a Hochschule RheinMain MOt|Vat|0n and OUtllne al Hochschule RheinMain

@ Why should we care about type inference?

@ Type inference algorithms for KFPTS+-seq
for parametric polymorphic types

@ Typing recursive supercombinators
Programming Language

. @ lterative type inference
Foundations

@ Hindley-Damas-Milner type inference
05 Polymorphic Type Inference

Prof. Dr. David Sabel

Wintersemester 2024/25 Last update: December 18, 2024
D. Sabel | PLF — 05 Polymorphic Type Inference | WS 2024/25 ERLM Votivation Unification Expressions Supercombinators |
Motivation *Hochschule RheinMain Motivation (Cont,d) *Hochschule RheinMain
Why should we use a type system? Minimal requirements:
o for untyped programs, dynamic type errors can occur @ typing should be decided during compile time
@ runtime errors are programming errors @ well-typed programs have no type errors during runtime
@ strong and static typing —» no type errors during runtime
@ types as documentation Desirable properties
o types usually lead to a better program structure @ the type system does not restrict the programmer
@ types as specification in the design phase o the compiler can compute types = type inference

a I Hochschule RheinMain

Motivation (Cont'd)

Not all type systems satisfy all the properties:

@ Simply typed lambda calculus:
typed language is no longer Turing-complete, since all well-typed programs
converge
@ Type system extensions in Haskell:
typing / type inference is undecidable
in some cases the compiler does not terminate!
requires effort / precaution of the programmer

s/

D. Sabel | PLF — 05 Polymorphic Type Inference | WS 2024 /25

a Hochschule RheinMain

Undecidability of Dynamic Typing

Let tmEncode be a KFPTS+seq-supercombinator that simulates a universal Turing
machine:

@ Input: an encoding of a Turing machine M and an input w
o Output: True, if the TM M halts on w

tmEncode is programmable:
@ in the lecture notes, there is a Haskell-program that performs this simulation
@ the program is not dynamically untyped (since it is Haskell-typeable)

@ thus we can assume tmEncode exists in KFPTS+seq and it is not dynamically
untyped

/109

D. Sabel | PLF — 05 Polymorphic Type Inference | WS 2024 /25

a I Hochschule RheinMain

Naive Approach

Naive definition:

A KFPTSP+-seq-program is well-typed, if it cannot lead to a dynamic type
error during runtime.

But, this does not work well, since:

Dynamic typing in KFPTS+seq is undecidable!

o/

D. Sabel | PLF — 05 Polymorphic Type Inference | WS 2024 /25

a Hochschule RheinMain

For TM encoding enc and input inp, let the expression s be defined as

Undecidability of Dynamic Typing (Cont'd)

s:= 1if tmEncode enc inp
then casepoo Nil of {True — True;False — False}
else casepgool Nil of {True — True;False — False}

Then the following holds:

s is dynamically untyped <= the evaluation of (tmEncode enc inp) ends with True
This shows:
if we can decide whether s is dynamically untyped, then we can decide the halting problem

Thus:

The dynamic typing of KFPTS+seq-programs is undecidable.

o109

D. Sabel | PLF — 05 Polymorphic Type Inference | WS 2024 /25

a Hochschule RheinMain Types al Hochschule RheinMain

UNIFICATION Syntax of polymorphic Types:
T:=TV|TCT; ... T, | T1— To

where T'V is a type variable, T'C' type constructor
@ A base type is a type of the form T'C, where T'C' is of arity 0.
@ A monomorphic type is a type without type variables
Examples
@ Int, Bool and Char are base types.
@ [Int] und Char — Int are monomorphic types, but no base types,

o [a] und a — a are neither base nor monomorphic types (but polymorphic types)

Quantlfled Types *Hochschule RheinMain Type SUbStItUtlons *Hochschule RheinMain
Type substitution = a mapping {1 — 71,...,a, — T, } of a finite set of type
For polymorphic types, we use the universal quantifier:: variables to types.
o If 7 is a polymorphic type with occurrences of type variables a1, ..., ay, then Written as 0 = {a — 71,...,0pn — To}.
Yaq, ..., a7 is the universally quantified type for 7 . .
Formally, extension to types: op mapping from types to types
@ Since the order is irrelevant, we also use VX .7 where X is a set of type variables
_ op(TV) = o(TV), if o maps TV
Later: og(TV) = TV, if o does not map TV
@ universally quantified types can be copied and renamed, while types without op(TCT, ... T,) = TCog(Th) ... op(Ty)
quantifiers cannot be renamed op(Ty = To) = og(Th) — op(Th)

In the following, we do not distinguish between ¢ and its extension !

D. Sabel | PLF — 05 Polymorphic Type Inference | WS 2024 /25

Semantics of Polymorphic Types e i Typing Rules e i

Rule for Application:
suTy —Ty, t:Ty

Type substitution o is ground for a type 7 iff (st) Ty
@ o(X) is a monomorphic type for all X mapped by o Problem: Guess the right instance, e.g.
o o(X) is defined for all X € Vars(7)
map :: (a -> b) -> [a] —> [b]
Semantics of type 7: not :: Bool -> Bool
sem(7) := {o(7) | o is a ground substitution for 7} Typing of map not:

This corresponds to the intuition of schematic types: Before applying the rule, the type of map must be instantiated:

a polymorphic type describes the schema of a set of monomorphic types o = {a > Bool,b > Bool}

Instead of guessing o, o can be computed: Using Unification

Unification *Hoehschule RheinMain Unification Algorithm *Hochschule RheinMain

Definition o data structure: £ = multiset of equations

@ A unification problem on types is a set E of equations of the form 71 = 75 where o let E U E' be the disjoint union of multisets
71 and 7y are polymorphic types. o E[r/a] is defined as {s[r/a] = t[r/a] | (s =t) € E}.

o A solution to a unification problem on types is a substitution o (called unifier),

such that o(71) = o(7) for all equations 71 = 75 of E.
. . . . Algorithm: Apply the following inference rules until
o A most general solution (most general unifier, mgu) of E is a unifier o such that

for every unifier p of E there is a substitution v such that p(z) = v o o(z) for all
x € Vars(E). @ no more rule is applicable

@ a fail occurs, or

a I Hochschule RheinMain

Unification Algorithm: Inference Rules

Fail-rules:
EU{(TCi 7 ...)= (TCa 7 ... 7))}
FaiLl
Fail
if TCy # TCq
EU{(TCi 7 ...)= (11 = 75)}
FAIL2
Fail
Eu{(r—-m)=TC mn ...)}
FAIL3

Fail

D. Sabel | PLF — 05 Polymorphic Type Inference | WS 2024 /25

170 e

a Hochschule RheinMain

Unification Algorithm: Inference Rules (3)

Orientation and Elimination:

Eu{n =a}

Eu{a=rm}
if 71 is not a type variable and « is a type variable

ORIENT

Eu{a=a«a
ELIM¥

where « is a type variable

D. Sabel | PLF — 05 Polymorphic Type Inference | WS 2024 /25

157200 Ve

a I Hochschule RheinMain

Unification Algorithm: Inference Rules (2)

Decomposition:

Eu{TCm ... 7, =TC | ... 7}

n
DEcoMPOSEL — —
EUu{n=m,....,tn =15}

EUu{n —=>mn=1—1}

Eu{n =1,7 =1}

DECOMPOSE2

D. Sabel | PLF — 05 Polymorphic Type Inference | WS 2024/25

O o Ui B Sweconbnios |

a Hochschule RheinMain

Unification Algorithm: Inference Rules (4)

Solve and Occurs-Check

Eu{a=r1}

Elr/a]u{a =1}
if type variable a does not occur in T,
but o occurs in E

SOLVE

Eu{a=r1}
Fail
if 7 # « and type variable o occurs in T

OccursCHECK

D. Sabel | PLF — 05 Polymorphic Type Inference | WS 2024 /25

207200 Ve

a I Hochschule RheinMain

Examples

Example 1: {(a — b) = Bool — Bool}:

