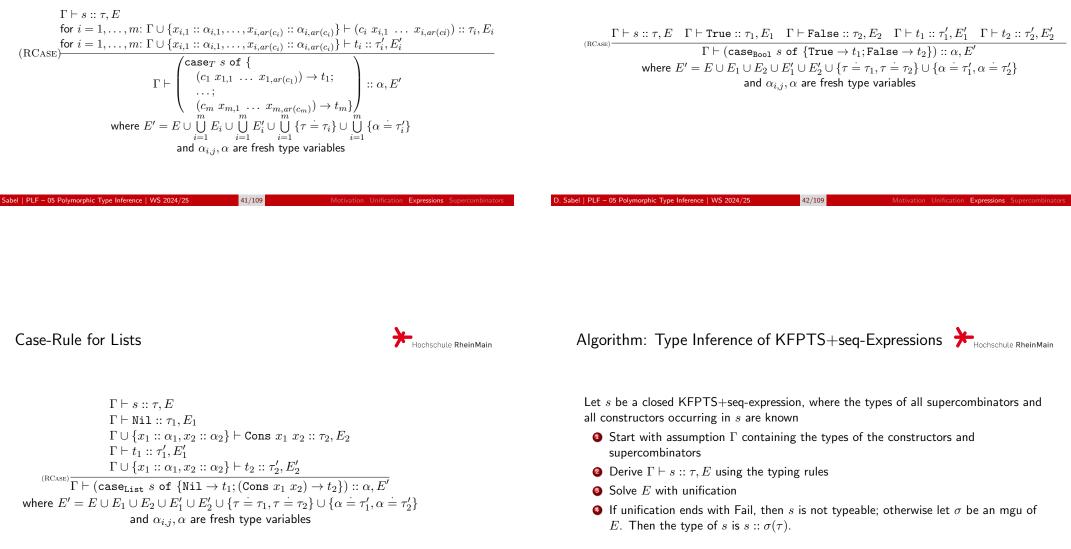
Axiom for constructors:

(AxC) $\frac{\Gamma \cup \{c :: \forall \alpha_1 \dots \alpha_n. \tau\} \vdash c :: \tau[\beta_1/\alpha_1, \dots, \beta_n/\alpha_n], \emptyset}{\text{where } \beta_i \text{ are fresh type variables}}$

36/109

• Note that each time a freshly renamed copy of the type is used!

Typing Rules for KFPTS+seq-Expressions (2) Typing Rules for KFPTS+seq-Expressions (3) Hochschule RheinMain Hochschule RheinMair Rule for applications: Axiom for supercombinators (with already know type): $(\text{RAPP}) \frac{\Gamma \vdash s :: \tau_1, E_1 \quad \text{und} \quad \Gamma \vdash t :: \tau_2, E_2}{\Gamma \vdash (s \ t) :: \alpha, E_1 \cup E_2 \cup \{\tau_1 \doteq \tau_2 \to \alpha\}}$ (AxSC) $\overline{\Gamma \cup \{SC :: \forall \alpha_1 \dots \alpha_n . \tau\} \vdash SC :: \tau[\beta_1/\alpha_1, \dots, \beta_n/\alpha_n], \emptyset}$ where α is a fresh type variable where β_i are fresh type variables Rule for seq: (RSEQ) $\frac{\Gamma \vdash s :: \tau_1, E_1 \quad \text{und} \quad \Gamma \vdash t :: \tau_2, E_2}{\Gamma \vdash (\text{seg } s \ t) :: \tau_2, E_1 \cup E_2}$ • Note that each time a freshly renamed copy of the type is used! Sabel | PLF - 05 Polymorphic Type Inference | WS 2024/25 37/109 Sabel | PLF - 05 Polymorphic Type Inference | WS 2024/25 38/109 Typing Rules for KFPTS+seq-Expressions (4) Typing Rules for KFPTS+seq-Expressions (5) Hochschule RheinMain Hochschule RheinMair Typing of case: ideas $\begin{pmatrix} \mathsf{case}_T \ s \ \mathsf{of} \ \{ \\ (c_1 \ x_{1,1} \ \dots \ x_{1,ar(c_1)}) \to t_1; \\ \dots; \\ (c_m \ x_{m-1} \ \dots \ x_{m-ar(c_m)}) \to t_m \end{pmatrix}$ Rule for abstractions: (RABS) $\frac{\Gamma \cup \{x :: \alpha\} \vdash s :: \tau, E}{\Gamma \vdash \lambda \tau s :: \alpha \to \tau E}$ where α is a fresh type variable • The patterns and the expression s are of the same type. This type matches the type index T of $case_T$ (due to the patterns) • The expressions t_1, \ldots, t_n are of the same type. This type is the type of the case-expression


39/109

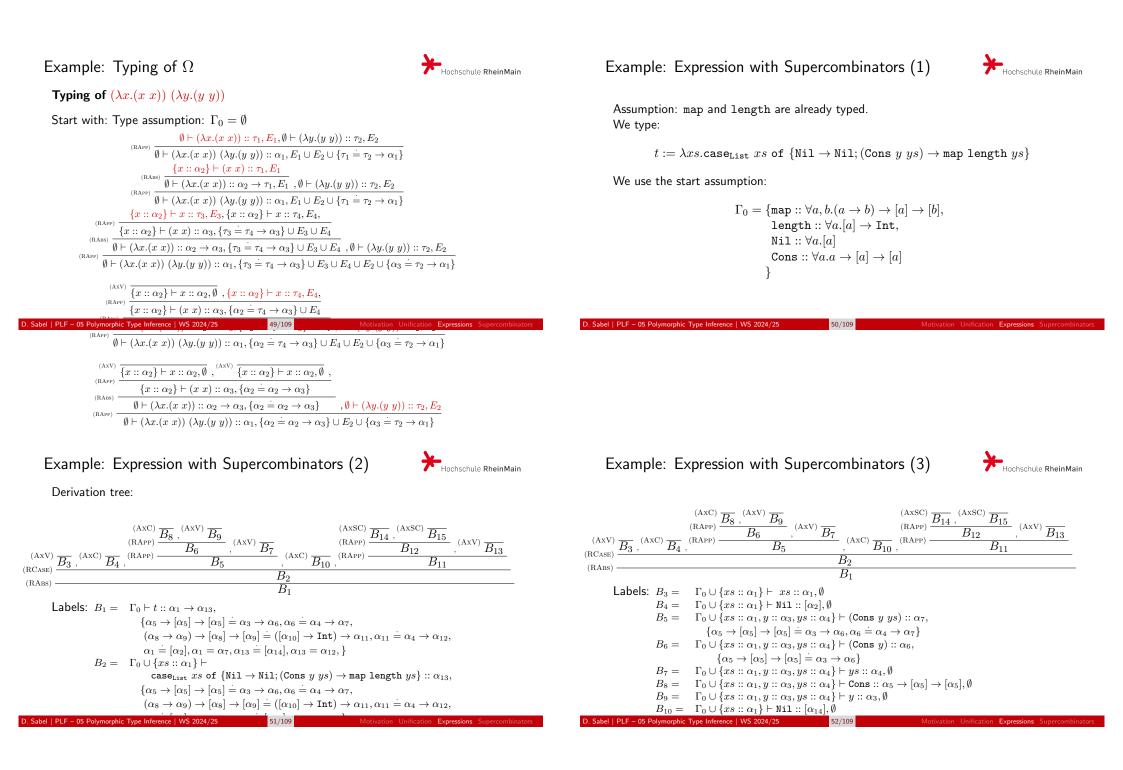
Case-Rule for Bool

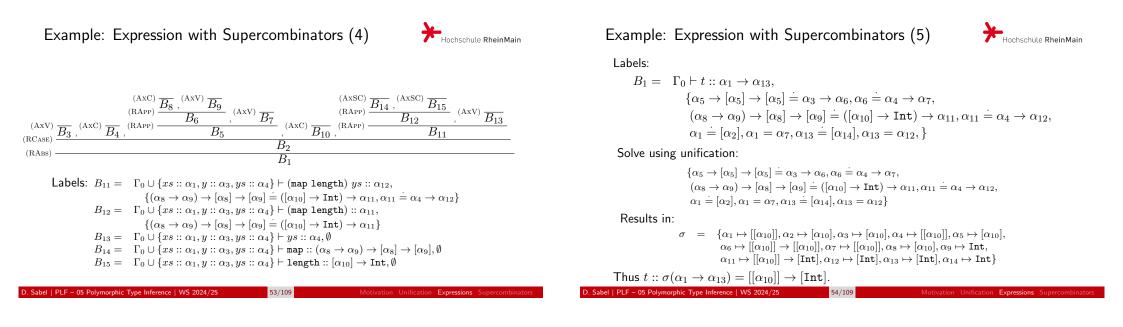
Rule for case:

43/109

Optimization

Well-Typedness


Additional rule to unify inbetween:


$$(\mathrm{RU}_{\mathrm{NIF}}) \; \frac{\Gamma \vdash s :: \tau, E}{\Gamma \vdash s :: \sigma(\tau), E_{\sigma}}$$
 where E_{σ} is the solved equation system of E and σ is the corresponding unifier

· · ·		
 otu	niti	nn
CIII		UII

A KFPTSP+seq-expression s is well-typed iff it can be typed by given algorithm.

