

Contents

- Syntax of the Lambda Calculus
- α -Renaming and β -Reduction
- Confluence and the Church-Rosser-Theorem
- Call-by-Name Evaluation
- Call-by-Value Evaluation
- Call-by-Need Evaluation
- Contextual Equivalence
- Context Lemma
- Turing Completeness

D. Sabel | PLF - 03 Lambda Calculus | WS 2024/25

Syntax lpha & eta Confluence Name Value Need \sim_c Context L. Turing Con

Introduction

The untyped lambda calculus

- is a foundational model of computation
- is the core of functional programming languages

Lambda notation is used in other settings too:

- non-functional programming languages like Java or Python have introduced functional concepts and lambda expressions
- in mathematics, lambda notation is used to represent function
- we use it later for denotational semantics of an imperative programming language

SYNTAX OF THE LAMBDA

- Syntax of expressions
- Free and bound variables
- Capture-avoiding substitution
- Contexts

Expressions

Expressions

$$\mathbf{Expr} ::= V \mid \lambda V. \mathbf{Expr} \mid (\mathbf{Expr} \ \mathbf{Expr})$$

where V is a non-terminal for variables

Explanations:

 $\lambda x.s$ is an abstraction = an anonymous function, λx binds x in body s (s t) is an application = expression s is applied to argument t

Examples:

- $\lambda x.x$ is the identity function, like id(x) = x, but anonymous
- $((\lambda x.x) \ z)$ represents id(z)
- $((\lambda x.x) (\lambda x.x))$ represents id(id)
- $\lambda x. \lambda y. x$ represents f(x,y) = x

. Sabel | PLF - 03 Lambda Calculus | WS 2024/25

Syntax α & β Confluence Name Value Need \sim_c Context L. Turing

Examples

Some prominent expressions:

 $I := \lambda x.x$ (identity)

 $K := \lambda x. \lambda y. x$ (projection to first argument)

 $K_2 := \lambda x. \lambda y. y$ (projection to second argument)

 $\Omega := (\lambda x.(x \ x)) \ (\lambda x.(x \ x))$ (diverging expression)

 $Y := \lambda f.(\lambda x.(f\ (x\ x)))\ (\lambda x.(f\ (x\ x))) \qquad \qquad \text{(call-by-name fixpoint combinator)}$

 $Z := \lambda f. (\lambda x. (f \ \lambda z. (x \ x) \ z)) \ (\lambda x. (f \ \lambda z. (x \ x) \ z)) \ \ \text{(call-by-value fixpoint combinator)}$

 $S := \lambda x. \lambda y. \lambda z. (x z) (y z)$ (S-combinator)

Conventions

To omit parentheses, we use the following conventions:

application is left-associative:

$$s\ t\ r$$
 means $((s\ t)\ r)$ and not $(s\ (t\ r))$

• the body of an abstraction extends as far as possible:

$$(\lambda x.s \ t \text{ means } \lambda x.(s \ t) \text{ and not } ((\lambda x.s) \ t))$$

abbreviation:

We write $\lambda x_1, \ldots, x_n t$ for the nested abstractions $\lambda x_1 (\lambda x_2 \ldots (\lambda x_n t) \ldots)$.

D. Sabel | PLF - 03 Lambda Calculus | WS 2024/25

Syntax $\alpha \& \beta$ Confluence Name Value Need \sim_c Context L. Turing Com

Free and Bound Variables

$$FV(x) = x$$
 $BV(x) = \emptyset$
 $FV(\lambda x.s) = FV(s) \setminus \{x\}$ $BV(\lambda x.s) = BV(s) \cup \{x\}$
 $FV(s t) = FV(s) \cup FV(t)$ $BV(s t) = BV(s) \cup BV(t)$

Example: $s = (\lambda x. \lambda y. \lambda w. (x\ y\ z))\ x$

Free variables $FV(s) = \{x, z\}$ and $BV(s) = \{x, y, w\}$.

Closed and open expressions:

- ullet t is closed (or a program) if $FV(t)=\emptyset$
- otherwise *t* is open

Occurrence x in t is bound if it is in scope of a binder λx , otherwise it called free

 $\text{Example: } \left((\lambda x. \lambda y. \lambda w. (\underbrace{x}_{\text{bound bound free}} \underbrace{y}_{\text{free}} \underbrace{z}_{\text{free}}) \right) \underbrace{x}_{\text{free}} \right)$

Substitution

Definition (Capture-Avoiding Substitution)

If $BV(s) \cap FV(t) = \emptyset$, then s[t/x] is s where all free occurrences of x are replaced by t:

$$x[t/x] = t y[t/x] = y, \text{ if } x \neq y (\lambda y.s)[t/x] = \begin{cases} \lambda y.(s[t/x]) & \text{if } x \neq y \\ \lambda y.s & \text{if } x = y \end{cases} (s_1 s_2)[t/x] = (s_1[t/x] s_2[t/x]) (s_1 s_2)[t/x] = (s_1[t/x] s_2[t/x])$$

Example: $(\lambda x.z \ x)[(\lambda y.y)/z] = (\lambda x.((\lambda y.y) \ x)).$

Without the side condition: $(\lambda x.z \ x)[\lambda y.x/z]$ would lead to $\lambda x.((\lambda y.x) \ x)$

D. Sabel | PLF - 03 Lambda Calculus | WS 2024/25

Syntax lpha & eta Confluence Name Value Need \sim_c Context L. Turing Co

Hochschule **RheinMain**

α -Renaming and β -Reduction

- Renaming of variables
- Distinct variable convention
- Substitution (with renaming)
- $-\beta$ -reduction, contextual closure

Contexts

Contexts C: Expressions with one hole $[\cdot]$

 $\mathbf{Ctxt} ::= [\cdot] \mid \lambda V.\mathbf{Ctxt} \mid (\mathbf{Ctxt} \ \mathbf{Expr}) \mid (\mathbf{Expr} \ \mathbf{Ctxt})$

C[s] is an expression: it is C where the hole is replaced by s

This may capture variables, e.g. for context $C = \lambda x.[\cdot]$ and expression $\lambda y.x$:

$$C[\lambda y.x] = \lambda x.(\lambda y.x).$$

D. Sabel | PLF - 03 Lambda Calculus | WS 2024/25

Syntax α & β Confluence Name Value Need \sim_c Context L. Turing Com

Consistent Renaming of Variables

A single α -renaming-step is of the form:

$$C[\lambda x.s] \xrightarrow{\alpha} C[\lambda y.s[y/x]]$$
 if $y \notin BV(C[\lambda x.s]) \cup FV(C[\lambda x.s])$

The reflexive-transitive closure of $\xrightarrow{\alpha} \cup \xleftarrow{\alpha}$ is called α -equivalence and written $s =_{\alpha} t$.

We identify α -equivalent expressions (and write s=t also if $s=_{\alpha}t$)

The Distinct Variable Convention

Example

To avoid naming conflicts, we assume the following convention:

Distinct Variable Convention (DVC)

In any expression s, bound and free variables are disjoint, i.e. $BV(s)\cap FV(s)=\emptyset$, and all variables on binders are pairwise distinct.

The convention can be obeyed by using α -renamings.

 $(y (\lambda y.((\lambda x.(x \lambda x.x)) (x y))))$ violates the DVC

since x and y occur free and bound and x occurs twice at a binder apply α -renamings to satisfy the DVC:

$$(y (\lambda y.((\lambda x.(x \lambda x.x)) (x y))))$$

$$\xrightarrow{\alpha} (y (\lambda y_1.((\lambda x.(x \lambda x.x)) (x y_1))))$$

$$\xrightarrow{\alpha}$$
 $(y (\lambda y_1.((\lambda x_1.(x_1 \lambda x.x)) (x y_1))))$

$$\stackrel{\alpha}{\rightarrow} \ (y \ (\lambda y_1.((\lambda x_1.(x_1 \ \lambda x_2.x_2)) \ (x \ y_1))))$$

. Sabel | PLF - 03 Lambda Calculus | WS 2024/25

3/100 Syntax $\alpha \& \beta$ Confluence Name Value Need \sim_c Context L. Turing Comp

D. Sabel | PLF - 03 Lambda Calculus | WS 2024/25

Syntax α & β Confluence Name Value Need \sim_c Context L. Turing Com

Substitution with Renaming

Substitution s[t/x] without side condition:

Definition (Substitution)

If $BV(s) \cap FV(t) = \emptyset$, then s[t/x] is the capture-avoiding substitution.

Otherwise, let $s' =_{\alpha} s$ such that s' fulfills the DVC.

Then $BV(s') \cap FV(t) = \emptyset$ holds.

Then let s[t/x] = s'[t/x] using capture-avoiding substitution for s'[t/x].

Note: s[t/x] may not satisfy the DVC.

Better: Used α -renamed copies for each t

β -Reduction

The most important reduction rule of the lambda calculus:

Definition

The (direct) (β) -reduction is defined as

$$(\beta) \qquad (\lambda x.s) \ t \xrightarrow{\beta} s[t/x]$$

If $r_1 \xrightarrow{\beta} r_2$, the we say r_1 directly reduces to r_2 .

Contextual closure

The contextual closure of β -reduction is $\xrightarrow{C,\beta}$ defined as

$$C[s] \xrightarrow{C,\beta} C[t]$$
 iff C is a context and $s \xrightarrow{\beta} t$.