{(a — b) = Bool — Bool}
{a =Bool,b = Bool}

DECOMPOSE2

The unifier is {a — Bool,b — Bool}

i Unicton B Supeconbnaon |

D. Sabel | PLF — 05 Polymorphic Type Inference | WS 2024 /25

a Hochschule RheinMain

Examples

Example 3: {a = [b],b = [a]}

SOLVE

OccursCHECK

Example 4: {a — [b] =a — ¢ — d}

{a—=[b]=a—c—d}

DECOMPOSE2 - -
{a =a,[b] = c— d}
ELim) y
FaiL2 (Pl =c=d}
Fail

D. Sabel | PLF — 05 Polymorphic Type Inference | WS 2024 /25

23200 I Ve

a I Hochschule RheinMain

Examples
Example 2: {[d] = c¢,a — [a] = Bool — c}:

{[d] = ¢,a — [a] =Bool — ¢}

{[d] = ¢,a — [a] = Bool — ¢}

DEcoMPOSE2 - - -
{[d] = ¢,a = Bool, [a] = ¢}
{[d] = ¢,a — [a] = Bool — c}
DECOMPOSE2 - - -
{[d] = ¢,a = Bool, [a] = ¢}
ORIENT

{[d] = ¢,a = Bool,c = [a]}

{[d] = ¢,a — [a] =Bool — ¢}
{[d] = ¢,a = Bool, [a] = ¢}
2110 I

{[d] = [a],a = Bool,c = [a]}

DECOMPOSE2

ORIENT
D. Sabel | PLF — 05 Polymorphic Type Inference | WS 2024/25

{ld] = ¢,a — [a] = Bool — ¢}

DEcoMPOSE2 - - -
{[d] = ¢,a = Bool, [a] = ¢}
ORIENT - - -
{[d] = ¢,a = Bool, ¢ = [a]}
Sorve

a Hochschule RheinMain

Properties of the Unification Algorithm

@ The algorithm stops with Fail iff the input has no unifier

@ The algorithm stops successfully if the input has a unifier
The equation system E then is of the form {a1 = 71,...,, = 7.}, where «; are
pairwise distinct and «; does not occur in any 7;.
The unifier is o = {1 — 71,...,ap > T}

o if the algorithm returns a unifier, then it is a most general unifier

@ The order of rule application is irrelevant, no branching is necessary.
The algorithm can be implemented in a deterministic way.

@ The algorithm terminates for every unification problem

R o Uniesion b S]

D. Sabel | PLF — 05 Polymorphic Type Inference | WS 2024 /25

Properties of the Unification Algorithm (Cont'd) *Hochschule RheinMain Sketch of the Termination Proof *Hochschule RheinMain

@ Types in the result can be of exponential size Let E be a unification problem and
Eg {an=0an-1— Qn-1,0n-1 = Qn_9 —> Qp_29,...Q1 = g —> ap} o Var(FE) = number of unsolved type variables in £
The unifier maps «; to a type that contains 2/ — 1 type arrows. E.g. a variable « is solved iff it occurs once in E as the left hand side of an equation
o(a1) = ap — ap, (ie. E=E U{a =7} where a & Vars(E') U Vars(t)).

o(az) = (g —) — (0 = ap),

o(ag) = ((ap — a) — (ap = ag)) = ((ap = ag) = (a0 — ag)) e Size(E) = sum of all sizes of types on right-hand and left sides of equations in E

the size of a type is tsize defined as: tsize(TV) =1,
@ Using sharing and an adapted Solve-rule, the unification algorithm can be tsize(TC Ty ... T,) =1+ > I, tsize(T}) and
implemented such that the runtime is O(nlogn) tsize(Ty — Tp) = 1 + tsize(Ty) + tsize(Th)

The shared representation of the result types is O(n). o OBy(E) — number of not oriented equations in £

@ The unification problem is P-complete. l.e. an equation is oriented, if it is of the form « = 7 where « is a type variable.
@ All PTIME-problems can be presented as unification problem

o Unification is not efficiently parallelizable. o M(E) = (Var(E), Size(E), OEq(E)), where M (Fail) := (-1, -1, -1).

Sketch of the Termination Proof (Cont'd) . * o
Change of the measure per rule TYPING OF
Var(E) Size(E) OFq(E) KFPTS-+seq-EXPRESSIONS

Fail-rules < < <

OccursCheck < < <

Decompose < <

Orient < = <

Elim < <

Solve <

E
Thus: for each rule 7 we have M(E') <jex M(E), where <., is the lexicographic

order on triples.

Typing * Rule for Application with Unification *

suTy, tiuTy
(st):o(a)

We now consider the if o is an mgu for 71 = ™ — a and « is a fresh type variable

. .) Example:
polymorphic typing of KFPTS-seq-expressions

map :: (@ — b) — [a] — [b], not :: Bool — Bool

For now, we ignore the typing of supercombinators
(map not) :: o(c)

if o is an mgu for (a — b) — [a] — [b] = (Bool — Bool) — «
and « is a fresh type variable

Unification results in {a + Bool,b — Bool,a + [Bool] — [Bool]}

Thus: o(a) = [Bool] — [Bool]

Typlng Wlth Blnders *Hochschule RheinMain Typlng Wlth Blnders (Cont'd) *Hochschule RheinMain

Informal rule for abstractions:

Typing s with assumption “x is of type 71" results in s :: 7

How to type an abstraction Az.s?

AL.S T — T
Type the body s

Let s:: 7 How do we get 717

Then Az.s has a function type 71 — 7 Start with the most general type for x, and restrict it by the type inference
How corresponds 7 with 77

71 is the type of z Example:

If z occurs in s, then we need 7 for typing 7! ° Az.(v True)
o Typing (z True) starts with z :: «
@ Since z is applied, the typing has to result in @ = Bool — o/

@ Type of the abstraction: Az.(z True) :: (Bool — o) — &’.

Typing of Expressions *Hmhschme RheinMain Typing of Expressions (Cont'd) *Hochschule RheinMain

Typing judgement:
Type derivation rules are written as
Y J Premise(s)
Meaning: Conclusion
Given a set T" of type assumptions, for expression s the type T and the type or more concrete:
equations E' can be derived
F1F51 ::7'1,E1 FkFSkZZTk,Ek
. . . . 'kFsur E
o T contains type assumptions for constructors, supercombinators, and variables
@ In E type equations are collected, they will be unified later
D. Sabel | PLF — 05 Polymorphic Type Inference | WS 2024/25 EEl = Viotivation Unification Expressions Supercombinators | D. Sabel | PLF — 05 Polymorphic Type Inference | WS 2024/25 34/109

Typing of Expressions (Cont'd) *Hochschule RheinMain Typing Rules for KFPTS+seq-Expressions (1) *Hochscme RheinMain

Axiom for variables:

(AxV)

TrU{zutirzaT,0
As a simplification:

Axiom for constructors:

for typing constructor applications (¢ s1 ... s,) they are treated
like nested applications (((¢ s1) ...) sn))

(AxC) TU{c:Vay...an7tEcut[Bi/an,. .., Bn/an], 0

where 3; are fresh type variables

@ Note that each time a freshly renamed copy of the type is used!