D. Sabel PLF – 05 Polymorphic Type Inference WS 2024/25 45/109 Motivation Unification Expressions Supercombinators	D. Sabel PLF – 05 Polymorphic Type Inference WS 2024/25 46/109 Motivation Unification Expressions Supercombinators
Example: Typing of (Cons True Nil)	Example: Typing $\lambda x.x$ Hochschule RheinMain
Start with: Type assumption: $\Gamma_0 = \{ \text{Cons} :: \forall a.a \to [a] \to [a], \text{Nil} :: \forall a.[a], \text{True} :: \text{Bool} \}$ $\xrightarrow{(\text{RAPP})} \frac{\Gamma_0 \vdash (\text{Cons True}) :: \tau_1, E_1, \Gamma_0 \vdash \text{Nil} :: \tau_2, E_2}{\Gamma_0 \vdash (\text{Cons True Nil}) :: \alpha_4, E_1 \cup E_2 \cup \{\tau_1 \doteq \tau_2 \to \alpha_4\}}$	Start with: Type assumption: $\Gamma_0 = \emptyset$
$ \underset{(\text{RAPP})}{\overset{(\text{RAPP})}{\underset{(\text{RAPP})}{\overset{(\text{RAPP})}{\xrightarrow{(\text{APP})}}}} \frac{\Gamma_0 \vdash (\text{Cons True}) ::: \tau_1, E_1, \overset{(\text{AxC})}{\overrightarrow{\Gamma_0} \vdash \text{Nil} :: [\alpha_3], \emptyset}}{\Gamma_0 \vdash (\text{Cons True Nil}) ::: \alpha_4, E_1 \cup \emptyset \cup \{\tau_1 = [\alpha_3] \to \alpha_4\}} \\ \frac{\Gamma_0 \vdash \text{Cons} ::: \tau_3, E_3, \Gamma_0 \vdash \text{True} :: \tau_4, E_4}{\overrightarrow{\Gamma_0} \vdash (\text{Cons True}) ::: \alpha_2, \{\tau_3 = \tau_4 \to \alpha_2\} \cup E_3 \cup E_4}, \overset{(\text{AxC})}{\overrightarrow{\Gamma_0} \vdash \text{Nil} :: [\alpha_3], \emptyset} \\ \frac{\Gamma_0 \vdash (\text{Cons True}) :: \alpha_4, \{\tau_3 = \tau_4 \to \alpha_2\} \cup E_3 \cup E_4 \cup \{\alpha_2 = [\alpha_3] \to \alpha_4\}}{\overrightarrow{\Gamma_0} \vdash (\text{Cons True Nil}) :: \alpha_4, \{\tau_3 = \tau_4 \to \alpha_2\} \cup E_3 \cup E_4 \cup \{\alpha_2 = [\alpha_3] \to \alpha_4\}} $	$_{\text{(RABS)}} \frac{\Gamma_0 \cup \{x :: \alpha\} \vdash x :: \tau, E^{\text{(AXV)}}}{\Gamma_0 \vdash (\lambda x.x) :: \alpha \to \tau, E^{\text{(RABS)}}} \frac{\overline{\Gamma_0 \cup \{x :: \alpha\} \vdash x :: \alpha, \emptyset}}{\Gamma_0 \vdash (\lambda x.x) :: \alpha \to \alpha, \emptyset}$
$ \overset{(\text{RAPP})}{\underset{(\text{RAPP})}{(\text{RAPP})}} \frac{\overset{(\text{AxC})}{\Gamma_0 \vdash \text{Cons } :: \alpha_1 \to [\alpha_1] \to [\alpha_1], \emptyset} , \Gamma_0 \vdash \text{True} :: \tau_4, E_4}{\Gamma_0 \vdash (\text{Cons } \text{True}) :: \alpha_2, \{\alpha_1 \to [\alpha_1] \to [\alpha_1] = \tau_4 \to \alpha_2\} \cup E_4} , \overset{(\text{AxC})}{(\alpha_1 \to \alpha_2)} \frac{\Gamma_0 \vdash \text{Nil} :: [\alpha_3], \emptyset}{\Gamma_0 \vdash (\text{Cons } \text{True } \text{Nil}) :: \alpha_4, \{\alpha_1 \to [\alpha_1] \to [\alpha_1] = \tau_4 \to \alpha_2\} \cup E_4} \cup \{\alpha_2 \doteq [\alpha_3] \to \alpha_4\} $	Nothing to unify, thus $(\lambda x.x):: \alpha ightarrow lpha$
D. Sabel PLF - 05 Polymorphic Type Inference WS 2024/25 $ \frac{47/109}{0 + 1 \text{ free :: Bool}, \psi} \xrightarrow{\text{Motivation Unification Expressions Supercombinators}} \frac{(axc)}{\Gamma_0 \vdash (Cons True) :: \alpha_2, \{\alpha_1 \rightarrow [\alpha_1] \rightarrow [\alpha_1] \rightarrow [\alpha_1] = Bool \rightarrow \alpha_2\}}, \xrightarrow{(Axc)} \xrightarrow{\Gamma_0 \vdash Nil :: [\alpha_3], \emptyset} \frac{\Gamma_0 \vdash (Cons True Nil) :: \alpha_4, \{\alpha_1 \rightarrow [\alpha_1] \rightarrow [\alpha_1] \rightarrow [\alpha_1] = Bool \rightarrow \alpha_2\} \cup \{\alpha_2 \doteq [\alpha_3] \rightarrow \alpha_4\}} $	D. Sabel PLF – 05 Polymorphic Type Inference WS 2024/25 48/109 Motivation Unification Expressions Supercombinators

Example: Typing of Lambda-Bound Variables (1)

const is defined as

const :: $a \rightarrow b \rightarrow a$ const x y = x

Typing of $\lambda x.const(x True)(x 'A')$

Type assumption:

 $\Gamma_0 = \{ \texttt{const} :: \forall a, b.a \to b \to a, \texttt{True} :: \texttt{Bool}, \texttt{'A'} :: \texttt{Char} \}.$

55/10

Example: Typing of Lambda-Bound Variables (2)

	$\overline{\Gamma_1 \vdash x :: lpha_1} \ , \ \overline{\Gamma_1 \vdash \text{True} :: \text{Bool}}$	
	$1\vdash \texttt{const}::\alpha_2 \to \alpha_3 \to \alpha_2, \emptyset \ , \qquad \qquad$	$^{\scriptscriptstyle (\mathrm{AxV})}\overline{\Gamma_1dash x::lpha_1}\;, \stackrel{\scriptscriptstyle (\mathrm{AxC})}{,}\overline{\Gamma_1dash` a'::\mathtt{Char}}$
(RApp)	$\Gamma_1 \vdash \texttt{const} \ (x \ \texttt{True}) :: lpha_5, E_2$	$, \qquad \Gamma_1 \vdash (x , A') :: \alpha_6, E_3$
(RAPP)	$\Gamma_1 \vdash \texttt{const} \ (x \; \texttt{True}) \; (x \; \texttt{`A'}) :: lpha_7,$	E_4
(RABS)	$\Gamma_0 \vdash \lambda x.\texttt{const} \ (x \texttt{ True}) \ (x \texttt{ 'A'}) :: \alpha_1 -$	$\rightarrow \alpha_7, E_4$

where $\Gamma_1 = \Gamma_0 \cup \{x :: \alpha_1\}$ and:

 $\begin{array}{rcl} E_1 &=& \{\alpha_1 \doteq \texttt{Bool} \rightarrow \alpha_4\} \\ E_2 &=& \{\alpha_1 \doteq \texttt{Bool} \rightarrow \alpha_4, \alpha_2 \rightarrow \alpha_3 \rightarrow \alpha_2 \doteq \alpha_4 \rightarrow \alpha_5\} \\ E_3 &=& \{\alpha_1 \doteq \texttt{Char} \rightarrow \alpha_6\} \\ E_4 &=& \{\alpha_1 \doteq \texttt{Bool} \rightarrow \alpha_4, \alpha_2 \rightarrow \alpha_3 \rightarrow \alpha_2 \doteq \alpha_4 \rightarrow \alpha_5, \alpha_1 \doteq \texttt{Char} \rightarrow \alpha_6, \\ && \alpha_5 \doteq \alpha_6 \rightarrow \alpha_7\} \end{array}$

56/109

Unification fails, since $\mathtt{Char} \neq \mathtt{Bool}$

Example: Typing of Lambda-Bound Variables (3)

In Haskell-interpreter:

```
Main> x \rightarrow const (x True) (x 'A')
```

<interactive>:1:23: Couldn't match expected type 'Char' against inferred type 'Bool' Expected type: Char -> b Inferred type: Bool -> a In the second argument of 'const', namely '(x 'A')' In the expression: const (x True) (x 'A')

- Example shows: Lambda-bound variables are monomorphically typed!
- The same applies to variables bound by case-patterns
- Hence, one speaks of let-polymorphism, since only let-bound variables are typed polymorphically.
- In KFPTS+seq, there is no let, but supercombinators which are similar to let 57/109

Sabel | PLF – 05 Polymorphic Type Inference | WS 2024/25

. Hochschule **RheinMair**

TYPING SUPERCOMBINATORS

Recursive Supercombinators

Hochschule **RheinMain**

Definition

Let \mathcal{SC} be a set of supercombinators, $SC_i, SC_i \in \mathcal{SC}$

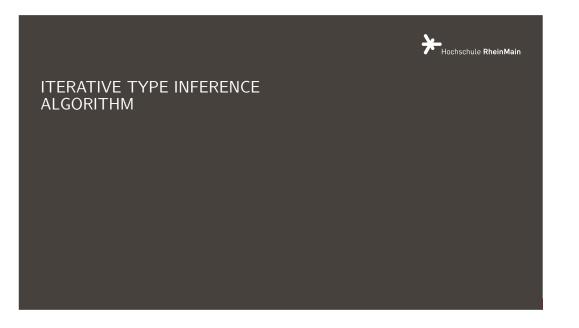
- $SC_i \leq SC_i$ iff the rhs of the definition of SC_i uses the supercombinator SC_i .
- \preceq^+ is the transitive closure of \preceq (and \preceq^* is the reflexive-transitive closure)
- SC_i is directly recursive iff $SC_i \preceq SC_i$ and recursive iff $SC_i \preceq^+ SC_i$
- SC_1, \ldots, SC_m are mutually recursive if $SC_i \preceq^+ SC_j$ for all $i, j \in \{1, \ldots, m\}$.