Examples

$$(\lambda x.x) (\lambda y.y) \xrightarrow{\beta} x[(\lambda y.y)/x] = \lambda y.y$$

$$(\lambda y.y\ y\ y)\ (x\ z)\xrightarrow{\beta} (y\ y\ y)[(x\ z)/y] = (x\ z)\ (x\ z)$$

To obey the DVC after a β -reduction: Apply α -renaming, e.g.

$$(\lambda x.(x\ x))\ (\lambda y.y) \xrightarrow{\beta} \underbrace{(\lambda y.y)\ (\lambda y.y)}_{\text{violates the DVC}} =_{\alpha} \underbrace{(\lambda y_1.y_1)\ (\lambda y_2.y_2)}_{\text{satisfies the DVC}}$$

O. Sabel | PLF - 03 Lambda Calculus | WS 2024/25

Syntax α & β Confluence Name Value Need \sim_c Context L. Turi

Hochschule **RheinMain**

CHURCH-ROSSER-THEOREM

- The diamond property
- Confluence
- \rightarrow_1 -reduction
- Proof of the Church-Rosser-Theorem

Reduction Strategy

To evaluate an expression, β -reduction has to be applied to subexpressions, e.g.

$$((\lambda x.x) (\lambda y.y)) (\lambda z.z) \xrightarrow{C,\beta} (\lambda y.y) (\lambda z.z)$$

Those subexpressions are called a **redex** (reducible expression).

Using $\xrightarrow{C,\beta}$ is not deterministic, e.g. $((\lambda x.x\ x)\ ((\lambda y.y)\ (\lambda z.z)))$ has two redexes:

- $\bullet \ \left(\left(\lambda x.x \ x \right) \ \left(\left(\lambda y.y \right) \ \left(\lambda z.z \right) \right) \right) \xrightarrow{C,\beta} \left(\left(\lambda y.y \right) \ \left(\lambda z.z \right) \right) \ \left(\left(\lambda y.y \right) \ \left(\lambda z.z \right) \right)$
- $\bullet \ ((\lambda x.x \ x) \ ((\lambda y.y) \ (\lambda z.z))) \xrightarrow{C,\beta} ((\lambda x.x \ x) \ (\lambda z.z)).$

Fixing the position where to apply the reduction is called a reduction strategy.

We do it soon, but first we consider arbitrary $\xrightarrow{C,\beta}$ -steps.

D. Sabel | PLF - 03 Lambda Calculus | WS 2024/25

Syntax $\alpha \& \beta$ Confluence Name Value Need \sim_c Context L. Turing Con

Notation

For a binary relation $\rightarrow \subseteq (M \times M)$, we denote with

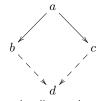
- ullet the symmetric closure of o (i.e. $a \leftrightarrow b$ iff $a \to b$ or $b \to a$).
- $\stackrel{i}{\to}$ the *i*-fold composition of \to $(a \stackrel{0}{\to} a \text{ for all } a \in M \text{ and for } i > 0 : a \stackrel{i}{\to} b, \text{ if } \exists b' \in M : a \to b' \text{ and } b' \stackrel{i-1}{\to} b).$
- $\xrightarrow{i \lor j}$ is the union of the i-fold and the j-fold composition $(a \xrightarrow{i \lor j} b \text{ iff } a \xrightarrow{i} b \text{ or } a \xrightarrow{j} b).$ In particular, $\xrightarrow{0 \lor 1}$ is the reflexive-closure of \to .
- $\stackrel{*}{\to}$ the reflexive-transitive closure of \to ($a\stackrel{*}{\to}b$ iff $\exists i\in\mathbb{N}_0:a\stackrel{i}{\to}b$).
- $\stackrel{*}{\leftrightarrow}$ the reflexive-transitive closure of \leftrightarrow .
- $\xrightarrow{+}$ the transitive closure of \rightarrow $(a \xrightarrow{+} b \text{ iff } \exists i \in \mathbb{N} : a \xrightarrow{i} b)$.

The Diamond Property and Confluence

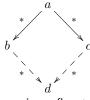
Definition

A binary relation $\rightarrow \subseteq M \times M$

- has the diamond property iff whenever $a \to b$ and $a \to c$ there exists $d \in M$ such that $b \to d$ and $c \to d$.
- ullet is confluent iff $\stackrel{*}{ o}$ has the diamond property.



ightarrow has the diamond property



 \rightarrow is confluent

. Sabel | PLF - 03 Lambda Calculus | WS 2024/25

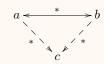
21/100

Syntax $\alpha \& \beta$ Confluence Name Value Need \sim_c Context L. Turing Comp

A Consequence of Confluence

Lemma 3.3.2

If reduction relation \rightarrow is confluent, then $a \stackrel{*}{\longleftrightarrow} b$ implies $\exists c : a \stackrel{*}{\to} c \land b \stackrel{*}{\to} c$



Proof. By induction on $a \stackrel{i}{\longleftrightarrow} b$.

- ullet Base case: if i=0, then a=b and the claim holds
- ...

Motivation

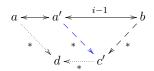
- our goal is to show that $\xrightarrow{C,\beta}$ is confluent
- if confluence holds, then normal forms are unique: if we reduce all $\xrightarrow{C,\beta}$ -redexes, then we get the same expression (up to α -renaming) independently from the order and positions where the reductions where applied

D. Sabel | PLF - 03 Lambda Calculus | WS 2024/25

Syntax α & β Confluence Name Value Need \sim_c Context L. Turing Com

Proof (Cont'd)

If i>0, then $\exists a': a \leftrightarrow a' \stackrel{i-1}{\longleftrightarrow} b$. By induction hypothesis $\exists c': a' \stackrel{*}{\to} c'$ and $b \stackrel{*}{\to} c'$.



- If $a \to a'$, then $a \to a' \stackrel{*}{\to} c'$ and thus $a \stackrel{*}{\to} c'$. Since also $b \stackrel{*}{\to} c'$, the claim holds.
- If $a' \to a$, then $a' \stackrel{*}{\to} a$. Since \to is confluent, $\stackrel{*}{\to}$ has the diamond property and thus: from $a' \stackrel{*}{\to} a$ and $a' \stackrel{*}{\to} c'$, we obtain d with $a \stackrel{*}{\to} d$ and $c' \stackrel{*}{\to} d$. Since $b \stackrel{*}{\to} c' \stackrel{*}{\to} d$, the claim holds.

Diamond Property: Inheritance from \rightarrow to $\stackrel{*}{\rightarrow}$

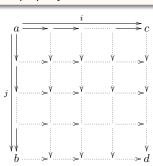
Lemma 3.3.3

Let \rightarrow be a binary relation and $\stackrel{*}{\rightarrow}$ be its reflexive-transitive closure. If \rightarrow has the diamond property, then $\stackrel{*}{\rightarrow}$ has the diamond property.

Proof: By induction on (i, j) one can show that:

If
$$a \xrightarrow{i} b$$
 and $a \xrightarrow{j} c$ then $\exists d: b \xrightarrow{i} d$ and $c \xrightarrow{j} d$.

The inner square diagrams follow from the diamond property of \rightarrow .



D. Sabel | PLF - 03 Lambda Calculus | WS 2024/25

Syntax α & β Confluence Name Value Need \sim_c Context L. Turing Compl

Closures of $\xrightarrow{\beta}$

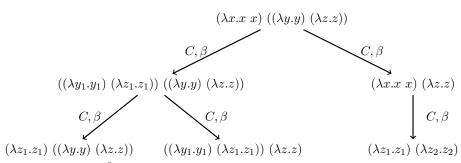
- With $s \stackrel{C,\beta}{\longleftrightarrow} t$ we denote the symmetric closure of $\stackrel{C,\beta}{\longleftrightarrow} t$ (i.e. $s \stackrel{C,\beta}{\longleftrightarrow} t$ iff $s \stackrel{C,\beta}{\longleftrightarrow} t$ or $t \stackrel{C,\beta}{\longleftrightarrow} s$)
- With $s \xrightarrow{C,\beta,*} t$ we denote the reflexive-transitive closure of $\xrightarrow{C,\beta}$
- With $s \stackrel{C,\beta,*}{\longleftrightarrow} t$ we denote the reflexive-transitive closure of $\stackrel{C,\beta}{\longleftrightarrow}$

The relation $\stackrel{C,\beta,*}{\longleftrightarrow}$ is sometimes also called β -equivalence or also convertibility.

D. Sabel | PLF - 03 Lambda Calculus | WS 2024/25

Syntax of & B Confluence Name Value Need ~ Context | Turing Comp

$\xrightarrow{C,\beta}$ does not have the diamond property



- \longrightarrow Confluence of $\xrightarrow{\beta}$ cannot be proved by the previous lemma
- → Idea:
- Another reduction relation \rightarrow_1 with $\xrightarrow{C,\beta,0\vee 1} \subset \rightarrow_1 \subset \xrightarrow{C,\beta,*}$ and $\xrightarrow{*}_1 = \xrightarrow{C,\beta,*}$
- Prove diamond-property of \rightarrow_1 . This implies diamond-property of $\stackrel{*}{\rightarrow}_1 = \stackrel{C,\beta,*}{\rightarrow}_1$

 \rightarrow_1 -Reduction

Definition (Parallel Reduction \rightarrow_1)

The relation $\rightarrow_1 \subseteq (\mathbf{Expr} \times \mathbf{Expr})$ is inductively defined by:

- \bullet $s \to_1 s$ for all expressions s.
- \bullet if $s_1 \rightarrow_1 s_2$ and $t_1 \rightarrow_1 t_2$, then $((\lambda x.s_1) t_1) \rightarrow_1 s_2[t_2/x]$.
- if $s \to_1 t$, then $\lambda x.s \to_1 \lambda x.t$.