Typing Rules for KFPTS+seq-Expressions (2) *Hochschule RheinMain Typing Rules for KFPTS+seq-Expressions (3) *Hochschule RhelnMain

Rule for applications:

Axiom for supercombinators (with already know type): Pksor, B und TFt:m, By
(RAPP) ’ :

Fk(st)a,BEyUEU{n =1 — a}

TU{SC ::Vaq...an. 7} SC :: 7[B1/1, .-, Bn/an], B where a is a fresh type variable
where 3; are fresh type variables

(AXSC)

Rule for seq:
o Note that each time a freshly renamed copy of the type is used! Fksum, By und TEiim, By

RSEQ
() ' (seqst):m,E1ULE;

Typing Rules for KFPTS+seq-Expressions (4) *Hochschule RheimMain Typing Rules for KFPTS+seq-Expressions (5) *Hochschule RheinMain

Typing of case: ideas

Rule for abstractions: caser s of {

(01 T11 -.. Xy,)*)fl;
Frv{z:atrsut,E arten)

(RABS)
I'tXzs:a—T1FE (Cm ITm,1 --- xm,ar(cm)) - tm}

where « is a fresh type variable

@ The patterns and the expression s are of the same type.
This type matches the type index T of caser (due to the patterns)

@ The expressions t1,...,t, are of the same type.
This type is the type of the case-expression

Typing Rules for KFPTS+seq-Expressions (5) *Hochschule RheinMain Case-Rule for Bool *Hmhschule RheinMain

Rule for case:

I'kFsur E
:°r i=1...,m ?U {@in ity Tisar(er) Var(en)) t (ci s Tiar(ci)) i Ei Phksur,E TFTrue:n, By ThFalseun, By Thtyur] B, Thityurh B
ort=1,....m:TU{z;1 = a1,...,7; o tiT, E (RCasE)
(RCASE) T m (i1 = aia . Tiar(er) * Qarten} P b5 7 By I'I- (casepoo1 s 0f {True — t1;False — to}) it o, B
caser s of { . where E' = EUE1 U, UE|UE,U{Tr =71, 7T=n}U{a="1,a =1}
I (c1 .Il’l © Trar(en) 7 to, E and a; j, o are fresh type variables
(Cm Tm,1 - wm,ar(cm)) - tm}

m m m m
where E'=EU |J E;U |J ElU UI{T:TI'}U UA{a=1}
i=1 i=1 i= i=1

and «; j, o are fresh type variables

Case-Rule for LIStS *Hochschule RheinMain Algorlthm Type |nference Of KFPTS+Seq_EXpreSS|0nS *Hochschule RheinMain
'ksuT, E Let s be a closed KFPTS+seqg-expression, where the types of all supercombinators and
T'FNil: 7, By all constructors occurring in s are known

T'U{x1 a1, it ag} b Cons 1 xg it T2, B2
Tkt o, By
TU{zy :oq,29 g} Ftg i mh, B
)I‘ I (casepist s of {Nil — t1;(Cons z1 m2) — to}) o, B
where E' = EUEUE,UE|UEYU{r =7, T =n}U{a="1,a="1}
and «; j, o are fresh type variables

@ Start with assumption I" containing the types of the constructors and
supercombinators

@ Derive I' F s :: 7, E using the typing rules
@ Solve E with unification

(RCASE

@ If unification ends with Fail, then s is not typeable; otherwise let o be an mgu of
E. Then the type of s is s :: (7).

Optimization ')“Hochschule RheinMain Well-Typedness ')“Hochschule RheinMain

Additional rule to unify inbetween:

I'kFsur, E
ks:uo(r),E,
where FE, is the solved equation system of E and ¢ is the corresponding unifier

A KFPTSP+-seg-expression s is well-typed iff it can be typed by given algorithm.

(RUNIF)

Example Typlng Of (Cons True Nll) *Hochschule RheinMain Example Typlng)\x'r *Hochschule RheinMain

Start with:
Type assumption: I'g = {Cons :: Va.a — [a] — [a],Nil :: Va.[a], True :: Bool}
To - (Cons True) = 71, By, ToF Nil it 7, Fy Start with: Type assumption: 'y = §)
e To - (Cons True Nil) :: ay, By U Ea U{m =72 — a4}
e Ty (Cons True) :: 71, E1, e T F Nil :: [ag], 0
Tg F (Cons True Nil) :: ay, By UDU {r = [a3] = « AxV
Iy ((I)ons(:: 73, B3, To = T?rue 4 T4TE4 i ! (RAns) Lo U {‘L - a} Fa, éﬁss: FoU {LL‘ - a} Fra,l
e To F (Cons True) :: az, {13 =14 — as} UE3 U Ey ,(AXC) Do FNil :: [as], 0 Lok (M) e =, E Lo = (Az.z) o — o0
e To - (Cons True Nil) i au, {73 =74 = a2} U B3 U B4 U {a2 = [a3] = a4}
Nothing to unify, thus (A\z.z) :: @ = «
- :AXC) ToF Cons :: aq — [an] = [au],0 ,Tg = True :: 74, By

To - (Cons True) :: ag, {an — [a1] =[] =74 = a2} U Ey ,(AKC) To b Nil :: (], 0

(RAPP) . ;
To I (Cons True Nil) :: oy, {oq = [a1] = [on] = 74 = ao} U B4 U {az = [a3] — a4}

D. Sabel | PLF — 05 Polymorphic Type Inference | WS 2024/25 D. Sabel | PLF — 05 Polymorphic Type Inference | WS 2024/25 PR Wiotivation Unification Expressions Supercombinators |
oiemrne; . canrm -

0
(RAPP) - (Axg) —m——————————
Ty + (Cons True) :: ag, {ag — [a1] — [a1] =Bool — an} Ty F Nil :: [ag),0

(RAPP) N N
Ty F (Cons True Nil) :: ag, {a1 — [o1] — [o1] =Bool — an} U {a = [a3] — a4}

Example: Typing of © *Hochschule RheinMain Example: Expression with Supercombinators (1) *Hmhschule RheinMain

Typing of (A\z.(z x)) (Ay.(y v))
Assumption: map and length are already typed.

Start with: Type assumption: T'g = 0 We type:

. 0+ Az.(z x)) 1, BL 0 (Ay(y y)) 7o, B

0 (Az.(z 2) M.(yy) o, BEUEU{n =m = a1} t:= Azs.caserist s of {Nil — Nil;(Cons y ys) — map length ys}
" {z:ao}b (zx)m, By .
(Raw) " Oz 2) = as > By 0k Ow(y) = 7, B We use the start assumption:

(RAPP)
OF Az 2)) My.(yy) nar, By UEBU{r =7 — a1}

{r o} baum By, {x:a}bx:ry, By, o= {map it Va, b'(a - b) - [a} — [b}a

(Ravr) length :: Va.[a] — Int,

{z v} b(za)as,{s=m— a3} UE3UE,
s) B
OF Az x)ar—=ag.{m=n =3} UE3UE, ,0F (\y.(y y)) = 72, B
) - -
O (e 2) -y y) o1, {m3 =71 = as} UB3 U B U B2 U{az =72 — a1}

(RAB: Nil :: Va.[a]
Cons :: Ya.a — [a] — [a]

}

(RAPP

(AxV)

{z:agtbaiand {z:a}basr, By,
(RAPP)

{z:a}b (zz)asg,{ae=m— a3} UE,

D. Sabel | PLF — 05 Polymorphic Type Inference | WS 2024 /25

(RAPP) - A .
0F (Aa.(z 2)) (My-(y) = aq, {as =14 — az} UEU B U {az = 75 — aq}
o {z kool ,(AXV) {z v a}Fatal,
(RAPP) :
(Raws) {z:as}t b (z) as, {as = az — as}
s O+ (Az.(x 2)) = as — asg, {az = ag — as} L0 (M\y(y y) = T2, En
(RAPP) : /
DE Qa(z x) (M-(yy) = a,{oae=as » a3} UE,U{az =7 — a1}
Example: Expression with Supercombinators (2) * Hochschule RheinMain Example: Expression with Supercombinators (3) a N

Derivation tree:

(AXC) (AxV) = (AXSC) o (AXSC) 5
AXC) 55— (AXV) 55— AXSC) =5— (AXSC) -5— (RAI‘I‘)>79 (AXV) 5~ (RAPP) 2. P15 (AXV) 45—
WO B Y By OB Y B By 7 Bio B3
py —©* 79 I p)y —22 1o - AXV) 5~ (AXC) —5— (RAPP : AXC) -5— (RAPP !
(RAPP) Be A(AxV) B, (RAPP) b1 ‘(AxV) Bis (Ax >B3 7(X)B4 7(PP) Bs >(X)Blo 7(PP) B,
(AXV) =5— (AXC) 5— (RAPP) (AXC) 55— (RAPP) (RCasE) B
3, By, Bs , By , By 2
(RCASE) (RABs)
BQ Bl
(RABs)
By Labels: By = TouU{xzs:ai}F zs:ai,0
Labels: By = ToFt:a1 — ais, Bi= ToUfzs:ai} kNl [ao],0
{as = [as] = [as] = as — s, a6 = ou — ar, Bs= ToU{zs:aiy: s, Ys o} (Con; y ys) = ar,
(Ozg — 019) — [Ckg] — [ag] = ([alo] — Int) — 11, Q11 = Q4 — (12, {a5 - [Oz5] - [Ot5] = Q3 =7 06, 6 = Q4 —> a7}
- — - _ Bs= ToU{zs: ai,y: as,ys:as}F (Cons y) :: ag,
a1 = [012]7!11 = Q7,13 = [a14],a13 = (112,} .
By= ToU{zs:ai} b {as = [os] = [as] = a3 — as}
caserist ¥ of {Nil — Nil;(Cons y ys) — map length ys} :: aus, Br = ToU{zs:on,yosys:as}bys:asl
iy - Bs= ToU{xs: ai,y: as,ys:as} b Cons::as — [as] — [as], 0
{as = [as] = [as] = a3 = ag, 6 = a4 — ax, Bo= ToU{zs:an,y:asys:as} -y as,d
(as = a9) = [as] = [a] = ([10] = Int) = qu1, 011 = au — a2, Bip= ToU{ws: 0‘1,} - Ni17:: [a1a], 0 ’