Example

f x y = if x < 1 then y else f (x-y) (y + h x) g x = if x=0 then (f 1 x) + (h 2) else 10 h x = if x=1 then 0 else g (x-1) $k \ge y = if = 1$ then y else k (x-1) (y+(g x))

f and k are directly recursive, f, q, h are mutually recursive, f, q, h, k are recursive 50/100

Typing Non-Recursive Supercombinators


- Non-recursive Supercombinators can be typed like abstractions
- Notation: $\Gamma \vdash_{\mathcal{T}} SC :: \tau$ means: With assumption Γ , SC can be typed with type τ

Typing rule for (closed) non-recursive supercombinators:

(RSC1) $\frac{\Gamma \cup \{x_1 :: \alpha_1, \dots, x_n :: \alpha_n\} \vdash s :: \tau, E}{\Gamma \vdash \tau SC :: \forall \mathcal{X}. \sigma(\alpha_1 \to \dots \to \alpha_n \to \tau)}$ if σ is the solution of E. $SC x_1 \ldots x_n = s$ is the definition of SCand SC is non-recursive. and $\mathcal{X} = Vars(\sigma(\alpha_1 \to \ldots \to \alpha_n \to \tau))$

). Sabel | PLE - 05 Polymorphic Type Inference | WS 2024/25

Example: Typing of (.)	Hochschule RheinMain	Typing of Recursive Supercombinators	Hochschule RheinMain
(.) $f g x = f (g x)$			
Γ_0 is empty, since no constructors or supercombinators occur			
${}^{\scriptscriptstyle (\mathrm{AXV})}\overline{\Gamma_1 \vdash g :: \alpha_2, \emptyset} \; , {}^{\scriptscriptstyle (\mathrm{AXV})}\overline{\Gamma_1 \vdash x :: \alpha_3, \emptyset}$			
$ \overset{(\text{AXV})}{\underset{(\text{RAPP})}{(\text{RAPP})}{(\text{RAPP})}} \underbrace{ \frac{\Gamma_1 \vdash f :: \alpha_1, \emptyset}{\Gamma_1 \vdash f :: \alpha_1, \emptyset}, \overset{(\text{AXV})}{\underset{(\text{RAPP})}{(\text{RAPP})}} \underbrace{ \frac{\Gamma_1 \vdash (f : g : x) :: \alpha_2, \emptyset}{\Gamma_1 \vdash (g : x) :: \alpha_2, \emptyset}, \overset{(\text{AXV})}{(\text{AXV})} \underbrace{ \frac{\Gamma_1 \vdash (f : g : x)}{\Gamma_1 \vdash (g : x) :: \alpha_2, \emptyset}, \overset{(\text{AXV})}{(\text{APP})} \underbrace{ \frac{\Gamma_1 \vdash (f : g : x)}{\Gamma_1 \vdash (g : x) :: \alpha_2, \emptyset}, \overset{(\text{AXV})}{(\text{APP})} \underbrace{ \frac{\Gamma_1 \vdash (f : g : x)}{\Gamma_1 \vdash (g : x) :: \alpha_2, \emptyset}, \overset{(\text{AXV})}{(\text{APP})} \underbrace{ \frac{\Gamma_1 \vdash (f : g : x)}{\Gamma_1 \vdash (g : x) :: \alpha_2, \emptyset}, \overset{(\text{AXV})}{(\text{APP})} \underbrace{ \frac{\Gamma_1 \vdash (f : g : x)}{\Gamma_1 \vdash (g : x) :: \alpha_2, \emptyset}, \overset{(\text{AXV})}{(\text{APP})} \underbrace{ \frac{\Gamma_1 \vdash (f : g : x)}{\Gamma_1 \vdash (g : x) :: \alpha_2, \emptyset}, \overset{(\text{AXV})}{(\text{APP})} \underbrace{ \frac{\Gamma_1 \vdash (f : g : x)}{\Gamma_1 \vdash (g : x) :: \alpha_2, \{\alpha_2 : \alpha_3 \to \alpha_5, \alpha_1 : \alpha_2 \to \alpha_3 \to \alpha_4\}} } \underbrace{ \frac{\Gamma_1 \vdash (f : g : x)}{(\text{APP})} \underbrace{ \frac{\Gamma_1 \vdash (f : g : x)}{(\text{APP})}, \overset{(\text{AXV})}{(\text{APP})} \underbrace{ \frac{\Gamma_1 \vdash (f : g : x)}{(\text{APP})}, \overset{(\text{AXV})}{(\text{APP})} \underbrace{ \frac{\Gamma_1 \vdash (g : x)}{(\text{APP})}, \overset{(\text{APP})}{(\text{APP})} \underbrace{ \frac{\Gamma_1 \vdash (g : x)}{(\text{APP})}, \overset{(\text{APP})}{(\text{APP})}, \overset{(\text{APP})}{(\text{APP})} \underbrace{ \frac{\Gamma_1 \vdash (g : x)}{(APP$		• Assume $SC x_1 \ldots x_n = e$ and SC occurs in e (SC is	recursive)
$(\text{RAPP}) \overline{\Gamma_1 \vdash (f \ (g \ x)) :: \alpha_4, \{\alpha_2 \doteq \alpha_3 \to \alpha_5, \alpha_1 = \alpha_5 \to \alpha_4\}}$	-	• What is the problem when typing SC?	
$\emptyset \vdash_T (.) :: \forall \mathcal{X}.\sigma(\alpha_1 \to \alpha_2 \to \alpha_3 \to \alpha_4)$	_	• To type the body e , the type of SC must be known!	
where $\Gamma_1 = \{f:: lpha_1, g:: lpha_2, x:: lpha_3\}$			
Unification results in $\sigma = \{\alpha_2 \mapsto \alpha_3 \to \alpha_5, \alpha_1 \mapsto \alpha_5 \to \alpha_4\}.$			
Thus: $\sigma(\alpha_1 \to \alpha_2 \to \alpha_3 \to \alpha_4) = (\alpha_5 \to \alpha_4) \to (\alpha_3 \to \alpha_5) \to \alpha_3 \to \alpha_4$			
Now $\mathcal{X} = \{ lpha_3, lpha_4, lpha_5 \}$ and we may rename this to:			
(.) :: $\forall a, b, c.(a \rightarrow b) \rightarrow (c \rightarrow a) \rightarrow c \rightarrow b$			
I PLF – 05 Polymorphic Type Inference WS 2024/25 61/109 Motivation Un	ification Expressions Supercombinators	D. Sabel PLF – 05 Polymorphic Type Inference WS 2024/25 62/109 Mot	tivation Unification Expressions Supercombination

Idea of the Iterative Type Inference
Start with the most general type for SC (i.e. a type variable)
Type the body using this assumption
This results in a newly derived type for SC
Continue (iterate) with this type
Stop if new type = old type:

Then we found a consistent type assumption

Most general type: Type T, such that $sem(T) = \{all monomorphic types\}.$

64/109

The type α satisfies this (as quantified type $\forall \alpha.\alpha$)

D. Sabel | PLF – 05 Polymorphic Type Inference | WS 2024/25

Iterative Type Inference

Rule to compute new assumptions:

 $(\text{SCREC}) \ \frac{\Gamma \cup \{x_1 :: \alpha_1, \dots, x_n :: \alpha_n\} \vdash s :: \tau, E}{\Gamma \vdash_T SC :: \sigma(\alpha_1 \to \dots \alpha_n \to \tau)}$ if $SC \ x_1 \ \dots \ x_n = s$ is the definition of SC, σ the solution of E

The same as RSC1, but Γ has to contain an assumption for SC

Because of mutual recursion:

- Dependency analysis of the supercombinators
- Compute the strongly connected components in the call graph
- Let \simeq be the equivalence relation of $\preceq^*.$ The strongly connected components are the equivalence classes of \simeq
- Each equivalence class is typed together

The order of the typing is according to \preceq^* modulo \simeq .

oel PLF – 05 Polymorphic Type Inference WS 2024/25 65/109 Motivat	tion Unification Expressions Supercombinators	D. Sabel PLF - 05 Polymorphic Type Inference WS 2024/25 66/109 Motivation Unification Expre	essions Supercombina
Example	Hochschule RheinMain	Iterative Type Inference Algorithm	chschule RheinMain
f x y = if x \le 1 then y else f (x-y) (y + g x) g x = if x=0 then (f 1 x) + (h 2) else 10 h x = if x=1 then 0 else h (x-1) k x y = if x=1 then y else k (x-1) (y+(f x y)) The call graph is: $\int_{h} \int_{k} \int_{k} f \int_{k} \int_{k} f \int_{k} \int_{k$		Iterative Type Inference Algorithm Input: Mutually recursive supercombinators SC_1, \ldots, SC_m (a) Start assumption Γ contains types of the constructors and the already the (b) $\Gamma_0 := \Gamma \cup \{SC_1 ::: \forall \alpha_1. \alpha_1, \ldots, SC_m ::: \forall \alpha_m. \alpha_m\}$ and $j = 0$. (c) For each SC_i $(i = 1, \ldots, m)$ apply rule (SCREC) for Γ_j , to infer the type (c) If the <i>m</i> type derivations are successful (for all $i: \Gamma_j \vdash_T SC_i ::: \tau_i$) Then quantify: $SC_1 ::: \forall \mathcal{X}_1. \tau_1, \ldots, SC_m :: \forall \mathcal{X}_m. \tau_m$ Set $\Gamma_{j+1} := \Gamma \cup \{SC_1 ::: \forall \mathcal{X}_1. \tau_1, \ldots, SC_m :: \forall \mathcal{X}_m. \tau_m\}$ (c) If $\Gamma_j \neq \Gamma_{j+1}$, then set $j := j + 1$ and go to step (3). Otherwise, $\Gamma_j = \Gamma_{j+1}$, and thus Γ_j is consistent . Output: quantified polymorphic types of the SC_i of the consistent type ass	/pe of SC_i .
The equivalence classes (ordered) are $\{h\} \leq^+ \{f, g\} \leq^+ \{k\}$.		If a single unification fails, then SC_1,\ldots,SC_m are not typeable.	