Lemma 3.3.7

 $\xrightarrow{C,\beta}\subseteq \to_1$

Proof. Let $C[(\lambda x.s)\ t] \xrightarrow{C,\beta} C[s[t/x]]$. We show $C[(\lambda x.s)\ t] \to_1 C[s[t/x]]$ by structural induction on C.

If $C = [\cdot]$, then $(\lambda x.s)$ $t \to_1 s[t/x]$ by \emptyset , since $s \to_1 s$ and $t \to_1 t$ by \emptyset .

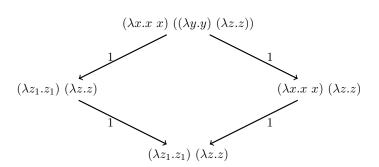
If $C \neq [\cdot]$ we use as IH that $C'[(\lambda x.s)\ t] \rightarrow_1 C'[s[t/x]]$ where C' is a proper subcontext of context C.

- If $C=(C'\ r)$, then $r\to_1 r$ by \P , $C'[(\lambda x.s)\ t]\to_1 C'[s[t/x]]$ by the IH and thus $C[(\lambda x.s)\ t]=(C'[(\lambda x.s)\ t]\ r)\to_1 (C'[s[t/x]]\ r)=C[s[t/x]]$ by \P .
- The case $C = (r \ C')$ is completely analogous to the previous one.
- If $C=\lambda y.C'$, then $C'[(\lambda x.s)\ t]\to_1 C'[s[t/x]]$ by the IH and thus $C[(\lambda x.s)\ t]=\lambda y.C'[(\lambda x.s)\ t]\to_1 \lambda y.C'[s[t/x]]=C[s[t/x]]$ by \P .

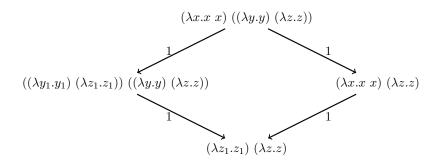
. Sabel | PLF - 03 Lambda Calculus | WS 2024/25

Syntax α & β Confluence Name Value Need \sim_c Context L. Turing Compl.

Examples for \rightarrow_1 (2)



Examples for \rightarrow_1



D. Sabel | PLF - 03 Lambda Calculus | WS 2024/25

0/100 Syntax lpha & eta Confluence Name Value Need \sim_c Context L. Turing Com

\rightarrow_1 and Substitutions

Lemma 3.3.10

If $s \to_1 r$ and $t \to_1 u$ then $s[t/x] \to_1 r[u/x]$

Proof. This can be shown by induction on $s \to_1 r$.

The base case s=r can be shown by structural induction on s.

For the induction step, we only show one exemplary case:

• If $s = (s_1 \ s_2) \to_1 (r_1 \ r_2) = r$ with $s_i \to_1 r_i$ for i = 1, 2, the IH shows $s_i[t/x] \to_1 r_i[u/x]$ for i = 1, 2 and thus $(s_1[t/x] \ s_2[t/x]) \to_1 (r_1[u/x] \ r_2[u/x])$. Since $s[t/x] = (s_1 \ s_2)[t/x]$ and $(r_1 \ r_2)[u/x] = r[u/x]$, the claim holds.

Diamond Property for \rightarrow_1

Lemma 3.3.11

Relation \rightarrow_1 has the diamond property.

Proof. We show that whenever $s \to_1 t$ then for all r with $s \to_1 r$ there exists r' with $t \to_1 r'$ and $r \to r'$.

We use induction on the definition of \rightarrow_1 in $s \rightarrow_1 t$.

Base case: t = s, i.e. $s \to_1 s$. Then choose r' = r and the claim holds.

For the induction step, all other cases of the definition of \rightarrow_1 have to be considered. We show one exemplary case.

D. Sabel | PLF - 03 Lambda Calculus | WS 2024/25

Syntax $\alpha \& \beta$ Confluence Name Value Need \sim_c Context L. Turing Compl.

Coincidence of $\xrightarrow{C,\beta,*}$ and $\xrightarrow{*}_1$

Lemma 3.3.12

$$\xrightarrow{C,\beta,*} = \xrightarrow{*}_1$$

Proof (Sketch).

Since $\xrightarrow{C,\beta} \subseteq \to_1$ (Lemma 3.3.7), $\xrightarrow{C,\beta,*} \subseteq \xrightarrow{*}_1$ also holds.

 $\rightarrow_1 \subseteq \xrightarrow{\beta,*}$ can be proved by inspecting the different cases of the inductive definition of \rightarrow_1 .

Finally, $\stackrel{*}{\to}_1 \subseteq \stackrel{C,\beta}{\longrightarrow}$ holds, since $\stackrel{*}{\to}_1 \subseteq \left(\stackrel{C,\beta,*}{\longrightarrow} \right)^*$ and $\stackrel{C,\beta,*}{\longrightarrow} \stackrel{*}{\longrightarrow} = \stackrel{C,\beta,*}{\longrightarrow}$.

Diamond Property for \rightarrow_1 (Cont'd)

If $s=((\lambda x.s_1)\ s_2)$ and $t=t_1[t_2/x]$ where $s_i\to_1 t_i$, then for $s\to_1 r$ there are two cases:

- $s=((\lambda x.s_1)\ s_2) \to_1 ((\lambda x.r_1)\ r_2)$ with $s_1 \to_1 r_1$ and $s_2 \to_1 r_2$. Applying the IH to $s_1 \to_1 t_1$ and $s_1 \to_1 r_1$ and also to $s_2 \to_1 t_2$ and $s_2 \to_1 r_2$ shows that there exists r'_1 and r'_2 such that: $t_i \to_1 r'_i$, $r_i \to_1 r'_i$ for i=1,2. This shows that $t_1[t_2/x] \to_1 r'_1[r'_2/x]$ and $((\lambda x.r_1)\ r_2) \to_1 r'_1[r'_2/x]$ (using the previous lemma). Thus the diamond property holds.
- If $s=((\lambda x.s_1)\ s_2)$ and $r=r_1[r_2/x]$ where $s_1\to_1 r_1$ and $s_2\to_1 r_2$. Applying the IH to $s_1\to_1 t_1$ and $s_1\to_1 r_1$ and also to $s_2\to_1 t_2$ and $s_2\to_1 r_2$ shows that there exists r_1' and r_2' such that: $t_i\to_1 r_i'$, $r_i\to_1 r_i'$ for i=1,2. This shows that $t_1[t_2/x]\to_1 r_1'[r_2'/x]$ and $r_1[r_2/x]\to_1 r_1'[r_2'/x]$ (using the previous lemma). Thus the diamond property holds.

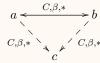
D. Sabel | PLF - 03 Lambda Calculus | WS 2024/25

Syntax α & β Confluence Name Value Need \sim_c Context L. Turing Com

Church-Rosser-Theorem

Church-Rosser-Theorem

For the lambda calculus the following holds: If $a \xleftarrow{C,\beta,*} b$, then there exists c, such that $a \xrightarrow{C,\beta,*} c$ and $b \xrightarrow{C,\beta,*} c$



Proof.

Applying Lemma 3.3.3 for \to_1 (using Lemma 3.3.11) shows that \to_1 is confluent and that $\stackrel{*}{\to}_1$ has the diamond property.

With the equation of Lemma 3.3.12, we have that $\xrightarrow{C,\beta,*}$ has the diamond property and thus $\xrightarrow{C,\beta}$ is confluent. Finally, Lemma 3.3.2 then shows the claim.

CALL-BY-NAME EVALUATION

- Reduction contexts
- Alternative definition with labeling
- Convergence
- Standardisation-Theorem

Call-by-Name Evaluation

Ideas:

- ullet do not reduce below λ
- reduce the leftmost-outermost β -redex
- in $(\lambda x.s)$ t pass t to the function body without evaluating t

Definition

Reduction contexts R are built by the following grammar:

$$\mathbf{RCtxt} ::= [\cdot] \mid (\mathbf{RCtxt} \ \mathbf{Expr})$$

If $r_1 \xrightarrow{\beta} r_2$ and R is a reduction context, then $R[r_1] \xrightarrow{name} R[r_2]$ is a call-by-name reduction step.

D. Sabel | PLF - 03 Lambda Calculus | WS 2024/25

Syntax $\alpha \& \beta$ Confluence Name Value Need \sim_c Context L. Turing Cor

Example

Alternative Definition of Call-by-Name Reduction

Use a labeling algorithm to mark the redex:

- For expression s, start with s^* .
- Apply the label shifting as long as possible:

$$(s_1 \ s_2)^{\star} \Rightarrow (s_1^{\star} \ s_2)$$

The result is of the form $(s_1^\star \ s_2 \ \dots \ s_n)$, where s_1 is not an application.