Example: Expression with Supercombinators (4) *Hochschule RheinMain Example: Expression with Supercombinators (5) *Hochschule RheinMain

Labels:
Blz Fol—t::a1—>a13,
(AXC) B (AxV) B (AXSC) B (axs0) B {as = [a5] = [a5] = a3 — ag, a6 = a4 — a7,
(are) Bs Ry (rare) Bis By (as = ag) = [as] = o] = ([10] = Int) = 11, 001 = g = oz,
(AXV) =—5— (AXC) —5— (RArP) (AXC) =— (RAPP) . .
(RCast) B3, By, By . B . B a1 = (o], n = ar, o0n3 = [ona], 013 = a2, }
(RABS) B21 Solve using unification:

{as = [as] = [as] = a3 = as, a6 = a4 — ar,
Labels: Bi1 = ToU{ws: ai,y: as,ys: a4} F (map length) ys :: a2, . (as = ag) = [as] = [an] = ([ai0] = Int) = 11,001 = a4 — iz,
{(as = a9) = [as] = [a9] = ([a10] = Int) — 11,11 = aa — aaz}

a1 = [az], a1 = a7, 013 = [on4], 13 = 12}
Biz = ToU{xs: ai,y: as,ys: as} - (map length) :: oy,

{(es —) — [as] — [a] = ([ar0] — Tnt) — a1} Results in:
Bis= ToU {.’/US Lo,y a3, YSs 0(4} [ys a4,® o = {Oz1 = [[alO]LQQ = [041()],&3 = [0110], Qg = [[0110”,&5 = [011[)],
Bis= ToU{ws: a1,y as,ys:as} b map:: (as = ag) — [as] = [ag], D a6 — [[a1o]] — [[eno]], a7 = [[ao]], as = [aa0], o = Int,
Bis = T'oU {.’L’S L,y iag,ys 044} [length :: [0110] — Int, 0 Qaip = [[0110” — [Int]7a12 = [Int]vaw = [Int]1 Q14 Int}

Thus t :: o(a1 = a13) = [[e10]] — [Int].

Example: Typing of Lambda-Bound Variables (1) *HochschuleRheinMam Example: Typing of Lambda-Bound Variables (2) *HochschuleRheinMain

(AXV) (AXC)
I'iFx:ap, T'jF True: Bool
(AXSC (RAPP) (AxV (AXC
‘Fl I const :: ap — a3 — g,) ,‘ ' T+ (2 True) :: au, By]Fl Fz:a, T'yF’A’:Char
H o (RAPP, RAPP
const is defined as ' Iy F const (z True) :: a5, B2 : Iy F(z°A%) g, B3

(RAPP,
const :: a ->b -> a (RAm)
const Xy = X

I'y const (z True) (z ’A’) :: a7, Ey
Tp - Az.const (x True) (z ’A’) :: a1 — ag, Ey

Typing of A\z.const (v True) (x ’A’%) where ' = T'o U {z - a1} and:

Type assumption: E1 = {ai1 =Bool = as}
g . E; = {a1 =Bool - as,as = a3z — a2 =as —> as}
g = {const :: Va,b.a — b — a, True :: Bool, ’A’ :: Char}. B = fon = Char o o)
3 - 1= 6
Ey; = {a1 =Bool = as,az = a3 = a2 = a4 — a5, 1 = Char — ag,

a5£a5—>a7}

Unification fails, since Char # Bool

Example: Typing of Lambda-Bound Variables (3) v T

In Haskell-interpreter:

o . TYPING
Main> \x -> const (x True) (x ’A’) SUPERCOMB'NATORS

<interactive>:1:23:
Couldn’t match expected type ‘Char’ against inferred type ‘Bool’
Expected type: Char -> b
Inferred type: Bool -> a
In the second argument of ‘const’, namely ‘(x ’A’)’
In the expression: const (x True) (x ’A’°)

@ Example shows: Lambda-bound variables are monomorphically typed!
@ The same applies to variables bound by case-patterns
@ Hence, one speaks of let-polymorphism, since only
let-bound variables are typed polymorphically.
@ In KFPTS+seq, there is no let, but supercombinators which are similar to let

Recursive Supercombinators *Hochschule RheinMain Typing Non-Recursive Supercombinators *Hochschule RheinMain

@ Non-recursive Supercombinators can be typed like abstractions

Let SC be a set of supercombinators, SC;, SC; € SC e Notation: T 7 SC :: 7 means:
o SC; = SCj iff the rhs of the definition of SC; uses the supercombinator SC;. With assumption T', SC' can be typed with type 7
(4] j+ is the transitive closure of < (and =<* is the reflexive-transitive closure) Typing rule for (c|osed) non-recursive supercombinators:

o SC; is directly recursive iff SC; = SC; and recursive iff SC; <* SC;

e SCi,...,8C,, are mutually recursive if SC; <t SC; for all i, j € {1,...,m}. Pufe ca,.an ian} b s B

Dhp SC VX 0o(og — ... > ap —T)

(RSC1)

Example Sk if o is the solution of E,

f x y=1if x<1 then y else £ (x-y) (y +h x) | SC x1 ... x, = s is the definition of SC
g x = 1if x=0 then (f 1 x) + (h 2) else 10 g . .

h x = if x=1 then 0 else g (x-1) / \ and SC'is non-recursive,

k x y = if x=1 then y else k (x-1) (y+(g x)) S f——h and X = Vars(o(ag = ... = an — 7))

V.

f and k are directly recursive, f, g, h are mutually recursive, f, g, h, k are recursive

Example: Typing of (.) *Hochschule RheinMain Typing of Recursive Supercombinators *Hochschule RheinMain
() fgx=1f (gx)

T’y is empty, since no constructors or supercombinators occur

(AxV) (AXV)

MtFgoad, Tikx:as
T F f a0 fRAFP) TiF (g 3) 5 as, {ag = ag — a3} @ Assume SC z1 ... z, = e and SC occurs in e (SC is recursive)
B Dok (f (gx) oy {ag=a3 — as, a1 = as = ay} @ What is the problem when typing SC?
e OFr () = VX.0(an = ag = as — ay) @ To type the body e, the type of SC must be known!

where T'y = {f = 1,9t ag, @t ag}

Unification results in 0 = {ag — a3 — a5, 01 — a5 — ay}.
Thus: o(a1 = as = ag = as) = (a5 = as) = (a3 = as) = a3 — aq
Now X = {as, a4, as} and we may rename this to:

(.) =Va,bye(la—b) = (c—a)—c—bd

a Hochschule RheinMain |dea Of the |terat|ve Type |nference a Hochschule RheinMain

ITERATIVE TYPE INFERENCE
ALGORITHM

Start with the most general type for SC (i.e. a type variable)
Type the body using this assumption

This results in a newly derived type for SC

Continue (iterate) with this type

Stop if new type = old type:
Then we found a consistent type assumption

Most general type: Type T, such that sem(7") = {all monomorphic types}.