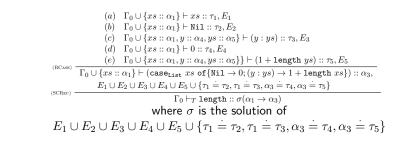
Properties of the Algorithm

- The computed types are unique up to renaming for each iteration and thus: if the algorithm terminates, then the types of the supercombinators are unique.
- In each step: newly computed types are more specific or remain the same (computation is monotonic w.r.t. sem: "sem $(T_{j+1}) \subseteq sem(T_j)$ ")
- If the algorithm does not terminate, then no polymorphic type for the supercombinators exists (since computation is monotonic w.r.t. sem and starts with the largest set)
- The algorithm computes the greatest fixpoint w.r.t. sem: Suppose that F is the operator that performs one iteration of the algorithm on the set of monomorphic types. If the algorithm stops with set S, then F(S) = S(so S is a fixpoint) and S is the largest set M such that F(M) = M.
- This shows, that the iterative type inference algorithm computes the most general polymorphic type (w.r.t. sem)

69/109

```
. Sabel | PLF – 05 Polymorphic Type Inference | WS 2024/25
```

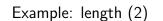
Motivation Unification Expressions Supercombin


Example: length (1)

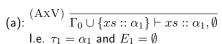
length $xs = \mathsf{case}_{\mathsf{List}} xs \text{ of} \{\mathsf{Nil} \to 0; (y:ys) \to 1 + \mathsf{length} ys\}$

Assumption:

$$\begin{split} \Gamma &= \{ \texttt{Nil} :: \forall a.[a], (:) :: \forall a.a \to [a] \to [a], 0, 1 :: \texttt{Int}, (+) :: \texttt{Int} \to \texttt{Int} \to \texttt{Int} \} \\ \texttt{1.Iteration:} \ \Gamma_0 &= \Gamma \cup \{\texttt{length} :: \forall \alpha.\alpha \} \end{split}$$


D. Sabel | PLF – 05 Polymorphic Type Inference | WS 2024/25

Example: length (3)


Motivation Unification Expressions Supercombinators

Hoohcobulo **PhoinMai**r

Supercombin

(b): $(AxC) = \Gamma_0 \cup \{xs :: \alpha_1\} \vdash \text{Nil} :: [\alpha_6], \emptyset$ I.e. $\tau_2 = [\alpha_6] \text{ and } E_2 = \emptyset$

$$\begin{array}{l} (\operatorname{AxC}) & \xrightarrow{\Gamma'_0 \quad \vdash \ (:) \, :: \, \alpha_9 \rightarrow [\alpha_9] \rightarrow [\alpha_9], \emptyset}, (\operatorname{AxV}) \\ (\operatorname{RAPP}) & \xrightarrow{\Gamma'_0 \vdash \ (:) \, :: \, \alpha_9 \rightarrow [\alpha_9] \rightarrow [\alpha_9], \emptyset}, (\operatorname{AxV}) \\ \xrightarrow{\Gamma'_0 \vdash \ (:) \, y) \, :: \, \alpha_8, \{\alpha_9 \rightarrow [\alpha_9] \rightarrow [\alpha_9] \doteq \alpha_4 \rightarrow \alpha_8\}}, (\operatorname{AxV}) \\ \xrightarrow{\Gamma'_0 \vdash \ (y \, : \, ys) \, :: \, \alpha_7, \{\alpha_9 \rightarrow [\alpha_9] \rightarrow [\alpha_9] \doteq \alpha_4 \rightarrow \alpha_8, \alpha_8 \doteq \alpha_5 \rightarrow \alpha_7\}} \\ \operatorname{where} \ \Gamma_0 = \Gamma_0 \cup \{xs \, :: \, \alpha_1, y \, :: \, \alpha_4, ys \, :: \, \alpha_5\} \\ \operatorname{I.e.,.} \ \tau_3 = \alpha_7 \ \text{and} \ E_3 = \{\alpha_9 \rightarrow [\alpha_9] \rightarrow [\alpha_9] \doteq \alpha_4 \rightarrow \alpha_8, \alpha_8 \doteq \alpha_5 \rightarrow \alpha_7\} \end{array}$$

71/109

$$(d) \xrightarrow{(AxC)} \overline{\Gamma_0 \cup \{xs :: \alpha_1\} \vdash 0 :: Int, \emptyset} \\ I.e. \ \tau_4 = Int \ und \ E_4 = \emptyset \\ (e) \xrightarrow{(AxC)} \overline{\Gamma_0' \vdash (+) :: Int \to Int \to Int, \emptyset, \xrightarrow{(AxC)} \overline{\Gamma_0' \vdash 1 :: Int, \emptyset}}_{\Gamma_0' \vdash (+) :: \alpha_{11}, \{Int \to Int \to Int \doteq Int \to \alpha_{11}\}}, \xrightarrow{(AxC)} \overline{\Gamma_0' \vdash (length :: \alpha_{13}, \emptyset, \xrightarrow{(AxV)} \overline{\Gamma_0' \vdash (ys) :: \alpha_{5}, \emptyset}}_{\Gamma_0' \vdash (length ys) :: \alpha_{12}, \{\alpha_{13} \doteq \alpha_5 \to \alpha_{12}\}}, \xrightarrow{(AxV)} \overline{\Gamma_0' \vdash (ys) :: \alpha_{5}, \emptyset}}_{V_0 \vdash (Ingth ys) :: \alpha_{12}, \{\alpha_{13} \doteq \alpha_5 \to \alpha_{12}\}}, \xrightarrow{(AxV)} \overline{\Gamma_0' \vdash (ys) :: \alpha_{5}, \emptyset}}_{V_0 \vdash (Ingth ys) :: \alpha_{12}, \{\alpha_{13} \doteq \alpha_5 \to \alpha_{12}\}}, \xrightarrow{(AxV)} \overline{\Gamma_0' \vdash (ys) :: \alpha_{5}, \emptyset}}_{V_0 \vdash (Ingth ys) :: \alpha_{12}, \{\alpha_{13} \doteq \alpha_5 \to \alpha_{12}\}}, \xrightarrow{(AxV)} \overline{\Gamma_0' \vdash (ys) :: \alpha_{5}, \emptyset}}_{V_0 \vdash (Ingth ys) :: \alpha_{12}, \{\alpha_{13} \doteq \alpha_5 \to \alpha_{12}\}}, \xrightarrow{(AxV)} \overline{\Gamma_0' \vdash (ys) :: \alpha_{5}, \emptyset}}_{V_0 \vdash (Ingth ys) :: \alpha_{12}, \{\alpha_{13} \doteq \alpha_5 \to \alpha_{12}\}}, \xrightarrow{(AxV)} \overline{\Gamma_0' \vdash (ys) :: \alpha_{5}, \emptyset}}_{V_0 \vdash (Ingth ys) :: \alpha_{12}, \{\alpha_{13} \doteq \alpha_5 \to \alpha_{12}\}}, \xrightarrow{(AxV)} \overline{\Gamma_0' \vdash (ys) :: \alpha_{5}, \emptyset}}_{V_0 \vdash (Ingth ys) :: \alpha_{12}, \{\alpha_{13} \doteq \alpha_5 \to \alpha_{12}, \alpha_{11} \doteq \alpha_{12} \to \alpha_{10}\}}$$

Example: length (4)

In summary: $\Gamma_0 \vdash_T \texttt{length} :: \sigma(\alpha_1 \to \alpha_3)$ where σ is the solution of

$$\begin{split} \{\alpha_9 \to [\alpha_9] \to [\alpha_9] \doteq \alpha_4 \to \alpha_8, \alpha_8 \doteq \alpha_5 \to \alpha_7, \\ \texttt{Int} \to \texttt{Int} \to \texttt{Int} \doteq \texttt{Int} \to \alpha_{11}, \alpha_{13} \doteq \alpha_5 \to \alpha_{12}, \alpha_{11} \doteq \alpha_{12} \to \alpha_{10}, \\ \alpha_1 \doteq [\alpha_6], \alpha_1 \doteq \alpha_7, \alpha_3 \doteq \texttt{Int}, \alpha_3 \doteq \alpha_{10} \rbrace \end{split}$$

Unification results in the unifier:

 $\{\alpha_1 \mapsto [\alpha_9], \alpha_3 \mapsto \texttt{Int}, \alpha_4 \mapsto \alpha_9, \alpha_5 \mapsto [\alpha_9], \alpha_6 \mapsto \alpha_9, \alpha_7 \mapsto [\alpha_9], \alpha_8 \mapsto [\alpha_9] \to [\alpha_9], \alpha_{10} \mapsto \texttt{Int}, \alpha_{11} \mapsto \texttt{Int} \to \texttt{Int}, \alpha_{12} \mapsto \texttt{Int}, \alpha_{13} \mapsto [\alpha_9] \to \texttt{Int}\}$

73/10

thus $\sigma(\alpha_1 \to \alpha_3) = [\alpha_9] \to \texttt{Int}$

 $\Gamma_1 = \Gamma \cup \{ \texttt{length} :: \forall \alpha. [\alpha] \to \texttt{Int} \}$

Since $\Gamma_0 \neq \Gamma_1$ another iteration is required. 2. iteration: It results in the same type, hence Γ_1 is consistent.

Couldn't match expected type '[t]' against inferred type 'Char'

In the second argument of '(:)', namely '(g (g 'c'))'

Reason: If the type is present, Haskell performs type checking and no type inference.

75/109

D. Sabel | PLF – 05 Polymorphic Type Inference | WS 2024/25

Haskell cannot infer a type for g: Prelude> let g x = 1:(g(g 'c'))

Expected type: Char -> [t]
Inferred type: Char -> Char

In the expression: 1 : (g (g 'c')) But: Haskell can check the type if it is given: let g::a -> [Int]; g x = 1:(g(g 'c'))

Then g is treated like an already typed supercombinator.