• If s_1 is an abstraction $\lambda x.s_1'$ and $n \geq 2$, then reduce as follows:

$$(\lambda x.s_1') \ s_2 \ \dots s_n \xrightarrow{name} (s_1'[s_2/x] \ \dots s_n)$$

- If s_1 is an abstraction and n=1, then no call-by-name reduction is applicable (since the whole expression is an abstraction)
- ullet If s_1 is a variable, then no call-by-name reduction is applicable (since a free variable has been detected)

Convergence

- ullet Call-by-name reduction is deterministic: if $s \xrightarrow{name} t$ and $s \xrightarrow{name} t' \implies t = t'$
- No call-by-name reducion is applicable iff s = R[x] or if s is an abstraction (called an FWHNF (functional weak head normal form))
- Reaching an FWHNF means success
- $\bullet \xrightarrow{name,+} \text{and} \xrightarrow{name,*} \text{are the transitive and reflexive-transitive closure of } \xrightarrow{name}.$

Definition

Expression s (call-by-name) converges $s \downarrow$ iff $\exists abstraction \ v : s \xrightarrow{name,*} v$.

If s does not converge, we write $s \uparrow \uparrow$ and say s diverges.

0. Sabel | PLF - 03 Lambda Calculus | WS 2024/25

1/100 Syntax $\alpha \& \beta$ Confluence Name Value Need \sim_c Context L. Turing Compl.

D. Sabel | PLF - 03 Lambda Calculus | WS 2024/25

Syntax α & β Confluence Name Value Need ~ Context L Turing Comp

Standardisation (Preparations)

• Goal: show that call-by-name evaluation is optimal w.r.t. convergence

 $\begin{array}{ccc}
& \left(\left(\left(\lambda w.w\right)^{\star}\left(\left(\lambda u.u\right)\left(\lambda v.v\right)\right)\right)^{\star}\left(\lambda x.\left(\left(\lambda y.y\right)\left(\lambda z.z\right)\right)\right)\right)^{\star} \\
\xrightarrow{name} & \left(\left(\left(\lambda u.u\right)^{\star}\left(\lambda v.v\right)\right)^{\star}\left(\lambda x.\left(\left(\lambda y.y\right)\left(\lambda z.z\right)\right)\right)\right)^{\star} \\
\xrightarrow{name} & \left(\left(\lambda v.v\right)^{\star}\left(\lambda x.\left(\left(\lambda y.y\right)\left(\lambda z.z\right)\right)\right)\right)^{\star}
\end{array}$

- Technique: \rightarrow_1 -reduction, also on contexts: C is treated like an expression with constant $[\cdot]$
- If $R \to_1 R'$ for a reduction context R, then R' is also a reduction context.
- If $C \to_1 C'$, $s \to_1 s'$, where C is a context, then $C[s] \to_1 C[s']$

Definition $(\underbrace{^{name}}_{1})_{1}$ and $\underbrace{^{int}}_{1})_{1}$

If $R \to_1 R'$, $s \to_1 s'$, $t \to_1 t'$, and R is a reduction context, then

$$R[(\lambda x.s) \ t] \xrightarrow{name}_{1} R'[s'[t'/x]]$$

Let $\xrightarrow{int}_1 := \to_1 \setminus \xrightarrow{name}_1$ be the internal $\xrightarrow{1}$ -reduction.

Note that: $\xrightarrow{name} \subset \xrightarrow{name}_1 \subset \to_1$

Standardisation (Preparations, cont'd)

Counting the contracted redexes:

Definition

Define the measure $\phi: \to_1 \to \mathbb{N}_0$ inductively as

$$\begin{array}{ll} \phi(x \to_1 x) &= 0, \text{if } x \text{ is a variable} \\ \phi(\lambda x.s \to_1 \lambda x.s') &= \phi(s \to s') \\ \phi(((\lambda x.s)\ t) \to_1 s'[t'/x]) &= 1 + \phi(s \to_1 s') + k \cdot \phi(t \to_1 t'), \text{where } k \text{ is the number of} \\ \phi((s\ t) \to_1 (s'\ t')) &= \phi(s \to_1 s') + \phi(t \to_1 t') \end{array}$$
 free occurrences of x in s

Measure ϕ is defined for every \rightarrow_1 -step and it is well-founded.

Splitting \rightarrow_1

Lemma 3.4.10

If
$$s \to_1 t$$
, then $s \xrightarrow{name,*} s' \xrightarrow{int}_1 t$.

Proof. If $s \xrightarrow{int}_1 t$, then the claim holds.

Otherwise,
$$s \xrightarrow{name}_1 t$$
, i.e. $s = R[(\lambda x.r) \ u]$, $r \to_1 r'$, $u \to_1 u'$, $R \to_1 R'$, $t = R'[r'[u'/x]]$.

Then $s \xrightarrow{name} R[r[u/x]] \to_1 R'[r'[u'/x]]$ and this can be iterated. If the iteration stops, the demanded reduction sequence is constructed.

For termination, we verify $\phi(s \to_1 t) > \phi(R[r[u/x]] \to_1 R'[r'[u'/x]])$:

$$\phi(R[(\lambda x.r)\ u] \to_1 R'[r'[u'/x]]) = \phi(R \to_1 R') + \phi((\lambda x.r)\ u \to_1 r'[u'/x])$$

$$= \phi(R \to_1 R') + 1 + \phi(r \to_1 r') + k\phi(u \to_1 u')$$

$$\phi(R[r[u/x]]] \to_1 R'[r'[u'/x]]) = \phi(R \to_1 R') + \phi(r \to_1 r') + k\phi(u \to_1 u')$$

where k is the number of free occurrences of x in r.

Sabel | PLF = 03 Lambda Calculus | WS 2024/25

Syntax $\alpha \& \beta$ Confluence Name Value Need \sim_c Context L. Turing Compl

Shifting $\xrightarrow{name,*}$ over \rightarrow_1

Applying Lemma 3.4.11 iteratively shows:

Lemma 3.4.12

If
$$s \to_1 t \xrightarrow{name,*} v$$
, v is an FWHNF, then $s \xrightarrow{name,*} v' \xrightarrow{int}_1 v$ where v' is an FWHNF.

The induction is on the number of \xrightarrow{name} -steps.

For the base case, observe that \xrightarrow{int}_1 steps do not transform non-FWHNFs into FWHNFs.

For the induction step, apply Lemma 3.4.11 and use the induction hypothesis.

Shifting \xrightarrow{name} over \rightarrow_1

Lemma 3.4.11

Let
$$s \to_1 t \xrightarrow{name} r$$
, then there exists u such that $s \xrightarrow{name,+} u \xrightarrow{int}_1 r$.

Proof.

By Lemma 3.4.10 $s \to_1 t \xrightarrow{name} r$ can be written as $s \xrightarrow{name,*} t' \xrightarrow{int} t \xrightarrow{name} r$.

Since $t \xrightarrow{name} r$, we can assume that $t = R[(\lambda x.t_0) \ t_1] \xrightarrow{name} R[t_0[t_1/x]] = r$.

Since $t' \xrightarrow{int}_1 t$ is internal, $t' = R'[(\lambda x.t'_0) \ t'_1]$ where $R' \to_1 R$, $t'_0 \to_1 t_0$, and $t'_1 \to_1 t_1$.

Then
$$t' = R'[(\lambda x.t'_0)\ t'_1] \xrightarrow{name} R'[t'_0[t'_1/x]] \xrightarrow{int}_1 R[t_0[t_1/x]] = r$$
 holds.

D. Sabel | PLF - 03 Lambda Calculus | WS 2024/25

Syntax α & β Confluence Name Value Need \sim_c Context L. Turing Com

Standardisation-Theorem

Call-by-name evaluation is an optimal strategy w.r.t. termination:

Standardisation-Theorem

If $s \xrightarrow{C,\beta,*} v$ where v is a FWHNF, then $s \downarrow$.

Proof. The given sequence is also a sequence of \to_1 -reductions, since $\xrightarrow{C,\beta} \subseteq \to_1$. We show by induction on n: if $s \xrightarrow{n}_1 v$ where v is an FWHNF, then $s \downarrow$. If n=0, then the claim holds. The induction step:

$$s \xrightarrow{s} s' \xrightarrow{n-1} v$$

$$name, * \qquad | name, * \qquad |$$

$$v'' \xrightarrow{int} v'$$

Dashed steps follow from the IH, dotted steps follow by Lemma 3.4.12

CALL-BY-VALUE EVALUATION

Call-by-Value Evaluation

- Used in strict functional programming languages like ML, F#, ...
- ullet Difference to call-by-name: eta-reduction is only permitted if the argument is a value (an abstraction)

Definition

The (direct) (β_{value}) -reduction is defined as

 $(\lambda x.s) \ v \xrightarrow{\beta_{value}} s[v/x]$ where v is a variable or an abstraction.

We write $\xrightarrow{C,\beta_{value}}$ for the contextual closure of $\xrightarrow{\beta_{value}}$.

D. Sabel | PLF - 03 Lambda Calculus | WS 2024/25

Syntax of & B. Confluence Name Value Need ~ Context | Turing Com

Call-by-Value Evaluation (Cont'd)

Call-by-value evaluation requires to evaluate parameters before calling the function!