The type « satisfies this (as quantified type Va.«)

Iterative Type Inference *Hochschule RheinMain Iterative Typing: Preparatory Work *Hochschule RheinMain

Rule to compute new assumptions: Because of mutual recursion:
@ Dependency analysis of the supercombinators
(SCREC) FU{z1:01,.. ., anian}Fsur B @ Compute the strongly connected components in the call graph
PrEp SCuo(ar —...ap = 7) @ Let ~ be the equivalence relation of <*. The strongly connected components are
if SC x1 ... x, = s is the definition of SC, o the solution of F the equivalence classes of ~

@ Each equivalence class is typed together

The same as RSC1, but I" has to contain an assumption for SC The order of the typing is according to <* modulo .

Example y S T— Iterative Type Inference Algorithm y TR
f x y=1if x<1 then y else f (x-y) (y + g x) . .
g x = if x=0 then (f 1 x) + (h 2) else 10 Input: Mutually recursive supercombinators SC4, ..., SC,
h x = if x=1 then 0 else h (x-1) @ Start assumption I" contains types of the constructors and the already typed SCs
k x y = if =1 then y else k (x-1) (y+(f x y)) .
Q Iy:=TU{SC; ::Vay.a1,...,SC, :: Vam.am} and j = 0.
The call graph is:) .
g @ For each SC; (i =1,...,m) apply rule (SCREC) for I';, to infer the type of SC;.
Q If the m type derivations are successful (for all i: T'; 7 SC; :: 7;)
C Then quantify: SCy :: VX1.11,...,5Cy, - VX0 . T
h fQ Set T'j11 :=TU{SC =:VX1.1,...,5Cy :: VX0 T }
/ @ IfT'j #T'j41, then set j := j + 1 and go to step (3).
Otherwise, I'; = I'j 11, and thus I'; is consistent.

k
. C Output: quantified polymorphic types of the SC; of the consistent type assumption.
The equivalence classes (ordered) are {h} <* {f, g} <™ {k}. If a single unification fails, then SC, ..., SC), are not typeable.

v

D. Sabel | PLF — 05 Polymorphic Type Inference | WS 2024 /25 67/109 Supercombinators

Properties Of the Algorlthm *Hochschule RheinMain Example: Iength (1) *Hochschule RheinMain

@ The computed types are unique up to renaming for each iteration and thus:)
if the algorithm terminates, then the types of the supercombinators are unique. length xs = caserjsr o5 0f{Nil — 0;(y : ys) — 1+ length ys}

@ In each step: newly computed types are more specific or remain the same Ass”mp.t'on:
(computation is monotonic w.r.t. sem: “sem(Tj41) C sem(T})") r= {Nl} # Va.la], (:) :: Va.a = [a] > [a],0,1:: nt, (+) 3 Int — Int — Int}
: _ _ 1.Iteration: 'y = I" U {1length :: Va.ar}
o If the algorithm does not terminate, then no polymorphic type for the

supercombinators exists

(a) ToU{zs:aq}tas:m, By
(since computation is monotonic w.r.t. sem and starts with the largest set) (b) ToU{ws:ai} b Nil s, By
.] i (¢) ToU{ws:aq,y:ag,ys:astt (y:ys) s, E:
@ The algorithm computes the greatest fixpoint w.r.t. sem: () FEULS - ai} Fo ;?741134 ' e
Suppose that F' is the operator that performs one iteration of the algorithm on o () ToUfws:aiy:asys:astt b (1+lengthys) 75, Bs
the set of monomorphic types. If the algorithm stops with set S, then F'(S) =S To U}g”i};‘j;(Ba;eLCJSE””Z‘Ef{N.ﬂ = 0y ys) Hle?‘gt;‘ ws}) s o,
. . . . 2 3 5 TL = T2, TL = 73,03 = T4, 3 = Ts
(so S is a fixpoint) and S is the largest set M such that F/(M) = M. (sense) e Tofr lelngthzz:;(ul;oig) =
@ This shows, that the iterative type inference algorithm computes the most general where o is the solution of
polymorphic type (w.r.t. sem) EyUEBUE3UE UE;U{m =79, 71 = 73,03 = T4,3 = T5}

Example: Iength (2) *Hochschule RheinMain Example: Iength (3) *Hochschule RheinMain
AxV
(a): (AxV) ToU{zs:ai} b zs:ag,l (AXC)
le. m=aq and By =) (d) ToU{zs: a1} F0: Int, 0

le. 74 =Intund B4, =0

(b): (AxC)

ToU{xs:: ar} - Nil :: [ag), 0

|.e Ty = [046] and E2 — 0 (e) e Ty F (+) = Int — Int — Int,0 .“N\ Iy 1:Int,(o T{ F length :: a3, 0 ,‘N‘ Ty F (ys) s, 0
h o Iy F ((+) 1) i aq1, {Int — Int — Int = Int — a1} ,‘ o Ty I (length ys) : au2, {13 = a5 — a1z}
o Ty F (14 length ys) :: aqg, {Int — Int — Int = Int — a1, Q3 = @5 — Q12,11 = Qg2 — Q10 }
AxC AxV _
. (I({A)) () a9 5 o] 5 (ool ’()F(]Fy::cu,@ . where Tg =T U {zs :: a1,y : aq,ys :: as}
C PP n . AXV) o7
(RArP) ok (/(1) y) = as, {ag = [ag] = [ag] = ay —> as} 7. ToFys a0 le., 75 = a9 and
FO = (’l/ : I/S‘) Lag, {049 — [ag] — [ag] =4 — ag,08 = Q5 —» a7})))
where FO = FO U {.Z'S T,y Oy, YS 0[5} Es = {Int — Int — Int = Int = aq1, 13 = a5 — 12, X011 = Q12 — (110}

le.,. T3 = Q7 and E3 = {Ozg — [049] — [ag} = a4 —r Q8,08 = as —r Oz7}

Example: length (4) *Hochschule RheinMain Iterative Typing is More General than Haskell *Hochschule RheinMain

In summary: T'g Fp length :: 0(aq — a3) Example

where o is the solution of gx=1: (g (g c’))

{ag = [ao] = [ag] = a4 = ag, a5 = a5 ~ a7, I' = {1 :: Int,Cons :: Ya.a — [a] — [a],’c’ :: Char}

Int — Int — Int = Int — a1, Q13 = a5 — 12, Q11 = Q12 — Q1Q, To=TU{g:Va.a} (and T} =T U {z = a1 }):

o = [aﬁ],al = ar, a3 = Int, a3 = 0410}

Unification results in the unifier: T g ag0 T ¢ = Char,
) RAPP) B
T(F1:Int,0 F,’_,Fg::(v&@: THF (g ’c?) ar, {as = Char — a7}

(RA - -
Ty F (Cons 1) = ag, a5 — [a5] = [as] = Int — a3 Tk (g (g °c’)) t aq, {as = Char — a7, a6 = a7 — a4}

(AxC)

{a1 = [ag], a3 — Int, ay — ag, a5 — [ag], ag — ag, a7 — [ag], ag — [ag] — [ag],)
a1o — Int, @11 — Int = Int, a2 — Int, a3 — [ag} — Int} (rave)

(AXC

I b= Cons :: a5 — [as] — [a5],0 ,

(AxsC)

Iy - Cons 1 (g (g ’c’)) :: a2, {ag = Char — a7, as = a7 — as, a5 — [as] — [as] = Int — az, a3 = ag — as}

e Tobrg:o(a = az) = a; — [Int]
where 0 = {ay + [Int],a3 — [Int] — [Int],ay — [Int], a5 — Int,ag — a7 — [Int],ag — Char — ar} is the solution of
{ag = Char = a7,a6 = a7 = a4, a5 — [as] = [as] = Int = a3, a3 = ay — as}

thus o(a1 — a3) = [ag] — Int

'y =T U {length :: Va.[a] — Int}

le. Ty =T U{g: Va.a — [Int]}.
Since T'g # T’y another iteration is required. & {g: va.a = [Int]}

2. iteration: It results in the same type, hence Iy is consistent. The next iteration shows that I'; is consistent.