<interactive>:1:13:

Prelude> :t g
g :: a -> [Int]

Sabel | PLF - 05 Polymorphic Type Inference | WS 2024/25

Motivation Unification Expr

Iterative Typing is More General than Haskell

Example

g x = 1 : (g (g 'c'))

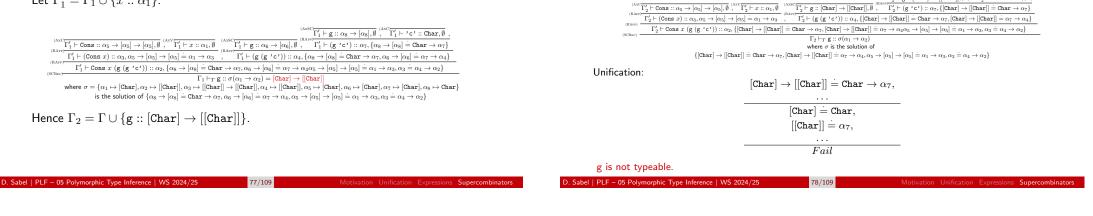
 $\Gamma = \{1 :: \text{Int}, \text{Cons} :: \forall a.a \to [a] \to [a], \text{'c'} :: \text{Char}\}$ $\Gamma_0 = \Gamma \cup \{g :: \forall \alpha.\alpha\} \text{ (and } \Gamma'_0 = \Gamma_0 \cup \{x :: \alpha_1\}):$

(AxC)	$\frac{\Gamma_{0}^{(\mathrm{ASC})}}{\Gamma_{0}^{'} \vdash Cons :: \alpha_{5} \rightarrow [\alpha_{5}] \rightarrow [\alpha_{5}], \emptyset} \stackrel{(\mathrm{ASC})}{, 1} \frac{\Gamma_{0}^{'} \vdash 1 :: Int, \emptyset}{\Gamma_{0}^{'} \vdash 1 :: Int, \emptyset} \xrightarrow{(\mathrm{ASSC})} \frac{\Gamma_{0}^{'} \vdash g :: \alpha_{5}, \emptyset}{\Gamma_{0}^{'} \vdash g :: \alpha_{6}, \emptyset} \stackrel{(\mathrm{ASSC})}{, 1} \frac{\Gamma_{0}^{'} \vdash (g^{'} \circ^{'}) :: \alpha_{7}, \{\alpha_{8} \doteq Char \rightarrow \alpha_{7}\}}{\Gamma_{0}^{'} \vdash g :: \alpha_{7}, \{\alpha_{8} \doteq Char \rightarrow \alpha_{7}\}}$
(RAPP)	$ \begin{array}{l} \Gamma_{0}^{\prime} \vdash \operatorname{Cons} :: \alpha_{5} \to [\alpha_{5}], \overline{\emptyset}, \stackrel{(AxC)}{,} \overline{\Gamma_{0}^{\prime} \vdash 1} :: \operatorname{Int}, \overline{\emptyset} \\ \Gamma_{0}^{\prime} \vdash (\operatorname{Cons} 1) :: \alpha_{3}, \alpha_{5} \to [\alpha_{5}] \to [\alpha_{5}] \doteq \operatorname{Int} \to \alpha_{3} \\ \Gamma_{0}^{\prime} \vdash (\operatorname{Cons} 1) :: \alpha_{3}, \alpha_{5} \to [\alpha_{5}] \to [\alpha_{5}] \doteq \operatorname{Int} \to \alpha_{3} \\ \Gamma_{0}^{\prime} \vdash (\alpha_{5}) \stackrel{(BAPP)}{,} \Gamma_{0}^{\prime} \vdash (g (g \circ c)) :: \alpha_{7}, \{\alpha_{8} \doteq \operatorname{Char} \to \alpha_{7}, \alpha_{6} \doteq \alpha_{7} \to \alpha_{4} \\ \Gamma_{0}^{\prime} \vdash (\alpha_{5}) \stackrel{(BAPP)}{,} \Gamma_{0}^{\prime} \vdash (g (g \circ c)) :: \alpha_{7}, \{\alpha_{8} \doteq \operatorname{Char} \to \alpha_{7}, \alpha_{6} \doteq \alpha_{7} \to \alpha_{4}, \alpha_{5} \to [\alpha_{5}] \doteq \operatorname{Int} \to \alpha_{3}, \alpha_{3} \doteq \alpha_{4} \to \alpha_{2} \\ \end{array} \right) $
(RAPP) =	$\Gamma_0' \vdash \texttt{Cons 1} (\texttt{g} (\texttt{g'c'})) :: \alpha_2, \{\alpha_8 = \texttt{Char} \rightarrow \alpha_7, \alpha_6 = \alpha_7 \rightarrow \alpha_4, \alpha_5 \rightarrow [\alpha_5] \rightarrow [\alpha_5] = \texttt{Int} \rightarrow \alpha_3, \alpha_3 = \alpha_4 \rightarrow \alpha_2 \}$
wh	$\begin{split} & \Gamma_0 \vdash_T \mathbf{g} :: \sigma(\alpha_1 \to \alpha_2) = \alpha_1 \to [\texttt{Int}] \\ \text{ere } \sigma = \{\alpha_2 \mapsto [\texttt{Int}], \alpha_3 \mapsto [\texttt{Int}] \to [\texttt{Int}], \alpha_4 \mapsto [\texttt{Int}], \alpha_5 \mapsto \texttt{Int}, \alpha_6 \mapsto \alpha_7 \to [\texttt{Int}], \alpha_8 \mapsto \texttt{Char} \to \alpha_7\} \text{ is the solution of } \\ \{\alpha_8 \doteq \texttt{Char} \to \alpha_7, \alpha_6 \doteq \alpha_7 \to \alpha_4, \alpha_5 \to [\alpha_5] \to [\alpha_5] \doteq \texttt{Int} \to \alpha_3, \alpha_3 \doteq \alpha_4 \to \alpha_2\} \end{split}$
.e.]	$\Gamma_1 = \Gamma \cup \{ g :: \forall \alpha. \alpha \to [\texttt{Int}] \}.$
The	next iteration shows that Γ_1 is consistent.

D. Sabel	PLF – 05 Polymorphic	lype Inference	WS 2024/25	


```
g x = x : (g (g 'c'))
```

- $\Gamma = \{ \operatorname{Cons} :: \forall a.a \to [a] \to [a], \text{'c'} :: \operatorname{Char} \}.$
- $\Gamma_0 = \Gamma \cup \{ \mathbf{g} :: \forall \alpha. \alpha \}$


$^{(AxSC)}\overline{\Gamma_0'}$ + g :: α_8, \emptyset $^{(AxC)}\overline{\Gamma_0'}$ + c' :: Char, \emptyset ,
$(Asc) \overline{\Gamma'_0 \vdash Cons} :: \alpha_5 \to [\alpha_5] \to [\alpha_5], \emptyset, (Asc) \overline{\Gamma'_0 \vdash x} :: \alpha_1, \emptyset \xrightarrow{(Asc)} \overline{\Gamma'_0 \vdash g} :: \alpha_6, \emptyset, (Asc) \overline{\Gamma'_0 \vdash g} :: \alpha_7, \{\alpha_8 \doteq Char \to \alpha_7\}$
$ \frac{\Gamma_{(\mathrm{RAPP})}}{\Gamma_{0}^{\prime} \vdash (\mathrm{Cons}\; x) :: \alpha_{3}, \alpha_{5} \rightarrow [\alpha_{5}] \rightarrow [\alpha_{5}] \doteq \alpha_{1} \rightarrow \alpha_{3} \qquad , \qquad $
$\Gamma_{0}^{(\text{IRAPP})} \xrightarrow{\Gamma_{0}' \vdash \text{Cons } x \text{ (g (g 'c'))} :: \alpha_{2}, \{\alpha_{8} = \text{Char} \rightarrow \alpha_{7}, \alpha_{6} = \alpha_{7} \rightarrow \alpha_{4}, \alpha_{5} \rightarrow [\alpha_{5}] \rightarrow [\alpha_{5}] = \alpha_{1} \rightarrow \alpha_{3}, \alpha_{3} = \alpha_{4} \rightarrow \alpha_{2}\}$
$ \begin{array}{l} \Gamma_0 \vdash_T \mathbf{g} :: \sigma(\alpha_1 \to \alpha_2) = \mathbf{\alpha_5} \to [\mathbf{\alpha_5}] \\ \text{where } \sigma = \{\alpha_1 \mapsto \alpha_5, \alpha_2 \mapsto [\alpha_5], \alpha_3 \mapsto [\alpha_5] \to [\alpha_5], \alpha_4 \mapsto [\alpha_5], \alpha_6 \mapsto \alpha_7 \to [\alpha_5], \alpha_8 \mapsto \text{Char} \to \alpha_7\} \text{ is the solution of } \\ \{\alpha_8 = \text{Char} \to \alpha_7, \alpha_6 \doteq \alpha_7 \to \alpha_4, \alpha_5 \to [\alpha_5] \to [\alpha_5] \doteq \alpha_1 \to \alpha_3, \alpha_3 \doteq \alpha_4 \to \alpha_2\} \end{array} $
I.e. $\Gamma_1 = \Gamma \cup \{ g :: \forall \alpha. \alpha \to [\alpha] \}.$

```
D. Sabel | PLF – 05 Polymorphic Type Inference | WS 2024/25
```

Example: Multiple Iterations are Required (2)

Since $\Gamma_0 \neq \Gamma_1$ another iteration is required. Let $\Gamma'_1 = \Gamma_1 \cup \{x :: \alpha_1\}$:

The Example Shows ...