Definition

Call-by-value reduction contexts E are built as follows:

$$\mathbf{ECtxt} ::= [\cdot] \mid (\mathbf{ECtxt} \ \mathbf{Expr}) \mid ((\lambda V. \mathbf{Expr}) \ \mathbf{ECtxt})$$

If $r_1 \xrightarrow{\beta_{value}} r_2$ and E is a call-by-value reduction context, then

$$E[r_1] \xrightarrow{value} E[r_2]$$

is a call-by-value reduction.

Example

$$\begin{array}{ccc} & (\lambda x.(x\ (x\ x)))\ ((\lambda y.y\ y)\ (\lambda z.z)) \\ \xrightarrow{value} & (\lambda x.(x\ (x\ x)))\ ((\lambda z_1.z_1)(\lambda z_2.z_2)) \\ \xrightarrow{value} & (\lambda x.(x\ (x\ x)))\ (\lambda z_2.z_2) \\ \xrightarrow{value} & (\lambda z_2.z_2)\ ((\lambda z_3.z_3)\ (\lambda z_4.z_4)) \\ \xrightarrow{value} & (\lambda z_2.z_2)\ (\lambda z_4.z_4) \\ \xrightarrow{value} & (\lambda z_4.z_4) \end{array}$$

Alternative Definition with Labels

Hochschule RheinMair

- For s, start with s^* .
- Exhaustively apply the rules:

$$(s_1 \ s_2)^\star \Rightarrow (s_1^\star \ s_2)$$

 $(v^\star \ s) \Rightarrow (v \ s^\star)$ if v is an abstraction and s is not an abstraction or a variable

Three cases

- ullet s is labeled with \star and s is an abstraction: no reduction applicable
- ullet $s=E[x^{\star}]$, i.e. a free variable in reduction position: no reduction applicable
- $s = E[(\lambda x.t)^* \ v]$ where v is an abstraction or variable: Then $E[(\lambda x.t) \ v] \xrightarrow{value} E[t[v/x]]$

D. Sabel | PLF – 03 Lambda Calculus | WS 2024/25

3/100 Syntax α & β Confluence Name Value Need ~ Con-

D. Sabel | PLF - 03 Lambda Calculus | WS 2024/25

Example

Syntax lpha & eta Confluence Name Value Need \sim_c Context L. Turing Comp

 $((\lambda x.(x (x x)))^{\star} ((\lambda y.y y)^{\star} (\lambda z.z))^{\star})^{\star}$

 $\xrightarrow{value} ((\lambda x.(x\ (x\ x)))^{\bigstar}\ ((\lambda z_1.z_1)^{\bigstar}\ (\lambda z_2.z_2))^{\bigstar})^{\bigstar}$

 $\xrightarrow{value} \quad \left((\lambda z_3.z_3)^{\bigstar} \, \left((\lambda z_4.z_4)^{\bigstar} \, (\lambda z_5.z_5) \right)^{\bigstar} \right)^{\bigstar}$

 $\xrightarrow{value} (\lambda x.(x (x x)))^{\star} (\lambda z_2.z_2))^{\star}$

 $\xrightarrow{value} \left((\lambda z_3.z_3) \star \left(\lambda z_5.z_5 \right) \right)^{\bigstar}$

Convergence

Note that call-by-value reduction is deterministic.

Definition

Expression s converges for call-by-value evaluation:

$$s\downarrow_{value}$$
 iff $\exists abstraction \ v:s \xrightarrow{value,*} v.$

If $\neg s \downarrow_{value}$, then we write $s \uparrow_{value}$ (s diverges for call-by-value evaluation).

Call-by-Name vs. Call-by-Value

Standardisation-Theorem immediately shows:

Corollary

For all expressions $s: s \downarrow_{value} \implies s \downarrow$

The converse does **not** hold:

- $\bullet \ \Omega := (\lambda x.x \ x) \ (\lambda x.x \ x).$
- $\bullet \ \Omega \xrightarrow{name} \Omega \ \text{and also} \ \Omega \xrightarrow{value} \Omega$
- $\bullet \ (\lambda x.\lambda y.y) \ \Omega \xrightarrow{name} \lambda y.y, \ \mathsf{thus} \ (\lambda x.\lambda y.y) \ \Omega \downarrow$
- $(\lambda x.\lambda y.y)$ $\Omega \xrightarrow{value} (\lambda x.\lambda y.y)$ Ω , thus $(\lambda x.\lambda y.y)$ $\Omega \uparrow_{value}$

Call-by-Name vs. Call-by-Value (Cont'd)

Consider $f s_1 s_2 s_3$

- ullet In call-by-value evaluation: first s_1 , then s_2 , then s_3 , then the application
- → Evaluation order is predictable
- In call-by-name evaluation: first the application. When (if it all) s_1, s_2, s_3 are evaluated depends on the definition of f!
- → Evaluation order is not predictable
- This is relevant, if $s_i = print i$
- Main reason why strict functional languages (ML, Ocaml,...) permit direct side-effects, but non-strict functional languages (Haskell) forbid them.

D. Sabel | PLF - 03 Lambda Calculus | WS 2024/25

Syntax α & β Confluence Name Value Need \sim_c Conte

Call-by-Need Evaluation

- Also called: lazy evaluation with sharing
- It optimizes the call-by-name evaluation: by avoiding duplicated evaluations:
 - Consider $(\lambda x \dots x \dots x) t$.
 - ullet In call-by-name evaluation t is copied and perhaps evaluated several times!
 - ullet Idea of call-by-need: share the result of evaluating t
 - \bullet We use a new construct for this sharing let x=t in \dots

Expressions with let

 $\mathbf{Expr} ::= V \mid \lambda V. \mathbf{Expr} \mid (\mathbf{Expr} \ \mathbf{Expr}) \mid \mathtt{let} \ V = \mathbf{Expr} \ \mathtt{in} \ \mathbf{Expr}$

Note that let in Haskell is recursive, here we have a non-recursive let.

CALL-BY-NEED EVALUATION

Call-by-Need Lambda Calculus: Evaluation

Reduction contexts are \mathbf{R}_{need} :

$$egin{array}{lll} \mathbf{R}_{need} &::= & \mathbf{LR}[\mathbf{A}] \mid \mathbf{LR}[\mathtt{let} \ x = \mathbf{A} \ \mathtt{in} \ \mathbf{R}_{need}[x]] \\ \mathbf{A} &::= & [\cdot] \mid (\mathbf{A} \ \mathbf{Expr}) \end{array}$$
 $\mathbf{LR} &::= & [\cdot] \mid \mathtt{let} \ V = \mathbf{Expr} \ \mathtt{in} \ \mathbf{LR}$

- $oldsymbol{A} \ \widehat{=} \ \mathsf{left} \ \mathsf{into} \ \mathsf{the} \ \mathsf{application}$
- ullet LR $\hat{=}$ right into the let

Call-by-Need Lambda Calculus: Evaluation (Cont'd)

Call-by-need reduction step \xrightarrow{need} , defined by:

(lbeta)
$$R_{need}[(\lambda x.s) \ t] \xrightarrow{need} R_{need}[\text{let } x = t \text{ in } s]$$

$$(cp) \qquad LR[\texttt{let } \pmb{x} = \lambda y.s \texttt{ in } R_{need}[\pmb{x}]] \xrightarrow{need} LR[\texttt{let } \pmb{x} = \lambda y.s \texttt{ in } R_{need}[\lambda y.s]]$$

(llet)
$$LR[\text{let } \mathbf{x} = (\text{let } y = s \text{ in } t) \text{ in } R_{need}[\mathbf{x}]]$$

$$\xrightarrow{need} LR[\text{let } y = s \text{ in } (\text{let } \mathbf{x} = t \text{ in } R_{need}[\mathbf{x}])]$$

$$(lapp) \ R_{need}[(\texttt{let} \ x = s \ \texttt{in} \ t) \ r] \xrightarrow{need} R_{need}[\texttt{let} \ x = s \ \texttt{in} \ (t \ r)]$$

- (lbeta) and (cp) replace (β) ,
- ullet (lapp) and (llet) adjust lets

D. Sabel | PLF - 03 Lambda Calculus | WS 2024/25

51/100 Syntax α & β Confluence Name Value Need \sim_c Context L. Turing Com

Labeling-Algorithm: Reduction after Labeling

(*lbeta*)
$$((\lambda x.s)^{\diamond} t) \rightarrow \text{let } x = t \text{ in } s$$

$$(cp) \qquad \text{let } x = (\lambda y.s)^{\diamond} \text{ in } C[x^{\circledcirc}] \rightarrow \text{let } x = \lambda y.s \text{ in } C[\lambda y.s]$$

$$\begin{array}{ll} (llet) & \ \ \mbox{let} \ x = (\mbox{let} \ y = s \ \mbox{in} \ t)^{\diamond} \ \mbox{in} \ C[x^{\odot}] \\ & \ \ \rightarrow \mbox{let} \ y = s \ \mbox{in} \ (\mbox{let} \ x = t \ \mbox{in} \ C[x])] \end{array}$$

$$(lapp) \quad ((\texttt{let} \ x = s \ \texttt{in} \ t)^{\diamond} \ r) \to \texttt{let} \ x = s \ \texttt{in} \ (t \ r)$$

Labeling-Algorithm

- Labels: ★, ⋄, ⊚
- ★ ∨ ⋄ means ★ or ⋄
- For s, start with s^* .

