a Hochschule RheinMain Contents al Hochschule RheinMain

Syntax of the Lambda Calculus
a-Renaming and $3-Reduction
Confluence and the Church-Rosser-Theorem

Call-by-Name Evaluation

) Call-by-Value Evaluation
Programming Language Call-by-Need Evaluation

Foundations Contextual Equivalence

03 Lambda Calculus Context Lemma

Turing Completeness

Prof. Dr. David Sabel

Wintersemester 2024/25 Last update: November 26, 2024
OO . . & 5 Contence Name Value e~ ConoL Turng Coml]
| ntrOd UCtlon a Hochschule RheinMain a Hochschule RheinMain
SYNTAX OF THE LAMBDA
The untyped lambda calculus CALCULUS
@ is a foundational model of computation Syntax of expressions
@ is the core of functional programming languages Free and bound variables

Capture-avoiding substitution

Lambda notation is used in other settings too:
. . . . Contexts
@ non-functional programming languages like Java or Python have introduced

functional concepts and lambda expressions
@ in mathematics, lambda notation is used to represent function

@ we use it later for denotational semantics of an imperative programming language

a I Hochschule RheinMain

Expressions

Expr ::=V | A\V.Expr | (Expr Expr)

where V' is a non-terminal for variables

Explanations:

Ax.s s an abstraction = an anonymous function, Az binds z in body s
(st) isan application = expression s is applied to argument ¢
Examples:

@ Az.z is the identity function, like id(z) = x, but anonymous
o ((Az.x) z) represents id(z)

o ((Az.x) (Ax.x)) represents id(id)

o Az)\y.x represents f(z,y) =z

D. Sabel | PLF — 03 Lambda Calculus | WS 2024/25

5710

a Hochschule RheinMain

Examples

Some prominent expressions:

I =Xz (identity)

K =Xz)\y.x (projection to first argument)

Ky = Az \yy (projection to second argument)
Q = (Az.(z x)) Ax.(z) (diverging expression)

Y =202 (f (z2) Az.(f (z 2))) (call-by-name fixpoint combinator)
Z = M.x(f Az(z) 2)) Ax.(f Az.(z z) 2)) (call-by-value fixpoint combinator)
S = Az AyAz(x 2) (y 2) (S-combinator)

a I Hochschule RheinMain

Conventions

To omit parentheses, we use the following conventions:
@ application is left-associative:
st r means ((st) r)and not (s (¢t r))
@ the body of an abstraction extends as far as possible:

(Az.s t means Az.(s t) and not ((Az.s) t))

@ abbreviation:

We write Az1,...,x,.t for the nested abstractions Az1.(Aza. ... (Axy,.t)...).
oo

a Hochschule RheinMain

Free and Bound Variables

FV(z) == BV(x) =10
FV(Az.s) = FV(s) \ {z} BV (Az.s) = BV(s) U{z}
FV(st) = FV(s)UFV(t) BV(st) = BV(s)UBV(t)
Example: s = Az \y w.(zy 2)) =
Free variables FV(s) = {z,z} and BV (s) = {z, y, w}.
Closed and open expressions:
o tis closed (or a program) if FV () =)
@ otherwise t is open
Occurrence x in t is bound if it is in scope of a binder Az, otherwise it called free

Example: (Azdydw.(¢y z)) z)
N N N

bound bound free free

SU bStItUtlon a I Hochschule RheinMain Conteth a I Hochschule RheinMain

Contexts C: E i ith hole [-
If BV (s)N FV(t) =0, then s[t/x] is s where all free occurrences of z are replaced by ¢: ontexts C': Expressions with one hole [}
x[t/x] = t Ctxt =[] | A\V.Ctxt | (Ctxt Expr) | (Expr Ctxt)
ylt/x] = y ifaty
(Ay.s)[t/z] = {iij[t/x]) :ii fz C'[s] is an expression: it is C where the hole is replaced by s
ESl 82;%? - 281?7} 82%%3 This may capture variables, e.g. for context C' = A\x.[-] and expression \y.z:
s1 82)[t/x] = (s1t/z] s2|t/x

Cy.x] = Az.(A\y.x).
Example: (A\x.z z)[(Ay.y)/z] = (Az.((Ay.y) z)).
Without the side condition: (Az.z z)[Ay.z/z] would lead to Az.((Ay.z) z)

a Hochschule RheinMain ConSIStent Renamlng Of Varlables a Hochschule RheinMain

a-Renaming and (3-Reduction

Renaming of variables

Distinct variable convention A single a-renaming-step is of the form:
Substitution (with renaming)

B-reduction, contextual closure C[Az.s] N ClAy.sly/z]] ify & BV(C[Azx.s]) U FV(C[\x.s])

The reflexive-transitive closure of — U <— is called «-equivalence and written s =, t.

We identify a-equivalent expressions (and write s = ¢ also if s =, t)

a I Hochschule RheinMain

The Distinct Variable Convention

To avoid naming conflicts, we assume the following convention:

In any expression s, bound and free variables are disjoint,
i.e. BV(s)NFV(s) =0, and all variables on binders are

pairwise distinct.

The convention can be obeyed by using a-renamings.

UL . . Contence e Vlo Nesd ~c Contet_Torn o]

D. Sabel | PLF — 03 Lambda Calculus | WS 2024/25

a Hochschule RheinMain

Substitution with Renaming

Substitution s[t/z] without side condition:

If BV (s) N FV(t) =0, then s[t/x] is the capture-avoiding substitution.
Otherwise, let s’ =, s such that s’ fulfills the DVC.

Then BV (s') N FV(t) = 0 holds.
Then let s[t/x] = §'[t/x] using capture-avoiding substitution for s'[t/x].