Non-Termination of the Iterative Typing (1)

Example: Multiple Iterations are Required (3)

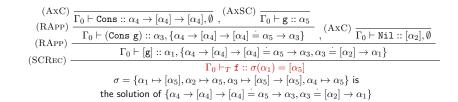
Since $\Gamma_1 \neq \Gamma_2$ another iteration is required:

Let $\Gamma'_2 = \Gamma_2 \cup \{x :: \alpha_1\}$:

, Hochschule **RheinMair**

 $\overset{\scriptscriptstyle{\mathrm{GC}}}{\Gamma_2'}\vdash g::[\mathtt{Char}]\rightarrow [[\mathtt{Char}]], \emptyset \overset{\scriptscriptstyle{\mathrm{(AxC)}}}{,} \overset{\scriptscriptstyle{\mathrm{(AxC)}}}{\Gamma_2'}\vdash \texttt{'c'}::\mathtt{Char}, \emptyset$

Proposition

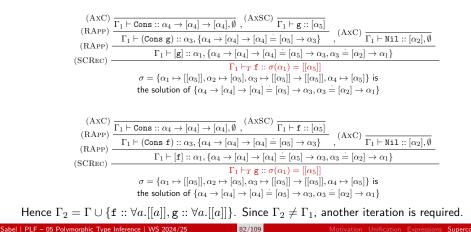

The iterative type inference algorithm sometimes requires multiple iterations until a result (untyped / consistent assumption) is found.

Note: There are examples where multiple iterations are required to find a consistent type assumption.

79/109

f = [g]g = [f]

> Since $\mathbf{f} \simeq \mathbf{g}$, the iterative typing types \mathbf{f} and \mathbf{g} together. $\Gamma = \{ \mathtt{Cons} :: \forall a.a \rightarrow [a] \rightarrow [a], \mathtt{Nil} : \forall a.a \}.$ $\Gamma_0 = \Gamma \cup \{ \mathbf{f} :: \forall \alpha.\alpha, \mathbf{g} :: \forall \alpha.\alpha \}$


Non-Termination of the Iterative Typing (2)

Non-Termination of the Iterative Typing (3)

Hochschule RheinMai

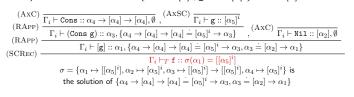
	D. Sabel	PLF - 05 Polymorphic	Type Inference	WS 2024/25
--	----------	----------------------	----------------	------------

(AxC)

(RAPP)

(RAPP) -

(SCREC) -

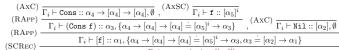

Motivation Unification Expressions Supercombina

Non-Termination of the Iterative Typing (4)

Conjecture: The iterative typing does not terminate

Proof (by induction): iteration i: $\Gamma_i = \Gamma \cup \{ \mathbf{f} :: \forall a.[a]^i, \mathbf{g} :: \forall a.[a]^i \}$ where $[a]^i$ i-fold nested list

 $\stackrel{0}{\longrightarrow} \frac{\overline{\Gamma_0 \vdash \mathtt{Cons} :: \alpha_4 \to [\alpha_4] \to [\alpha_4], \emptyset}}{\Gamma_0 \vdash (\mathtt{Cons} \ \mathtt{f}) :: \alpha_3, \{\alpha_4 \to [\alpha_4] \to [\alpha_4] \doteq \alpha_5 \to \alpha_3\}} \ , (\mathrm{AxC}) \ \overline{\Gamma_0 \vdash \mathtt{Nil} :: [\alpha_2], \emptyset}$


 $\Gamma_0 \vdash [\texttt{f}] :: \alpha_1, \{\alpha_4 \to [\alpha_4] \to [\alpha_4] \doteq \alpha_5 \to \alpha_3, \alpha_3 \doteq [\alpha_2] \to \alpha_1\}$

 $\Gamma_0 \vdash_T \mathbf{g} :: \sigma(\alpha_1) = [\alpha_5]$

 $\sigma = \{\alpha_1 \mapsto [\alpha_5], \alpha_2 \mapsto \alpha_5, \alpha_3 \mapsto [\alpha_5] \to [\alpha_5], \alpha_4 \mapsto \alpha_5\}$ is the solution of $\{\alpha_4 \to [\alpha_4] \to [\alpha_4] \doteq \alpha_5 \to \alpha_3, \alpha_3 \doteq [\alpha_2] \to \alpha_1\}$

Hence, $\Gamma_1 = \Gamma \cup \{ \mathbf{f} :: \forall a.[a], \mathbf{g} :: \forall a.[a] \}$. Since $\Gamma_1 \neq \Gamma_0$, another iteration is required.

81/109

$$\begin{split} & \Gamma_i \vdash_T \mathbf{g} :: \sigma(\alpha_1) = [[\alpha_5]^i] \\ & \sigma = \{\alpha_1 \mapsto [[\alpha_5]^i], \alpha_2 \mapsto [\alpha_5]^i, \alpha_3 \mapsto [[\alpha_5]^i] \to [[\alpha_5]^i], \alpha_4 \mapsto [\alpha_5]^i\} \text{ is } \\ & \text{the solution of } \{\alpha_4 \to [\alpha_4] \to [\alpha_4] \doteq [\alpha_5]^i \to \alpha_3, \alpha_3 \doteq [\alpha_2] \to \alpha_1 \} \end{split}$$

I.e. $\Gamma_{i+1} = \Gamma \cup \{ \mathbf{f} :: \forall a.[a]^{i+1}, \mathbf{g} :: \forall a.[a]^{i+1} \}.$

D. Sabel | PLF – 05 Polymorphic Type Inference | WS 2024/25

Proposition

The iterative type inference algorithm may not terminate.

Moreover, the following holds (the proof can be found in the literature)

Theorem

Iterative typing is undecidable.

This follows from the undecidability of so-called semi unification of first-order terms. (works of Kfoury, Tiuryn, and Urzyczyn and Henglein)

Call Hierachy

Type Safety

A typed program calculus fulfills type safety iff

Sabel | PLF - 05 Polymorphic Type Inference | WS 2024/25

• Typing is preserved by reduction (type preservation):

For monomorphic type τ : If $t :: \tau$ and $t \to t'$, then $t' :: \tau$

This includes the case that a polymorphic type becomes more general.

86/109

88/109

• Typed, closed expressions are reducible if they are not a WHNF (well-typed programs don't get stuck) (progress lemma)

Type Safety (2) Type Safety (3) Hochschule RheinMain Hochschule RheinMai Lemma Let *s* be a directly dynamically untyped KFPTS+seq-expression. Then the iterative typing cannot type s. Lemma (Type Preservation) Proof. Assume *s* is directly dynamically untyped: Let *s* be a well-typed and closed KFPTSP+seq-expression (of a well-typed • $s = R[case_T (c \ s_1 \ \dots \ s_n) \text{ of } Alts] \text{ and } c \text{ is not of type } T.$ KFPTSP+seq-program) and $s \xrightarrow{name} s'$. Then s' is well-typed. iterative typing adds equations ensuring the types of $(c \ s_1 \ \dots \ s_n)$ and of the patterns in Alts are equal. Since c is not of type T, unification fails. Proof (Sketch): Inspect the (β) -, $(SC - \beta)$ - and (case)-reduction and the typing of • $s = R[case_T \lambda x.t \text{ of } Alts]$: iterative typing add ensuring the type of $\lambda x.t$ is the expressions before and after the reduction. equal to the type of the patterns in *Alts*, and that it is a function type. Unification fails, since the patterns do not have a function type. • $R[(c \ s_1 \ \dots \ s_{ar(c)}) \ t]: ((c \ s_1 \ \dots \ s_{ar(c)}) \ t)$ is typed as a nested application

R[(c s₁ ... s_{ar(c)}) t]: ((c s₁ ... s_{ar(c)}) t) is typed as a nested application (((c s₁) ...) s_{ar(c)}) t). Equations are added implying that c can receive at most ar(c) arguments. Since there is one more argument, unification will fail.

87/109

• The iterative typing does not need the information of the call hierarchy:

The same types are inferred independently in which order they are computed

85/109

| PLF - 05 Polymorphic Type Inference | WS 2024/25

Type Safety (4)

Type Safety (5)

The two lemmas show:

Proposition

Let s be a well-typed, closed KFPTSP+seq-expression. Then s is not dynamically untyped.

Progress Lemma

Let s be a well-typed, closed KFPTSP+seq-expression. Then

- s is a WHNF, or
- s is call-by-name-reducible, i.e. $s \xrightarrow{name} s'$ for some s'.

• Let SC_1, \ldots, SC_m be mutually recursive supercombinators

Milner-Step: Type SC_1, \ldots, SC_m together with the type assumption: $\Gamma_M = \Gamma \cup \{SC_1 :: \tau_1, \ldots, SC_m :: \tau_m\}$; without quantifiers

Proof. A closed KFPTS+seq-expression s is irreducible iff s is a WHNF or s is directly dynamically untyped (and thus not well-typed).


89/109

• Let $\Gamma_i \vdash_T SC_1 :: \tau_1, \ldots, \Gamma_i \vdash_T SC_m :: \tau_m$ be the types derived in the i^{th} iteration

91/109

D. Sabel | PLF – 05 Polymorphic Type Inference | WS 2024/25

Motivation Unification Expressions Supercombinate

Sabel | PLF – 05 Polymorphic Type Inference | WS 2024/25

Motivation Unification Expressions Supercombinators

Forcing Termination of Type Inference

and the following rule (SCRecM)

Forcing Termination (Cont'd)

Hochschule RheinMain

$$(\text{SCRECM}) \frac{\text{for } i = 1, \dots, m: \Gamma_M \cup \{x_{i,1} :: \alpha_{i,1}, \dots, x_{i,n_i} :: \alpha_{i,n_i}\} \vdash s_i :: \tau'_i, E_i}{\Gamma_M \vdash_T \text{ for } i = 1, \dots, m \ SC_i :: \sigma(\alpha_{i,1} \to \dots \to \alpha_{i,n_i} \to \tau'_i)}$$

if σ is the solution of $E_1 \cup \dots \cup E_m \cup \bigcup_{i=1}^m \{\tau_i \stackrel{\cdot}{=} \alpha_{i,1} \to \dots \to \alpha_{i,n_i} \to \tau'_i\}$
and $SC_1 x_{1,1} \dots x_{1,n_1} = s_1$
 \dots
 $SC_m x_{m,1} \dots x_{m,n_m} = s_m$

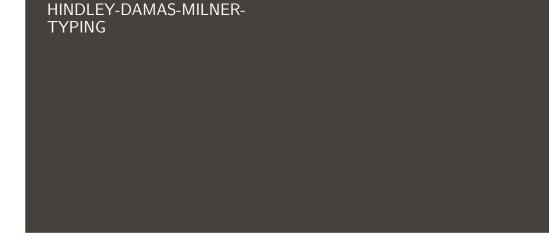
90/109

are the definitions of SC_1,\ldots,SC_m

As additional typing rule we add:

$$\begin{array}{l} (\text{AxSC2}) \\ \hline \Gamma \cup \{SC::\tau\} \vdash SC::\tau \\ \text{if } \tau \text{ is not universally quantified} \end{array}$$

Forcing Termination (Cont'd)


Differences to an iterative step:

- Types of to-be-typed SCs are not quantified
- No copies of these types are made
- At the end, the assumed types are unified with the derived types

This ensures: the new type assumption derived by (SCRECM) is always consistent

93/109

After a Milner-step the iterative algorithm terminates.