Iterative Typing is More General than Haskell (Cont'd) *HochschuleRheinMain Example: Multiple Iterations are Required (1) *HochschuleRheinMam
Haskell cannot infer a type for g:
Prelude> let g x = 1:(g(g ’c?)) gx=x: (g (g ’c’))
<interactive>:1:13: e I' = {Cons :: Va.a — [a] — [a],’c’ :: Char}.
Couldn’t match expected type ‘[t]’ against inferred type ‘Char’ o Iy =T'U{g: Va.a}

Expected type: Char -> [t]
Inferred type: Char -> Char

(AXSC)—7 ” (AXC)
In the second argument of ‘(:)’, namely ‘(g (g ’c’))’ e . e o gasd, Tok e’ :Charf
MO , 0Ty (SO - T 1e7) = _
In the expression: 1 : (g (g 1)) {“““}FU}-Cons s — [as] = [as],0 FU‘}— a0 “V‘.’FO}—g..uc‘@ s Ty (g »c) a7, {ag ghuﬁ(t,}
P . ” Tk (Cons) it ag, a5 — [a5] = [a5] =1 = a3, Ty (g (g ’c?)) : au, {ag = Char — a7, a6 = a7 — a4}
But: Haskell can check the type if it is given: Tl - Cons « (g (g 7¢’)) = g, {as = Char — a7, ag = a7 — s, @y — [ag] = 5] = @1 — am, as = @z — as)

Tobrg:olar = ag) = a5 — [as]
where 0 = {a; — as, a2 = [as], a3 — [as] = [as], a4 — [as], ag — a7 — [as], ag — Char — a7} is the solution of

let g::a -> [Int]; g x = 1:(g(g ’c’))
Prelude> :t g
g :: a —> [Int]

{ag = Char — a7, a5 = a7 = au, a5 — [as] = [as] = a1 = as.a3 = aq — s}

le. Ty =TU{g: Va.a — [a]}.

Reason: If the type is present, Haskell performs type checking and no type inference.
Then g is treated like an already typed supercombinator.

Example: Multiple Iterations are Required (2) *HochschuleRheinMain Example: Multiple Iterations are Required (3) *Hochschulem,ein”ain

Since 'y # I’y another iteration is required:
Let I, =ToU{x :: a1 }:
Since T'g # I'1 another iteration is required.
Let Fll =T u {.Z' o al}: e . . 1‘”’ T%Fg:: [Char] — [[char]).0 . T, F ’c” = Char, 0 ,
TG Gons 20y =[] > [0 0 " TP 0 " T] F g [ohaa] 5 [[Chax]].0 . T4 (g *c?) = o {[Ohar] — [[Char]] = Char — o)
Iy b (Cons z) : ag, a5 — [as] = [as] =y g Iy (g (g >¢c?)) = o, {[Char] — [[Char]] = Char — a7, [Char] — [[Char]] = a7 — a4}

T Cons « (g (g *c’)) & az, {[Char] — [[Char]] = Char — a7, [Char] — [[Char]] = a7 — asas — [a5] — [a5] = a1 — a3, a3 = a4 — as}
Ty bp gaolar — az)

(RAve)

(AxSC)

T Fg:as— [as].0 [.,A‘\(I"l ¢’ Char,0) ,

(sCRec)

(AxC (AxVi (AxSC= [— .
T} FCons s — [as] = [a5],0 , TiFaand Tikgiog—[ag),0, TiF(g’c’):ar, {as — [as] = Char — a7}

where ¢ is the solution of
e T’ - (Cons) = a3, a5 — [as] — [as] = a1 — a3 ‘,M T+ (g (g ’c?)) = au, {as — [ag] = Char — ar, a6 — [ag) = a7 — a4} {[char] — [[Char]] = Char — a7, [Char] — [[Char]] = a7 = au,a5 = [as] = [as] = a1 = a3, a3 = ay — a2}
(A
T+ Cons z (g (g ’c’)) = a2, {as — [as] = Char — a7, a6 — [ag] = a7 = auas — [as] = [as] = a1 — az, a3 = ay — as} Unification:
Ty 1 g o(a1 — az) = [Char] — [[Char]] : -
where o = {a1 -+ [Char], ay — [[Chax]], a3 — [[Chaz]] — [[Chaz]], as — [[Chaz]], a5 ~ [Char], ag — [Char], a7 ~ [Char], ag ~s Char} [Char] — [[Char]] = Char — a7,
is the solution of {ag — [as] = Char — a7, a6 — [ag] = a7 = ay, a5 — [as] = [as] = a1 — ag, a3 = ay — az} .
Char| = Char
Hence Ty = T'U {g :: [Char] — [[Chax]]}. [Gha] = Char,

[[Char]] = ax,

Fail
g is not typeable.

The Example Shows ... *Hochschule RheinMain Non-Termination of the Iterative Typing (1) *Hochschule RheinMain

£
g

[g]
[£]

Since £ ~ g, the iterative typing types £ and g together.
I' = {Cons :: Ya.a — [a] — [a],Nil : Va.a}.

The iterative type inference algorithm sometimes requires multiple iterations until a Lo =T U{f : Va.a,g :: Vaua}

result (untyped / consistent assumption) is found.

Note: There are examples where multiple iterations are required to find a consistent (P({/;XC)) To - Cons = s [oa] = [oul. 0 7(AXSC) Torg=os e
: PP T —
type assumption. (RAPP) Tyt (Cons g) :: ag, {as — [au] = [ou] = a5 — a3} 7(xC) To FNil :: [ag], 0
PP

Dok [g] i o, {og — [au] = [au] = a5 — a3, a3 =] = a1}
Tobrfiolan)=|as]
o= {1~ las], a2 = as, a3 [as] = [as], 04 = a5} is
the solution of {ay — [a] = o] = a5 — as, a3 = [aa] — a1}

(SCREC)

Non-Termination of the Iterative Typing (2) *Hochschule RheinMain Non-Termination of the Iterative Typing (3) *Hochschule RheinMain

(AXC) (AXSC)

(RAPP) Ty F Cons :: oy — [aa] — [aa], 0, - Ty kg [as] (AXC)
(RAPP) Ty k- (Cons g) g, {ous — [oa] = [au] = [a5] — a3}, Ty FNil e [ao),0
- [Fg)on, {oa = [au] = [ad] = [os] = a3, a3 = [ag] = an}
(f({AA);S)) Ty b Cons :: ag — [aa] — [aa], 0 ,(AXSC) Tobf:as (SCRec) Tybrpfio(an) = [las]]
To - (Cons £) = as, {as — [aa] — [aa] = a5 > ast XD Ty T aL 5 o] 0 o = {ar > [las]], 2 > las], g = [fas] = [l s - fas]} is
(RAPP) - - the solution of {ay — [au] — [au] = [as] = as, a3 = [ag] — a1}
(SCRE0) To b [£] a1, {as = [ou] = [ou] = a5 — a3, a3 = [a] = a1}
Tobrg:olar) = |as) AxC AxSC
o={a — [as],a2 — as, a3 H. las] — [a5],a4'»—> as}is (I;A);P)) Ty F Cons 2 ag — [aug] — [oua], 0 ,(XSC) T1 k£ [ag)
the solution of {ay — [au] = [au] = a5 — a3, a3 = [az] = a1} are) I - (Cons £) = g, {as — o] — [aa] = [5] — s} xC) Tl a0

Ty F[£] o, {ou — [aa] = [ad] = [a5] = ag, a3 = [ao] — a1}

Hence, I'y = T'U {f :: Va.[a], g :: Va.[a]}. Since I'; # Iy, another iteration is required. (SCRec) Ty brgio(an) = [[as]]
o ={on = [[as]], a2 = [as], 03 = [[as]] = [[as]], 0a = [as]} is
the solution of {au — [aa] — [eu] = [as5] — as, a3 = [as] — a1}

Hence I'y = ' U {f :: Va.[[a]], g :: Va.[[a]]}. Since T’y # I'j, another iteration is required.

Non-Term|nat|0n Of the |terat|ve Typlng (4) *Hochschule RheinMain ThUS *Hochschule RheinMain

Conjecture: The iterative typing does not terminate
Proof (by induction): iteration 4: T'; = T U {f :: Va.[a], g :: Va.[a]'} where [a]’ i-fold nested list
(AXC) (AXSC)

(RAPP) T - Cons :: ag — [ovg] — [aa], 0, Ax Tikg:os] AxC
PP N X
(Rpp) i (Gons &) = a3, fau = [ou] = fou] = fas]' — a3} O L el 0 The iterative type inference algorithm may not terminate.