Shifting-Rules:

- (1) $(let x = s in t)^*$ \Rightarrow $(let x = s in t^*)$
- (2) (let $x = C_1[y^{\diamond}]$ in $C_2[x^{\odot}]$) \Rightarrow (let $x = C_1[y^{\diamond}]$ in $C_2[x]$)
- (3) (let x = s in $C[x^{*\vee \diamond}]$) \Rightarrow (let $x = s^{\diamond}$ in $C[x^{\odot}]$)
- $(4) \quad (s \ t)^{\star \vee \Diamond} \qquad \Rightarrow \quad (s^{\Diamond} \ t)$

where (2) is preferred over (3)

D. Sabel | PLF - 03 Lambda Calculus | WS 2024/29

Syntax α & β Confluence Name Value Need \sim_c Context L. Turing Com

Example


```
(\text{let } x = (\lambda u.u) \ (\lambda w.w) \ \text{in} \ ((\lambda y.y) \ x))^{\bigstar}
\xrightarrow{need,lbeta} (\text{let } x = (\lambda u.u) \ (\lambda w.w) \ \text{in} \ (\text{let } y = x \ \text{in} \ y))^{\bigstar}
\xrightarrow{need,lbeta} (\text{let } x = (\text{let } u = \lambda w.w \ \text{in} \ u) \ \text{in} \ (\text{let } y = x \ \text{in} \ y))^{\bigstar}
\xrightarrow{need,llet} (\text{let } u = \lambda w.w \ \text{in} \ (\text{let } x = u \ \text{in} \ (\text{let } y = x \ \text{in} \ y)))^{\bigstar}
\xrightarrow{need,cp} (\text{let } u = (\lambda w.w) \ \text{in} \ (\text{let } x = (\lambda w.w) \ \text{in} \ (\text{let } y = x \ \text{in} \ y)))^{\bigstar}
\xrightarrow{need,cp} (\text{let } u = (\lambda w.w) \ \text{in} \ (\text{let } x = (\lambda w.w) \ \text{in} \ (\text{let } y = (\lambda w.w) \ \text{in} \ y)))^{\bigstar}
\xrightarrow{need,cp} (\text{let } u = (\lambda w.w) \ \text{in} \ (\text{let } x = (\lambda w.w) \ \text{in} \ (\text{let } y = (\lambda w.w) \ \text{in} \ (\lambda w.w))))
```

- The final expression is a call-by-need FWHNF
- \bullet Call-by-need FWHNF: expression of the form $LR[\lambda x.s],$ i.e.

```
\begin{array}{l} \text{let } x_1 = s_1 \text{ in} \\ (\text{let } x_2 = s_2 \text{ in} \\ (\dots \\ (\text{let } x_n = s_n \text{ in } \lambda x.s))) \end{array}
```

Convergence

Hochschule RheinMa

Definition

Expression s converges for call-by-need evaluation:

$$s\downarrow_{need} \iff \exists \; \mathsf{FWHNF} \; v : s \xrightarrow{need,*} v$$

Proposition

Let s be (let-free) expression, then $s\downarrow\iff s\downarrow_{need}$.

→ W.r.t. convergence call-by-name and call-by-need are the same

D. Sabel | PLF - 03 Lambda Calculus | WS 2024/25

Syntax $\alpha \& \beta$ Confluence Name Value Need \sim_c Context L. Turing Cor

Equality in the Lambda Calculus

Up to now, we used three notions of equality:

- Syntactic equality
- ullet α -equivalence
- $\bullet \ \beta\text{-convertibility} \xrightarrow{C,\beta,*}$

All of them are quite restrictive

→ We introduce a semantic equivalence, called contextual equivalence

Idea of Contextual Equivalence

CONTEXTUAL EQUIVALENCE

Leibniz' law of the identity of indiscernibles:

- ullet if objects o_1 and o_2 have the same property for all properties, then o_1 is identical to o_2 .
- ullet equality thus means: in every context, we can exchange o_1 by o_2 , but no difference is observable.

For program calculi like the lambda calculus:

Expressions s and t are equal iff their behaviour cannot be distinguished independently in which context they are used convergence $\forall C: C[s] \text{ and } C[t] \dots$

Contextual Approximation and Equivalence

Definition

For the call-by-name lambda calculus:

contextual approximation \leq_c and contextual equivalence \sim_c are defined as

•
$$s <_c t$$
 iff $\forall C : C[s] \downarrow \implies C[t] \downarrow$

•
$$s \sim_c t$$
 iff $s <_c t$ und $t <_c s$

For the call-by-value lambda calculus:

contextual approximation $\leq_{c,value}$ and contextual equivalence $\sim_{c,value}$ are defined as:

•
$$s \leq_{c,value} t$$
 iff $\forall C : \text{If } C[s], C[t]$ are closed and $C[s] \downarrow_{value}$, then also $C[t] \downarrow_{value}$

•
$$s \sim_{c,value} t$$
 iff $s \leq_{c,value} t$ and $t \leq_{c,value} s$

We omit the call-by-need lambda calculus.

Sabel | PLF - 03 Lambda Calculus | WS 2024/25

Properties of Contextual Equivalence

Contextual equivalence is the coarsest equivalence that distinguishes obviously different expressions.

An important property is:

Proposition

- $\bullet \sim_c$ and $\sim_{c.value}$ are congruences, i.e. they are equivalence relations (i.e. reflexive, symmetric & transitive) and compatible with contexts $(s \sim t \implies C[s] \sim C[t])$.
- \leq_c and $\leq_{c,value}$ are precongruences, i.e. they are preorders (i.e. reflexive & transitive) and compatible with contexts $(s \le t \implies C[s] \le C[t])$

Proof: We only consider the precongruences, since the congruences follows by symmetry.

(next slide)

Closing vs. Non-Closing Contexts

- \bullet call-by-name: no difference if all, or only closing contexts are used in \sim_c
- call-by-value: there is a difference: $x \sim_{c,value} \lambda y.(x\ y)$ holds, but would not hold, if all contexts are used

	Variables represent
call-by-name	any expression
call-by-value	any value

Remark:

- the transformation $s \to \lambda x.(s \ x)$ is called eta-expansion
- the inverse transformation $\lambda x.(s\ x) \to s$ is called eta-reduction

Sabel | PLF - 03 Lambda Calculus | WS 2024/25

\leq_c is a Precongruence

- reflexivity: for all contexts and expressions $C[s] \downarrow \implies C[s] \downarrow$, thus $s \leq_c s$
- transitivity: Let $r \leq_c s$ and $s \leq_c t$ and $C[r] \downarrow$.

We have to show $C[t]\downarrow$:

From $r \leq_c s$ we have $C[s] \downarrow$.

From $s \leq_c t$ we also have $C[t] \downarrow$

• compatibility: Let $s \leq_c t$ and C be a context.

We have to show $C[s] <_{c} C[t]$

Let C' be a context such that $C'[C[s]] \downarrow$.

Since $C'[C[\cdot]]$ is also a context, $s \leq_c t$ shows $C'[C[t]] \downarrow$

$\leq_{c.value}$ is a Precongruence

- ullet reflexivity and compatibility: similar to \leq_c
- transitivity: let $r \leq_{c,value} s$ and $s \leq_{c,value} t$

Let C be a context such that C[r] and C[t] are closed and $C[r]\downarrow_{value}$.

We have to show $C[t]\downarrow_{value}$. If C[s] is also closed, the reasoning is as for \leq_c .

Otherwise, assume $FV(C[s]) = \{x_1, \dots, x_n\}.$

Let v_1,\ldots,v_n be arbitrary closed values and $D=(\lambda x_1,\ldots,x_n.[\cdot])\ v_1\ \ldots\ v_n.$ Since C[r] and C[t] are closed:

- $\bullet \ D[C[r]] \xrightarrow{value, *} C[r] \ \text{and} \ D[C[t]] \xrightarrow{value, *} C[t]$
- Thus: $D[C[r]]\downarrow_{value} \iff C[r]\downarrow_{value}$ and $D[C[t]]\downarrow_{value} \iff C[t]\downarrow_{value}$

Since $C[r]\downarrow_{value}$, we have $D[C[r]]\downarrow_{value}$.

From $r \leq_{c,value} s$, we have $D[C[s]] \downarrow$.

From $s \leq_{c,value} t$, we have $D[C[t]] \downarrow_{value}$ and thus also $C[t] \downarrow_{value}$.

. Sabel | PLF - 03 Lambda Calculus | WS 2024/25

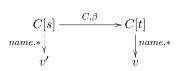
3/100 Syntax lpha & eta Confluence Name Value Need \sim_c Context L. Turing Comp

Proposition

In the call-by-name lambda calculus: if $s \xrightarrow{\beta} t$, then $s \sim_c t$.

Proof. Let $s \xrightarrow{\beta} t$ and C be a context.

$$C[t]\downarrow \implies C[s]\downarrow$$
:



 $\xrightarrow{}$ given reductions v, r, v' are WHNFs.