Sabel | PLF – 05 Polymorphic Type Inference | WS 2024/25

The Hindley-Damas-Milner Typing

The algorithm is similar to iterative typing, with the differences:

- Only one iteration step is performed
- The type assumption assumes for each to-be-typed supercombinator SC_i the type α_i (without quantifier!)

95/109

• consistency is enfored by additional unification equations

Haskell uses Hindley-Damas-Milner-typing

The Hindley-Damas-Milner Type Inference Algorithm + Hochschule RheinMair

 SC_1,\ldots,SC_m are mutually recursive supercombinators of an equivalence class w.r.t. \simeq supercombinators strictly less than SC_1, \ldots, SC_m w.r.t. \leq are already typed

- **Q** Assumption Γ contains types of the already typed SCs and of the constructors (all universally quantified)
- **2** Type SC_1, \ldots, SC_m with the rule (MSCREC):

$$(\text{MSCREC}) \xrightarrow{\text{for } i = 1, \dots, m: \ \Gamma \cup \{SC_1 ::: \beta_1, \dots, SC_m ::: \beta_m\} \cup \{x_{i,1} ::: \alpha_{i,1}, \dots, x_{i,n_i} ::: \alpha_{i,n_i}\} \vdash s_i ::: \tau_i, E_i}{\Gamma \vdash_T \text{ for } i = 1, \dots, m \ SC_i ::: \sigma(\alpha_{i,1} \to \dots \to \alpha_{i,n_i} \to \tau_i)}$$

if σ solution of $E_1 \cup \dots \cup E_m \cup \bigcup_{i=1}^m \{\beta_i \doteq \alpha_{i,1} \to \dots \to \alpha_{i,n_i} \to \tau_i\}$
and $SC_1 x_{1,1} \dots x_{1,n_i} = s_1$ are the definitions of SC_1, \dots, SC_m

nd
$$SC_1 \ x_{1,1} \ \ldots \ x_{1,n_1} = s_1$$
 are the definitions of SC_1, \ldots, SC_m

96/109

$$SC_m x_{m,1} \ldots x_{m,n_m} = s_m$$

If unification fails, then SC_1, \ldots, SC_m are not Hindley-Damas-Milner typeable

The Hindley-Damas-Milner Type Inference Algorithm + Hochschule RheinMain

Simplification: Rule for one single recursive supercombinator:

$$(\text{MSCREC1}) \frac{\Gamma \cup \{SC :: \beta, x_1 :: \alpha_1, \dots, x_n :: \alpha_n\} \vdash s :: \tau, E}{\Gamma \vdash_T SC :: \sigma(\alpha_1 \to \dots \to \alpha_n \to \tau)}$$

if σ is the solution of $E \cup \{\beta \doteq \alpha_1 \to \dots \to \alpha_n \to \tau\}$
and $SC x_1 \dots x_n = s$ is the definition of SC

99/109

Properties of the Hindley-Damas-Milner Typing

- the algorithm terminates
- the algorithm computes unique types
- Hindley-Damas-Milner typing is decidable
- the decision problem whether an expression is Hindley-Damas-Milner-typeable is DEXPTIME-complete
- the types may be more restrictive than the iterative type, in particular, an expression may be iteratively typeable but not Hindley-Damas-Milner-typeable.
- The Hindley-Damas-Milner algorithm needs knowledge of the call hierarchy of the SCs:

It may return more restrictive types if the typing is not along the hierarchy

abel PLF – 05 Polymorphic Type Inference WS 2024/25 97/109 Motiva	ation Unification Expressions Supercombinators	D. Sabel PLF – 05 Polymorphic Type Inference WS 2024/25	98/109 Motivation Uni	ification Expressions Supercombinato
Example	Hochschule RheinMain	Example: map		Hochschule RheinMain
<pre>Sometimes exponentially many type variables are required: (let x0 = \z->z in (let x1 = (x0,x0) in (let x2 = (x1,x1) ins (let x3 = (x2,x2) in</pre>		$\begin{pmatrix} d \end{pmatrix} \Gamma \vdash Nil \\ \begin{pmatrix} e \end{pmatrix} \Gamma' \vdash (Co) \end{pmatrix}$	$[a] \}$ $\inf \Gamma' = \Gamma \cup \{y : \alpha_3, ys :: \alpha_4\}.$ $:: \tau_1, E_1$ $:: \tau_2, E_2$ $:: \tau_4, E_4$ $:: \tau_4, E_4$ $:: \tau_4, E_4$ $:: \tau_5, E_4$ $:: \tau_6, E_5$	
Requires 2^6 type variables, the generalized example requires 2^r	<i>n</i> .	$(\Pi \cup \Gamma \cup \Gamma)$ $\Gamma \vdash_T \Gamma$	$\begin{split} & \text{if}_{i}(\operatorname{Cons} y g \circ (\operatorname{inp} f g \circ)) ::: \alpha, \beta, \alpha_{3} \\ & \text{ii}_{i}(\operatorname{Cons} y g \circ \rightarrow \operatorname{Cons} y (\operatorname{map} f g \circ)) ::: \alpha, E \\ & \text{map} :: \sigma(\alpha_{1} \to \alpha_{2} \to \alpha) \\ & \text{if}_{i} E \cup \{\beta \doteq \alpha_{1} \to \alpha_{2} \to \alpha\} \\ & \stackrel{.}{=} \tau_{2}, \tau_{1} \doteq \tau_{3}, \alpha \doteq \tau_{4}, \alpha \doteq \tau_{5} \}. \end{split}$	-