(SCREc) Tit [g] = a1, {ou — [ou] = [au] = [as]’ — az, a3 = [as] = a;}
T br £ 5 o(an) = [as]] , Moreover, the following holds (the proof can be found in the literature)
o ={a1 = [[as]'], 02 = [as]', a3 = [[as]'] = [[as]], as = [as]'} is

the solution of {ay — [a] = [au] = [a5])" — a3, a3 = [as] = a1}
R WYErosvenwary s sire o i BECALO oeurams Iterative typing is undecidable.

RA - B
((RA::; I'; b (Cons £) :: ag, {as — [a] = [au] = [a5]" — s} ,(AXC) T FNil o], 0

o Tir (2] 5 on, {01 — o] — [oa] = [on] — s, 03 = [oa] = o] This follows from the undecidability of so-called semi unification of first-order terms.
(SCR=0) TiFrg s o) = [las]] (works of Kfoury, Tiuryn, and Urzyczyn and Henglein)
o ={a1 = [[as]], a2 = [as]', a3 = [[as]'] = [[as]'], as = [as]'} s
the solution of {ay — o] — [au] = [as]’ — a3, a3 = [as] — a1}
le. Diy1 = DU {f : Va.[a]"*}, g 2 Va.[a] T}
D. Sabel | PLF — 05 Polymorphic Type Inference | WS 2024 /25 83/109 D. Sabel | PLF — 05 Polymorphic Type Inference | WS 2024 /25 84/109

Ca” HieraChy al Hochschule RheinMain Type Safety al Hochschule RheinMain

A typed program calculus fulfills type safety iff

@ Typing is preserved by reduction (type preservation):
@ The iterative typing does not need the information of the call hierarchy: . , ,
For monomorphic type 7: If ¢t :: 7 and t — ¢/, then t' :: 7
The same types are inferred independently in which order they are computed . .
This includes the case that a polymorphic type becomes more general.

@ Typed, closed expressions are reducible if they are not a WHNF
(well-typed programs don't get stuck) (progress lemma)

Type Safety (2) *Hochschule RheinMain Type Safety (3) *Hochschule RheinMain

Let s be a directly dynamically untyped KFPTS+seq-expression. Then the iterative
typing cannot type s.

Proof. Assume s is directly dynamically untyped:

o s = Rlcaser (¢ sy ... sy) of Alts] and c is not of type T. Let s be a well-typed and cIosecimkanePTSP—|—seq-expression (of a well-typed
iterative typing adds equations ensuring the types of (¢ s1 ... s,) and of the KFPTSP+seq-program) and s —— s'. Then s is well-typed.
patterns in Alts are equal. Since c is not of type T, unification fails.

o s = R[caser A\x.t of Alts]: iterative typing add ensuring the type of Axz.t is
equal to the type of the patterns in Alts, and that it is a function type.
Unification fails, since the patterns do not have a function type.

® Rl(cs1 ... Sar(e)) t: ((¢ 51 --. Sar(c)) 1) is typed as a nested application
(((e s1) --.) Sar(c)) t). Equations are added implying that ¢ can receive at most
ar(c) arguments. Since there is one more argument, unification will fail.

Proof (Sketch): Inspect the (3)-, (SC' — 8)- and (case)-reduction and the typing of
the expressions before and after the reduction.

Type Safety (4) *Hochschule RheinMain Type Safety (5) *Hochschule RheinMain

The two lemmas show:

Let s be a well-typed, closed KFPTSP+seq-expression. Then s is not dynamically
untyped.

Type safety holds for the iterative typing of KFPTSP+seq. |

V.

Let s be a well-typed, closed KFPTSP+seqg-expression. Then
o sis a WHNF, or

. . . name
o s is call-by-name-reducible, i.e. s ——— s’ for some s'.

Proof. A closed KFPTS+seg-expression s is irreducible iff s is a WHNF or s is directly
dynamically untyped (and thus not well-typed).

Forcing Termination of Type Inference *Hochschule RheinMain Forcing Termination (Cont'd) *Hochschule RheinMain

(SCRECM) fori = 17' ce, M 1—‘M U {wi,l Ny, T, Oli,ni} I S it Tilin

Tybrfori=1,...,m SC;=o(ag = ... = Qip, = 7))

. . m .
o Let SC4,...,SC), be mutually recursive supercombinators if o is the solution of By U...UE,, U U{ri =ai1 — ... = ain, — 7/}

) .) . : : th : i=1
o Let'; by SCy i 7q,..., T bp SC,, :: 7, be the types derived in the ¢*" iteration and SCy 211 ... T, .
Milner-Step: Type SC4, ..., SC,, together with the type assumption:
Ty =T U{SCy ::1y,...,5C,, :: Ty }; without quantifiers SC Tml s Tmn = Sm
and the following rule (SCRecM) ... are the definitions of SC1,...,SC,,

As additional typing rule we add:

AXSC2
(AXSO2) T sC = rr SCor

if 7 is not universally quantified

ForCIng Term|nat|0n (Cont d) al Hochschule RheinMain a Hochschule RheinMain

HINDLEY-DAMAS-MILNER-
TYPING

Differences to an iterative step:
@ Types of to-be-typed SCs are not quantified
@ No copies of these types are made
@ At the end, the assumed types are unified with the derived types
This ensures: the new type assumption derived by (SCRECM) is always consistent

After a Milner-step the iterative algorithm terminates. J

The Hindley-Damas-Milner Typing *Hochschule RheinMain The Hindley-Damas-Milner Type Inference Algorithm *Hochschule RheinMain
SCq,...,S8C), are mutually recursive supercombinators ofan equivalence class w.r.t. ~
The algorithm is similar to iterative typing, with the differences: supercombinators strictly less than SCy, ..., SC,, w.r.t. < are already typed
@ Only one iteration step is performed @ Assumption I' contains types of the already typed SCs and of the constructors (all
@ The type assumption assumes for each to-be-typed supercombinator SC'; the type universally quantified)
a; (without quantifier!) @ Type SC4,...,SCy, with the rule (MSCREC):
@ consistency is enfored by additional unification equations (MSCRc) fori=1,...,m:TU{SCy :: B1,...,5Cm = B} U{Tit 52 Qityonos Timy 3t i, } & 855 75, B
Thpfori=1,...,m SC;::o(a1 = ... = Qip; = Ti)
Haskell uses Hindley-Damas-Milner-typing if o solution of By U...UE,, U Gl{ﬂi Ly = i, — T}

and SCy 211 ... 1, =51 are the definitions of SC1,...,5C),

Scm Tm,1 -+ Tmnm, = Sm

If unification fails, then SC4, ..., SC,, are not Hindley-Damas-Milner typeable

The Hindley-Damas-Milner Type Inference Algorithm *Hochschule RheinMain Properties of the Hindley-Damas-Milner Typing *Hochschule RheinMain

o the algorithm terminates
Simplification: Rule for one single recursive supercombinator: ® the algorithm computes unique types
@ Hindley-Damas-Milner typing is decidable
(MSCREc1) Fu{SC:B,x1ay,...,apan}sun B @ the decision problem whether an expression is Hindley-Damas-Milner-typeable is
Pkp SC ol — ... > ap = 1) DEXPTIME-complete
if o is the solution of EU{ =01 — ... = a, = T} @ the types may be more restrictive than the iterative type, in particular, an
and SC z1 ... x, = s is the definition of SC expression may be iteratively typeable but not Hindley-Damas-Milner-typeable.