→ follows from the Church-Rosser-Theorem→ follows from the Standardisation-Theorem

Program Transformations

- Program transformation $s \to t$ is correct iff $s \sim_c t$ holds
- Congruence property shows that local transformations preserve "global" equivalence: if $s \sim_c t$ then $C[s] \sim_c C[t]$
- Proving correctness is usually hard, because of the universal quantification on all contexts
- Decision problems $s \stackrel{?}{\sim}_c t$ or $s \not \stackrel{?}{\sim}_c t$ are undecidable, since: $s \not \stackrel{?}{\sim}_c \Omega$ can be used to encode the halting problem (and since the lambda calculus is Turing complete)

D. Sabel | PLF - 03 Lambda Calculus | WS 2024/25

Syntax α & β Confluence Name Value Need \sim_c Context L. Turing Com

CONTEXT LEMMA

Context Lemma: Ideas and Preparations

- In general, a context lemma states that it suffices to check a subset of all contexts to conclude contextual equivalence
- We only consider the case of the call-by-name lambda calculus
- We require multi-contexts: Contexts with several (or no) holes $\text{We write } M[\cdot_1,\dots,\cdot_n] \text{ for a multi-context with } n \text{ holes}$ We write $M[s_1,\dots,s_n]$ if the hole \cdot_i of M is replaced by s_i (for $i=1,\dots,n$).

D. Sabel | PLF - 03 Lambda Calculus | WS 2024/25

100 Syntax α & β Confluence Name Value Need ~ Context | Turing Comp

Proof of the Context Lemma

If for all closed expressions s_i, t_i and for $i=1,\ldots,n$: for all reduction contexts R the implication $R[s_i] \downarrow \implies R[t_i] \downarrow$ holds, then for all multi-contexts M the implication $M[s_1,\ldots,s_n] \downarrow \implies M[t_1,\ldots,t_n] \downarrow$ holds.

Assume, the preconditions hold and $M[s_1,\ldots,s_n] \xrightarrow{name,m} v$ where v is a WHNF. We use induction on the following pair, ordered lexicographically;

- **1** The number m of call-by-name reductions from $M[s_1,\ldots,s_n]$ to a WHNF.
- \bigcirc The number n of holes of M.

Base case:

- ullet Let n=0 and m arbitrary: Then M is an expression and the claim holds. Induction step:
 - Let n > 0, i.e. M has holes
 - We split into two cases (next slide)

Context Lemma

Context Lemma

Let s and t be closed expressions. If for all reductions contexts R, the implication $R[s] \downarrow \implies R[t] \downarrow$ holds, then also $s \leq_c t$ holds.

Proof. We prove the more general claim using multi-contexts:

If for all closed expressions s_i, t_i and for $i=1,\ldots,n$: for all reduction contexts R the implication $R[s_i] \downarrow \implies R[t_i] \downarrow$ holds, then for all multi-contexts M the implication $M[s_1,\ldots,s_n] \downarrow \implies M[t_1,\ldots,t_n] \downarrow$ holds.

The context lemma follows with n=1.

D. Sabel | PLF - 03 Lambda Calculus | WS 2024/25

3/100 Syntax $\alpha \& \beta$ Confluence Name Value Need \sim_c Context L. Turing Com

Proof of the Context Lemma (Cont'd)

Case: There exists a hole i, s.t. $M[s_1, \ldots, s_{i-1}, \cdot_i, s_{i+1}, \ldots, s_n]$ is a reduction context

- Then there exists a hole j, such that $M[r_1, \ldots, r_{j-1}, \cdot_j, r_{j+1}, \ldots, r_n]$ is a reduction context for any expressions r_1, \ldots, r_n .
- \bullet Let $M'=M[\cdot_1,\ldots,\cdot_{j-1},s_j,\cdot_{j+1},\ldots,\cdot_n]$
- Since $M'[s_1,\ldots,s_{j-1},s_{j+1},\ldots,s_n]=M[s_1,\ldots,s_n]$, they have the same call-by-name evaluation
- ullet M' has n-1 holes, i.e. we can apply the IH, showing $M'[t_1,\ldots,t_{j-1},t_{j+1},t_n]\!\downarrow$.
- $C_s=M[s_1,\ldots,s_{j-1},\cdot_j,s_{j+1},\ldots,s_n]$ and $C_t=M[t_1,\ldots,t_{j-1},\cdot_j,t_{j+1},\ldots,t_n]$ are both reduction contexts, $M'[t_1,\ldots,t_{j-1},t_{j+1},t_n]=C_t[s_j]$ and $C_t[s_j]\downarrow$. Thus the precondition shows that $C_t[t_j]\downarrow$.
- Since $C_t[t_j] = M[t_1, \dots, t_n]$, this shows the claim.

Proof of the Context Lemma (Cont'd)

Case n > 0 and no hole is a reduction context.

- If m=0, then $M[s_1,\ldots,s_n]$ is a WHNF and $M[t_1,\ldots,s_n]$ must be a WHNF too.
- Otherwise, $M[s_1, \ldots, s_n] \xrightarrow{name} s' \xrightarrow{name, m-1} v$
- Inspect what can happen with the subexpressions s_1, \ldots, s_n in M
- Since no hole of M is in a reduction context they can only change their position and maybe duplicated or removed.
- Since s_1, \ldots, s_n are closed no other expression can be copied inside any s_i .
- Thus: There exists M' with k holes, such that
 - $s' = M'[s_{f(1)}, \dots, s_{f(m)}]$ where $f : \{1, \dots, m\} \to \{1, \dots, n\}$.
 - $\bullet \ M[r_1,\ldots,r_n] \xrightarrow{name} M'[r_{f(1)},\ldots,r_{f(m)}] \text{ for any expressions } r_1,\ldots,r_n \\ \bullet \ \text{in particular, } M[t_1,\ldots,t_n] \xrightarrow{name} M'[t_{f(1)},\ldots,r_{t(m)}] = t'.$

Since $s' \xrightarrow{name,m-1} v$ and the precondition holds for all pairs $s_{f(i)}, t_{f(i)}$ for $i=1,\ldots,m$ we can apply the IH to s' and t' showing $t'\downarrow$ and thus also $t\downarrow$.

bel | PLF - 03 Lambda Calculus | WS 2024/25

Contextual Equivalence and Call-by-Value

In the call-by-value lambda calculus:

- $(\beta_{value}) \subseteq \sim_{c,value}$ (without a proof)
- $(\beta) \not\subseteq \sim_{c.value}$, since $((\lambda x.(\lambda y.y)) \Omega) \uparrow_{value}$ and $\lambda y.y \downarrow_{value}$

The contextual equivalences w.r.t. call-by-name and call-by-value evaluation are not related:

$$\sim_c \not\subseteq \sim_{c.value} \text{ and } \sim_{c.value} \not\subseteq \sim_c$$

$$\mathsf{E.g.} \; \left(\left(\lambda x. (\lambda y.y) \right) \; \Omega \right) \; \sim_{c,value} \; \Omega \; \mathsf{but} \; \left(\left(\lambda x. (\lambda y.y) \right) \; \Omega \right) \; \not\sim_{c} \; \Omega.$$

Equivalences on Open Expressions

Proposition 3.8.2

Let s and t be expressions with free variables x_1, \ldots, x_n Then $s \leq_c t$ iff for all closed expressions t_1, \ldots, t_n : $s[t_1/x_1, \ldots, t_n/x_n] \leq_c t[t_1/x_1, \ldots, t_n/x_n]$

Proof.

- " \Rightarrow ": This follows since \leq_c is a precongruence and since (β) is correct.
- "\(\in=\)": This can be shown by the context lemma and an induction on the number of variables.

Least and Greatest Elements

Proposition

All closed diverging expressions are least elements w.r.t. \leq_c and $\leq_{c,value}$. For instance $\Omega \leq_c s$ and also $\Omega \leq_{c,value} s$ for all expressions s.

With $K := \lambda x.\lambda y.x$, $Y := \lambda f.(\lambda x.(f(x x)))(\lambda x.(f(x x)))$, and $Z := \lambda f.(\lambda x.(f \ \lambda z.(x \ x) \ z)) \ (\lambda x.(f \ \lambda z.(x \ x) \ z)):$

- Y K is a greatest element of \leq_c , i.e. $\forall s : s \leq_c Y K$
- Z K is a greatest element of $\leq_{c,value}$, i.e. $\forall s :\leq_c Z$ K

eteness

We only prove the proposition for the call-by-name lambda calculus.