Supercombinato

Example: map (2)	Hochschule RheinMain	Example: map (3)	Hochschule RheinMa
(a) $ \begin{array}{c} {}^{(\mathrm{AxV})} \ \overline{\Gamma \vdash xs :: \alpha_2, \emptyset} \\ \text{I.e.} \ \tau_1 = \alpha_2 \ \text{and} \ E_1 = \emptyset. \end{array} $		(e)	
(b) $ \begin{array}{l} \stackrel{(AxC)}{(AxC)} \overline{\Gamma \vdash \mathtt{Nil} :: [\alpha_5], \emptyset} \\ \mathbf{i.e.} \ \tau_2 = [\alpha_5] \ \mathtt{and} \ E_2 = \emptyset \\ \\ \stackrel{(AxC)}{(RAPP)} \overline{\frac{\Gamma' \vdash \mathtt{Cons} :: \alpha_6 \rightarrow [\alpha_6] \rightarrow [\alpha_6]}{\Gamma' \vdash (\mathtt{Cons} \ y) :: \alpha_7, \{\alpha_6 \rightarrow [\alpha_6] \rightarrow [\alpha_6] = \alpha_3 \rightarrow \alpha_7\}} , \stackrel{(AxV)}{(AxV)} \overline{\frac{\Gamma' \vdash ys :: \alpha_4, \emptyset}{\Gamma' \vdash ys :: \alpha_4 \rightarrow \alpha_8}} \\ \text{(c)} \end{array} $		$ \begin{array}{c} {}_{\{\alpha_{11} \doteq \alpha_{13} \rightarrow \alpha_{14}, \alpha_{10} \rightarrow [\alpha_{10}] \rightarrow [\alpha_{10}] \doteq \alpha_{15} \rightarrow \alpha_{14} \\ \text{l.e.} \ \tau_5 = \alpha_{14} \ \text{and} \\ E_5 = \{\alpha_{11} \doteq \alpha_{13} \rightarrow \alpha_{14}, \alpha_{10} \rightarrow [\alpha_{10}] \rightarrow [\alpha_{10}] \doteq \alpha_{15} \\ \end{array} $	$ \begin{array}{l} \overbrace{\alpha_{15}}^{(\mathrm{RA}re)}, \overbrace{\Gamma' \vdash (\mathrm{map}\;f):: \alpha_{12}, \{\beta \doteq \alpha_1 \rightarrow \alpha_{12}\}}^{(\mathrm{RA}re)}, \overbrace{\Gamma' \vdash (\mathrm{map}\;f\;ys):: \alpha_{12}, \{\beta \doteq \alpha_1 \rightarrow \alpha_{12}\}}^{(\mathrm{A}xV)}, \overbrace{\Gamma' \vdash ys:: \alpha_4}^{(\mathrm{T} \lor f \lor ys):: \alpha_{13}, \{\beta \doteq \alpha_1 \rightarrow \alpha_{12}, \alpha_{12} \doteq \alpha_4 \rightarrow \alpha_{13}\}}^{(\mathrm{RA}re)} \\ \overbrace{(\mathrm{map}\;f\;ys):: \alpha_{14},}^{(\mathrm{RA}re)}, \overbrace{\Gamma' \vdash (\mathrm{map}\;f\;ys):: \alpha_{13}, \{\beta \doteq \alpha_1 \rightarrow \alpha_{12}, \alpha_{12} \doteq \alpha_4 \rightarrow \alpha_{13}\}}^{(\mathrm{RA}re)} \end{array} $
I.e. $\tau_3 = \alpha_8$ and $E_3 = \{\alpha_6 \to [\alpha_6] \to [\alpha_6] \doteq \alpha_3 \to \alpha_7, \alpha_7 \doteq \alpha_4 \to \alpha_7\}$ (d) (AxC) $\overline{\Gamma \vdash \text{Nil} :: [\alpha_9], \emptyset}$	¥8}	$\beta \doteq \alpha_1 \rightarrow \alpha_{12}, \alpha_{12} \doteq \alpha_4 \rightarrow \alpha_{13} \}$	
PLF – 05 Polymorphic Type Inference WS 2024/25 101/109 Motivation			
	Hochschule RheinMain	Examples Known from Iterative Typin	ופ →Hochschute RheinMa
Example: map (4)	Hochschule RheinMain	g x = x : (g (g 'c'))	
Example: map (4)	$_3 ightarrow lpha_{14},$		erations) $a] ightarrow [a], `c` :: Char \}.$
Example: map (4) Unify equations $E \cup \{\beta \doteq \alpha_1 \rightarrow \alpha_2 \rightarrow \alpha\}$: $\{\alpha_6 \rightarrow [\alpha_6] \rightarrow [\alpha_6] \doteq \alpha_3 \rightarrow \alpha_7, \alpha_7 \doteq \alpha_4 \rightarrow \alpha_8, \alpha_{11} \doteq \alpha_{12}, \alpha_{10} \rightarrow [\alpha_{10}] \rightarrow [\alpha_{10}] \doteq \alpha_{15} \rightarrow \alpha_{11}, \alpha_1 \doteq \alpha_3 \rightarrow \alpha_{15}, \beta \doteq \alpha_{12} \doteq \alpha_4 \rightarrow \alpha_{13}, \alpha_2 \equiv [\alpha_5], \alpha_2 \doteq \alpha_8, \alpha \doteq \alpha_9, \alpha \doteq \alpha_{14}, \beta = \alpha_{12} = \alpha_4 \rightarrow \alpha_{13}, \alpha_2 = [\alpha_5], \alpha_2 = \alpha_8, \alpha \doteq \alpha_9, \alpha = \alpha_{14}, \beta = \alpha_{12} = \alpha_{13} = \alpha_{13}$	$_3 ightarrow lpha_{14},$	g x = x : (g (g 'c')) Iterative typing results in Fail (after multiple it Hindley-Damas-Milner: $\Gamma = \{Cons :: \forall a.a \rightarrow [$ Let $\Gamma' = \Gamma \cup \{x :: \alpha, g :: \beta\}.$	erations) $a] \rightarrow [a], \mathbf{'c'} :: \mathbf{Char}\}.$ (AXSC2) $\overline{\Gamma \vdash \mathbf{g} :: \beta, \emptyset}$, (AXC) $\overline{\Gamma \vdash \mathbf{'c'} :: \mathbf{Char}, \emptyset}$,
Example: map (4) Unify equations $E \cup \{\beta \doteq \alpha_1 \rightarrow \alpha_2 \rightarrow \alpha\}$: $\{\alpha_6 \rightarrow [\alpha_6] \rightarrow [\alpha_6] \doteq \alpha_3 \rightarrow \alpha_7, \alpha_7 \doteq \alpha_4 \rightarrow \alpha_8, \alpha_{11} \doteq \alpha_{12}, \alpha_{10} \rightarrow [\alpha_{10}] \rightarrow [\alpha_{10}] = \alpha_{15} \rightarrow \alpha_{11}, \alpha_1 \doteq \alpha_3 \rightarrow \alpha_{15}, \beta \doteq \alpha_{12} \doteq \alpha_4 \rightarrow \alpha_{13}, \alpha_2 \equiv [\alpha_5], \alpha_2 \doteq \alpha_8, \alpha \doteq \alpha_9, \alpha \doteq \alpha_{14}, \beta \equiv \alpha_1 \rightarrow \alpha_2 \rightarrow \alpha\}$	$a \rightarrow \alpha_{14},$ = $\alpha_1 \rightarrow \alpha_{12},$ $[\alpha_6], \alpha_5 \mapsto \alpha_6,$ $\rightarrow [\alpha_{10}],$	$g \ \mathbf{x} = \mathbf{x} : (g \ (g \ 'c'))$ Iterative typing results in Fail (after multiple it Hindley-Damas-Milner: $\Gamma = \{\text{Cons} :: \forall a.a \rightarrow [$ Let $\Gamma' = \Gamma \cup \{x :: \alpha, g :: \beta\}.$	erations) $a] \rightarrow [a], \mathbf{'c'} :: \mathbf{Char}\}.$ $\stackrel{(AxSC2)}{\vdash g :: \beta, \emptyset} \xrightarrow{[(AxSC2)]{\Gamma \vdash \mathbf{'c'} :: \mathbf{Char}, \emptyset}, \frac{(AxC)}{\Gamma \vdash (\mathbf{g'}, \mathbf{c'}) :: \alpha_7, \{\beta \doteq \mathbf{Char} \rightarrow \alpha_7\}}}{\Gamma \vdash (g (\mathbf{g'c'})) :: \alpha_4, \{\beta \doteq \mathbf{Char} \rightarrow \alpha_7, \beta \doteq \alpha_7 \rightarrow \alpha_4\}}$ $\xrightarrow{r} \rightarrow \alpha_4 \alpha_5 \rightarrow [\alpha_5] \rightarrow [\alpha_5] \doteq \alpha \rightarrow \alpha_3, \alpha_3 \doteq \alpha_4 \rightarrow \alpha_2\}}$ $(\alpha \rightarrow \alpha_2)$

D. Sabel | PLF – 05 Polymorphic Type Inference | WS 2024/25 104/109

Examples Known from Iterative Typing (2)

g x = 1 : (g (g 'c'))

Iterative type: $g :: \forall \alpha . \alpha \rightarrow [Int]$ Hindley-Damas-Milner: Let $\Gamma' = \Gamma \cup \{x :: \alpha, g :: \beta\}.$

	$^{(\mathrm{AxSC2})} \overline{\Gamma \vdash g :: \beta, \emptyset} \ , \ \overline{\Gamma \vdash 'c' :: \mathrm{Char}, \emptyset} \ ,$				
	$\Gamma \vdash Cons :: \alpha_5 \to [\alpha_5] \to [\alpha_5], \emptyset , \qquad \Gamma \vdash 1 :: Int, \emptyset \qquad \qquad \Gamma \vdash g :: \beta, \emptyset , \qquad \Gamma \vdash (g 'c') :: \alpha_7, \{\beta = Char \to \alpha_7\}$				
(RApp)	$\overline{\Gamma \vdash (\texttt{Cons } 1) :: \alpha_3, \alpha_5 \rightarrow [\alpha_5] \rightarrow [\alpha_5] \doteq \texttt{Int} \rightarrow \alpha_3} , \qquad \overline{\Gamma \vdash (\texttt{g } (\texttt{g 'c'})) :: \alpha_4, \{\beta \doteq \texttt{Char} \rightarrow \alpha_7, \beta \doteq \alpha_7 \rightarrow \alpha_4\}}$				
(.)	$\Gamma \vdash \texttt{Cons 1} (\texttt{g} (\texttt{g'c'})) :: \alpha_2, \{\beta \doteq \texttt{Char} \rightarrow \alpha_7, \beta \doteq \alpha_7 \rightarrow \alpha_4, \alpha_5 \rightarrow [\alpha_5] \Rightarrow [\alpha_5] \doteq \texttt{Int} \rightarrow \alpha_3, \alpha_3 \doteq \alpha_4 \rightarrow \alpha_2\}$				
$\frac{\Gamma \vdash_T g :: \sigma(\alpha \to \alpha_2)}{\text{where } \sigma \text{ is the solution of}}$					
$\{\beta = \texttt{Char} \to \alpha_7, \beta = \alpha_7 \to \alpha_4, \alpha_5 \to [\alpha_5] \to [\alpha_5] = \texttt{Int} \to \alpha_3, \alpha_3 = \alpha_4 \to \alpha_2, \beta = \alpha \to \alpha_2\}$					

105/10

Unification fails since $[\alpha_5] =$ Char should be unified.

Sabel | PLF - 05 Polymorphic Type Inference | WS 2024/25

data Tree a = Empty | Node a (Tree a) (Tree a) Types of the constructors Empty :: $\forall a$. Tree a and Node :: $\forall a. a \rightarrow \text{Tree } a \rightarrow \text{Tree } a \rightarrow \text{Tree } a$

g x y = Node True (g x y) (g y x)Hindley-Damas-Milner: $g :: a \rightarrow a \rightarrow \text{Tree Bool}$ Iterative Typing:: $g :: a \rightarrow b \rightarrow \text{Tree Bool}$

Reason:

Iterative typing uses copies of the type of g,

Sabel | PLF - 05 Polymorphic Type Inference | WS 2024/25

Hindley-Damas-Milner Typing and Type Safety

- Hindley-Damas-Milner typed programs are always iteratively typeable
- Hence Hindley-Damas-Milner typed programs are never dynamically untyped
- Also the progress lemma holds: Hindley-Damas-Milner typed (closed) programs are WHNFs or reducible

107/10

Hindley-Damas-Milner Typing and Type Safety (2)


```
• Type-Preservation: Does hold in KFPTSP+seq, but not in Hskell:
```

106/10

```
let x = (let y = \langle u \rangle z in (y [], y True, seq x True))
    z = const z x
```

in x

is Hindley-Damas-Milner typeable

After a so-called (*llet*)-reduction: let x = (y [], y True, seq x True)

```
y = \langle u - \rangle z
z = const z x
```

in x

This expression is not Hindley-Damas-Milner-typeable (but iteratively)

• Reason: After the reduction x,y,z have to be typed together, before they can be typed separately 108/109

Conclusion: Type Safety

Not a real problem, since

- Type-Preservation holds for the iterative typing.
- well-typed programs are dynamically typed
- Hindley-Damas-Milner-typeable implies iterative typeable
- reduction preserve the iterative type

D. Sabel | PLF – 05 Polymorphic Type Inference | WS 2024/25 109/109 Motivation Unification Expressions Supercombinators