@ The Hindley-Damas-Milner algorithm needs knowledge of the call hierarchy of the
SCs:
It may return more restrictive types if the typing is not along the hierarchy

Example a Hochschule RheinMain Example: map a Hochschule RheinMain
map f xs = case xs of {

Sometimes exponentially many type variables are required: 0—-10

(y:ys) — (£ y):(map £ ys)

(let x0 = \z->z in }
(et x1 = (x0,%0) in Ty = {Cons = Va.a — [a] — [a], i1 :: Va.[a]}
(let x2 = (x1,x1) ins
(let x3 = (x2,x2) in Seil=ToU{map: B, f sai,zs sz} and IV =T U {y : as,ys :: au}.
(let x4 = (x3,x3) in (a) Thas:m, B
= i (b) THENil:m, Es
(let x5 (x4 ’X4) in (¢) I"F (Consy ys):: 73, F3
(let x6 = (x5,x5) in x6))))))) (d) T'FNil: 7y, By
(RCasE) (¢) Ik (Cons (fy) (map f ys)) =75, Es
(MSCRF,(:,lA) I'F case xs of {Nil — Nil;Cons y ys — Cons y (map f ys)} = a, F

I'bpmap ::o(a) = ag — a)

Requires 2 type variables, the generalized example requires 27”. :
if o is the solution of EU {8 = a1 = az — a}

where E=FE1 UE; UE3sUE,UEs U{m =72, 71 = T3, = T4, = T5 }.

Example: map (2) al Hochschule RheinMain Example: map (3) al Hochschule RheinMain

AXV) ——————————
(ax)FFxs::az,Q)

le. T1 = Q2 and E1 = Q)

(@)
(e)

(AxV) (AxSC2 (AXV)

~' - (AXV) 17 . T = 6 T -
. (AxC) ”7@ o (m.,.qlf frand, Ity as,0) I IF map :: 3,0, RN y—
(b) Nil :: [as), any L Goms i ato — faso] > [anal, by smsfar =05 sais) o Tk(map f) o (BZm san) 0 T rystand
App, (RAPP)
le. 72 =[as] and B> =0 o I' I (Cons (f y)) = anr, {10 = o] = [10] = a1s — a1, a1 = a3 — ars} '+ (map f ys) = a13, {B = a1 — anz, 12 = aa — a1z}
v
I+ (Cons (f y) (map f ys)) :: ovia,
(AXC) " F Cons = ag — [co] = [a] (AxV) e v an,0 {a11 = 13 = g, a10 — [a10] = [@10] = @15 — @11, 00 = a3 = @15, B = a1 —> Q12,012 = Q4 —> a13}
(RAPP) - (AXV) l.e. 75 = 14 and
I+ (Cons y) :: ar, {as = [a] = [6] = az = ar} , '+ ys o, 0 5 14‘1 - -
(Ravr) - . = = = =
(©) I'F (Cons y ys) = as, {as — [ag] — [ag] = as — a7, a7 = @i — as} Es {?411 13 = a4, a0 = [a10] = [ouo] = a15 = cu1, 00 = az = aus,
le. 73 = as and B3 = {as — [as] = [6] = a3 — a7, a7 = a4 — as} I e)
(A

“O TENLL = [ag), 0
l.e. T4 = [ag] and E4 = 0.

(d)

Example: map (4) *Hochschule RheinMain Examples Known from lterative Typing *Hochschule RheinMain

gx=x: (g (g ’c’))
Unifiy equations E/U {f} = a1 — a2 = a}: Iterative typing results in Fail (after multiple iterations)

{ag — [os] — [ag] = a3 — ar, a7 = o — a8, Q11 = a1z — o, Hindley-Damas-Milner: T' = {Cons :: Va.a — [a] — [a], >c’ :: Char}.
@10 —> [0410] — [Ctlo] = Q15 —» (11, 1 = a3 — als,ﬁ = a1 — (2, Let F, =Tu {.f Lo, gl 6}
Q12 = a4 — 13, 02 = [a5), 2 = a8, 0 = 9, @ = Qu14,
B=oa1—a— a}l

M T 5,0, Tk ¢’ = Char, 0
Unification results in o . - o g 6,0, e 0,
T+ Cons :: a5 — [as] — [as],0 , Thax:al Trg:=p,0, Tk (g’c’):ar, {8 =Char — oy}
— (RAr) - (RAve) ; :
o ={ar [aro], 1 — as = aro, a2 — [as), a3 — ag, s — [as), as — ae, (e T F (Cons) :: as, a5 — [as] — [as] = a — a3, " T'F(g(g’c’)) = as {f = Char — a7, 8 = a7 — as}
ar — [as] = [as], as — [as], a9 — [aio], 11 — [a10] — [(Ravr) - - - -
T [6] [6]7 8 [6]’ 9 [10]7 H [10] [10]7 T+ Cons z (g (g ’c?)) :: az, {# = Char — a7, 8 = a7 = asas — [as] = [as] = a — ag,a3 = ag — as}
a1z = [as] = o], 013 — [ai0], @14 = [0ao], a5 — aao, (MSCRec)
B (ae — a10) — [as] = [a0] Uhrg:ola—a)
6 0 6 0Js where o is the solution of
l.e. map :: o(a1 — az — a) = (g — a10) — [a6] = [a10]- {B=Char = a7, f=a7 > as,a5 = [as] =[] =a > aga3 = oy = 6z, = = a}

Unification fails, since Char should be made equal to a list. Thus, g ist not
Hindley-Damas-Milner-typeable.

Examples Known from Iterative Typing (2) *Hochschule RheinMain Iterative Typing May Return More General Types *Hochschule RheinMain

gx=1: (g (g ’c’))

Iterative type: ¢ :: Va.ao — [Int] data Tree a = Empty | Node a (Tree a) (Tree a)

Hindley-Damas-Milner: Let TV =T U {z :: a, g :: §}. Types of the constructors

Empty :: Va. Tree a and
Node :: Va. a — Tree a — Tree a — Tree a

(AxSC2)

Thg:p,0 ,(Aw) Tt ’c’ :: Char,() ,

(Ax Ax AXSC? Rar) - x y = Node True X X
" T+ Cons a5 — [as] — [ash, 0, Th1l:uint,0 © TrguB0, Tk(g’c’):ar,{B=Char —ar} gxy xy) (gyx)
(RAPP) - (RAPP) - — i .
oy L (Cons 1) =2 3,05 — [ag] [as] = Int > a3, I (g (g c’)) as, {8 =Char — a7, f = a7 > a4} Hindley-Damas-Milner: g ::a — a — Tree Bool
o T+ Cons 1 (g (g’c?)) :ag, {f=Char — a7, = ay = aq, a5 — [a5] = [as] = Int — a3, 03 = g — a2} Iterative Typing:: g :: @ — b — Tree Bool
Thrg:ola— a) Reason:
where ¢ is the solution of . . .
{8 = Char = a7, = a7 = as, a5 — [as] = [as] = Int = ag, a3 = as — a2, 8 = @ = as} Iterative typing uses copies of the type of g,
Unification fails since [c5] = Char should be unified.
D. Sabel | PLF — 05 Polymorphic Type Inference | WS 2024/25 IEBLE ~ Motivation Unification Expressions Supercombinators | D. Sabel | PLF — 05 Polymorphic Type Inference | WS 2024/25 IUFBLE ~ Motivation Unification Expressions Supercombinators |

Hindley-Damas-Milner Typing and Type Safety *Hochschule RheinMain Hindley-Damas-Milner Typing and Type Safety (2) *Hochschule RheinMain

@ Type-Preservation: Does hold in KFPTSP+seq, but not in Hskell:
let x = (let y = \u -> z in (y [1, y True, seq x True))
z = const z X
in x

@ Hindley-Damas-Milner typed programs are always iteratively typeable is Hindley-Damas-Milner typeable

@ Hence Hindley-Damas-Milner typed programs are never dynamically untyped
After a so-called (llet)-reduction:
let x = (y [, y True, seq x True)
y=\u->z
z = const z x
in x

@ Also the progress lemma holds: Hindley-Damas-Milner typed (closed) programs
are WHNFs or reducible

This expression is not Hindley-Damas-Milner-typeable (but iteratively)

@ Reason: After the reduction x,y,z have to be typed together, before they can be
typed separately

Conclusion: Type Safety *Hochschule RheinMain

Not a real problem, since
@ Type-Preservation holds for the iterative typing.
@ well-typed programs are dynamically typed
@ Hindley-Damas-Milner-typeable implies iterative typeable
@ reduction preserve the iterative type

D. Sabel | PLF — 05 Polymorphic Type Inference | WS 2024 /25

B o Uit S Swecombnos |

	Motivation
	Types: Notations and Unification
	Typing of KFPTS+seq-Expressions
	Typing Supercombinators