Least Elements w.r.t. \leq_c

- \bullet Let \bot be a closed diverging expression and s be an arbitrary closed expression.
- ullet Let R be an arbitrary reduction context, then $R[\bot]$ cannot converge, i.e. $R[\bot] \uparrow$.
- The context lemma now immediately shows $\bot \leq_c s$.
- \bullet Since \bot is closed, Proposition 3.8.2 shows $\bot \leq_c s$ for any (perhaps also open) expression s

D. Sabel | PLF - 03 Lambda Calculus | WS 2024/25

Syntax α & β Confluence Name Value Need \sim_c Context L. Turing Com

The Z-Combinator and Call-By-Value

We explain the call-by-value evaluation of $(Z\ K)$:

- $Z = \lambda f.(\lambda x.(f \ \lambda z.(x \ x) \ z)) \ (\lambda x.(f \ \lambda z.(x \ x) \ z))$
- Let $r_z = (\lambda x.(K \ \lambda z.(x \ x) \ z))$
- $\bullet \ Z \ K \xrightarrow{value} r_z \ r_z \xrightarrow{value} K \ \lambda z. ((r_z \ r_z) \ z) \xrightarrow{value} \lambda y. \lambda z. (r_z \ r_z) \ z$
- $\begin{array}{c} \bullet \text{ For values } v_1, \dots, v_n \colon \left(Z \ K\right) \ v_1 \ \dots \ v_n \xrightarrow{value, *} \left(r_z \ r_z\right) \ v_1 \ \dots \ v_n \xrightarrow{value, *} \\ \left(\lambda y. \lambda z. (r_z \ r_z) \ z\right) \ v_1 \ \dots \ v_n \xrightarrow{value} \left(\lambda z. (r_z \ r_z) \ z\right) \ v_2 \dots \ v_n \xrightarrow{value} \\ \left(r_z \ r_z\right) \ v_2 \ v_3 \dots \ v_n \xrightarrow{value, *} \left(r_z \ r_z\right) \xrightarrow{value, *} \lambda y. \lambda z. (r_z \ r_z) \ z \end{array}$

Greatest Elements w.r.t. \leq_c

- $Y := \lambda f.(\lambda x.(f(x x))) (\lambda x.(f(x x)))$
- Let $r_y = (\lambda x.K (x x)).$
- $\bullet \ \ \text{Then} \ Y \ K \xrightarrow{C,\beta} r_y \ r_y \xrightarrow{C,\beta} K \ (r_y \ r_y)$
- $(Y \ K) \ s_1 \ldots s_n \xrightarrow{C,\beta,*} K \ (r_y \ r_y) \ s_1 \ldots s_n \xrightarrow{C,\beta,*} (r_y \ r_y) \ s_2 \ldots s_n \xrightarrow{C,\beta,*} (r_y \ r_y) \xrightarrow{C,\beta} K \ (r_y \ r_y) \xrightarrow{C,\beta} \lambda x. (r_y \ r_y)$
- The Standardisation-Theorem shows that for all $R: R[(Y K)] \downarrow$.
- \bullet Since $(Y\ K)$ is closed, the context lemma shows $s \leq_c (Y\ K)$ for every closed expression s
- Proposition 3.8.2 shows $s \leq_c (Y | K)$ for any (perhaps also open) expression s.

D. Sabel | PLF - 03 Lambda Calculus | WS 2024/25

THE LAMBDA CALCULUS

Syntax lpha & eta Confluence Name Value Need \sim_c Context L. Turing Com

TURING COMPLETENESS OF

Turing Completeness

- We do not provide a formal proof
- In the lecture notes, a Haskell-implementation of Turing machines can be found
- We argue that the program constructs used in the program, can be encoded in the lambda calculus

Constructs:

- Named functions
- Recursion
- Data (booleans, numbers, pairs, lists)

D. Sabel | PLF - 03 Lambda Calculus | WS 2024/25

/100 Syntax α & β Confluence Name Value Need \sim_c Context L. Turing Compl

Data

- The Haskell-program uses data types and selectors
- It suffices to represent booleans, tuples, lists of arbitrary length and natural numbers to encode the program
- We sketch the so-called Church encoding of numbers, booleans, pairs and lists.

Function Definitions

Non-recursive Haskell-function f x_1 ... $x_n = e$ can be represented by $\lambda x_1, \ldots, x_n.e$

Recursive functions can be encoded by the fixpoint combinator:

For simplicity, let us assume, that e only calls f, but no other functions.

Then f can be encoded by $Y(\lambda f.\lambda x_1 \ldots x_n.e)$:

- Let $F = (\lambda f.\lambda x_1 \ldots x_n.e)$ and $r_y = (\lambda x.F(x x))$.
- Then $Y F \xrightarrow{C,\beta} r_y \ r_y = (\lambda x. F \ (x \ x)) \ r_y \xrightarrow{C,\beta} F \ (r_y \ r_y) \xleftarrow{C,\beta} F \ (Y \ F)$, i.e. $Y \ F \sim_c F \ (Y \ F)$.
- Thus $Y F \sim_c F^i(Y F)$ where F^i is the i-fold application of F and also $Y F \sim_c F(Y F) \sim_c \lambda x_1, \ldots, x_n.e[(Y F)/f]$.

For mutual recursive functions, the encoding is a bit more complicated, but still possible.

D. Sabel | PLF - 03 Lambda Calculus | WS 2024/25

Syntax lpha & eta Confluence Name Value Need \sim_c Context L. Turing Con

Booleans

Encoding:

$$true := \lambda x. \lambda y. x$$

 $false := \lambda x. \lambda y. y$

 $b\ s\ t\ {\rm for}\ b\in \{true,false\}\ {\rm behaves}\ {\rm like}\ {\rm if}\ b\ {\rm then}\ s\ {\rm else}\ t.$

Church Encoding of Numbers

Church Encoding of Numbers (Cont'd)

 $plus = \lambda m. \lambda n. \lambda f. \lambda x. m \ f \ (n \ f \ x)$

Idea:

ullet Number i is represented by the i-fold function composition.

$$\bullet$$
 0 = $f^0 = id$, 1 = f^1 , 2 = f^2 , ...

Encoding:

$$0 := \lambda f. \lambda x. x$$

$$i := \lambda f. \lambda x. f^i x, \text{ if } i > 0$$

D. Sabel | PLF - 03 Lambda Calculus | WS 2024/25

8/100 Syntax α & β Confluence Name Value Need \sim Context | Turing Com

D. Sabel | PLF - 03 Lambda Calculus | WS 2024/25

Addition:

Example:

plus 3 2 =

Syntax $\alpha \& \beta$ Confluence Name Value Need \sim_a Context L. Turing Comp

 $\underbrace{\left(\lambda m.\lambda n.\lambda f.\lambda x.m\ f\ (n\ f\ x)\right)}_{plus}\ \underbrace{\left(\lambda f.\lambda x.(f\ (f\ (f\ x)))\right)}_{3}\ \underbrace{\left(\lambda f.\lambda x.(f\ (f\ x))\right)}_{2}$

 $\xrightarrow{C,\beta} \quad (\lambda n.\lambda f.\lambda x.(\lambda f.\lambda x.(f\ (f\ (f\ x))))\ f\ (n\ f\ x))\ (\lambda f.\lambda x.(f\ (f\ x)))$

 $\stackrel{C,\beta}{\longrightarrow} \quad (\lambda n.\lambda f.\lambda x.(\lambda x.(f\ (f\ (f\ x))))\ (n\ f\ x))\ (\lambda f.\lambda x.(f\ (f\ x)))$

 $\xrightarrow{C,\beta} \quad (\lambda n.\lambda f.\lambda x.(f\ (f\ (f\ (n\ f\ x)))))\ (\lambda f.\lambda x.(f\ (f\ x)))$

 $\stackrel{C,\beta}{\longrightarrow} \quad \lambda f. \lambda x. (f \ (f \ ((\lambda f. \lambda x. (f \ (f \ x))) \ f \ x)))))$

 $\xrightarrow{C,\beta,2} \lambda f.\lambda x.(f(f(f(f(f(x)))))) = 5$

Church Encoding of Numbers (Cont'd)

Pairs

Successor:

$$succ = \lambda n. \lambda f. \lambda x. f (n f x).$$

Predecessor (complicated and $pred\ 0 = 0$): $pred = \lambda n.\lambda f.\lambda x.n\ (\lambda g.\lambda h.h\ (g\ f))\ (\lambda z.x)\ (\lambda u.u)$

Encoding:

$$pair := \lambda x. \lambda y. \lambda z. z \ x \ y$$

The first two arguments are the arguments of the pair, the third one is for the selector.

Examples:

$$\begin{array}{ll} first &= \lambda p.p \ K \\ second &= \lambda p.p \ K2 \end{array}$$

Note that $first\ (pair\ s\ t) \sim_c s$ and $second\ (pair\ s\ t) \sim_c t$.

Lists

Remarks

Non-empty lists can be encoded by pairs p:

- the first component of p is the element
- ullet the second component of p is the tail of the list

With the empty list: additional pair $pair\ flag\ p$ where flag is true or false and

- $pair\ true\ s$ means the empty list (independent of s)
- (false, p) is a non-empty list.

Encoding:

```
 \begin{array}{ll} nil & := pair \; true \; true \\ cons & := \lambda h. \lambda t. pair \; false \; (pair \; h \; t) \\ \text{Examples:} \\ isNil & = first \\ head & = \lambda l. first \; (second \; l) \\ tail & = \lambda l. second \; (second \; l) \\ \end{array}
```

0. Sabel | PLF - 03 Lambda Calculus | WS 2024/25

7/100 Syntax $\alpha \& \beta$ Confluence Name Value Need \sim_c Context L. Turing

Church encoding does not distinguish between data and functions
Also different data is encoded in the same way (e.g. 0 and false)

• Also different data is encoded in the same way (e.g. 0 and jaise

D. Sabel | PLF - 03 Lambda Calculus | WS 2024/25

Suntan a 8, 8 Confluence Name Value Nacel . . . Contact | Turing Con-

Types?

- Haskell only allows well-typed programs
- the lambda calculus has no types
- This is not a restriction for Turing completeness, since the typed encoding can also be used as an untyped one

This concludes our sketch on Turing completeness

- the lambda calculus is too small to really program in it
- also for a core language it is too difficult to express data and recursion
- equivalences in the lambda calculus do not necessarily hold in Haskell, since different data is mapped to the same lambda expressions
- Haskell has seq, the lambda calculus cannot simulate this
- In the next chapter: We extend the lambda calculus to a real core language of functional programming