Note: s[t/x] may not satisfy the DVC.

Better: Used a-renamed copies for each ¢

B . o i 5 Concrce o Vlue e~ ComoxcLTurg Com]

D. Sabel | PLF — 03 Lambda Calculus | WS 2024/25

a I Hochschule RheinMain

Example

(y A\y.((Az.(z Az.x)) (x y)))) violates the DVC

since « and y occur free and bound and z occurs twice at a binder

apply a-renamings to satisfy the DVC:

Ay ((Az.(z Az.2)) (2 y))))
(Ay1((Az.(z Az.z)) (z 91))))
(A1 ((Az1-(21 Az.x)) (2 91))))
(

(
=
=
= (y Qg (A1 (21 Aza.xa)) (2 1))

D. Sabel | PLF — 03 Lambda Calculus | WS 2024/25 14/100 a& B

) Hochschule RheinMain

[-Reduction

The most important reduction rule of the lambda calculus:

The (direct) (53)-reduction is defined as

B) (as)tDslt/a]

If rp ﬁ) ro, the we say ry directly reduces to rs.)

e @ .
The contextual closure of S-reduction is —ﬁ> defined as

Cls] <P, Ct] iff C'is a context and s 54,)

a I Hochschule RheinMain

Examples

(Ar.z) (Ayy) D 2lQy) /2] = My

My y) (@25 Wyl)/ =(2) (@2) (@2)

To obey the DVC after a S-reduction: Apply a-renaming, e.g.

O.(z 2)) Oy-y) 2 Oy) (wy) = Qi) Oa-pe)

violates the DVC

satisfies the DVC

D. Sabel | PLF — 03 Lambda Calculus | WS 2024/25 17/100 a& B

a Hochschule RheinMain

CHURCH-ROSSER-THEOREM

— The diamond property
— Confluence
— —1-reduction
Proof of the Church-Rosser-Theorem

a I Hochschule RheinMain

To evaluate an expression, B-reduction has to be applied to subexpressions, e.g.

Reduction Strategy

.8
(Az.z) (A\y.y) (Az.2) == (A\y.y) (Az.2)
Those subexpressions are called a redex (reducible expression).

Using 9P, s not deterministic, e.g. ((Az.z z) (A\y.y) (Az.2))) has two redexes:

o (M @) (wy) (Az2)) =5 ((ya) (3=2)) (Aw) (h=.2))
o ((Az.z) (M\y.y) (\z.2))) oh, ((Az.x x) (Az.2)).

Fixing the position where to apply the reduction is called a reduction strategy.

. . . . c,
We do it soon, but first we consider arbitrary ~ﬂ+steps.

D. Sabel | PLF — 03 Lambda Calculus | WS 2024/25 18/100 a& B

a Hochschule RheinMain

Notation

For a binary relation — C (M x M), we denote with
@ < the symmetric closure of — (i.e. a <> biff a — b or b — a).

o = the i-fold composition of —

(@S aforallac Mandfori>0 ab,if ' eM:a— b andb =5 b).

o 4 is the union of the i-fold and the j-fold composition
(aﬂ)biﬂ’ai}borai}b).
In particular, OV—1> is the reflexive-closure of —.
o 5 the reflexive-transitive closure of — (a = b iff 3i € Ny : a i b).
o < the reflexive-transitive closure of <.

o 5 the transitive closure of — (a HbiffIieN:as b).

a I Hochschule RheinMain

The Diamond Property and Confluence

A binary relation - C M x M

@ has the diamond property iff
whenever a — b and a — ¢ there exists d € M such that b — d and ¢ — d.

o is confluent iff = has the diamond property.

a a
c b c
AN / AN /
AN / AN /
AN / * \ /%
\ 4 N

— has the diamond property — is confluent

D. Sabel | PLF — 03 Lambda Calculus | WS 2024/25 21/100 Confluence

a Hochschule RheinMain

A Consequence of Confluence

If reduction relation — is confluent, then a <= b implies Jc:a <> cAb S5 ¢

Proof. By induction on a N,

@ Base case: if =0, then a = b and the claim holds

o ...

Motivation

a I Hochschule RheinMain

. c.B .
@ our goal is to show that 9P, is confluent
@ if confluence holds, then normal forms are unique:

. C, . .
if we reduce all —ﬂ>-redexes, then we get the same expression (up to a-renaming)
independently from the order and positions where the reductions where applied

a Hochschule RheinMain

If i >0, then 3a’ : a = a’ <=5 b. By induction hypothesis 3¢/ : @’ = ¢/ and b = (/.

Proof (Cont'd)

o Ifa—d, thena— a = ¢ and thus a = ¢’. Since also b = ¢, the claim holds.

o If a/ = a, then d = a.
Since — is confluent, = has the diamond property and thus:
from a’ = a and o’ = ¢/, we obtain d with a = d and ¢ = d.
Since b = ¢ %5 d, the claim holds. a

a I Hochschule RheinMain

Diamond Property: Inheritance from — to —

Let — be a binary relation and = be its reflexive-transitive closure.
If — has the diamond property, then = has the diamond property.

aq ——— ——— —>C
Proof: By induction on (i, ;) one can show that: l v v
i J i J
If a = band a = cthen 3d: b — d and ¢ = d. l

Y Y Y Y

j > > >

The inner square diagrams follow from the diamond

property of —. > > >
| v
b N Vosd

[0 Sube | L~ 03 Lamba Corcuus | W z020/25 P10 Cofuence N Vol e~ Contt T Co |

a Hochschule RheinMain

P, does not have the diamond property

M.z z) (A\y.y) (Az.2))
C.B C.p

(My1.y1) (Az1.21)) (M\yey) (Az.2)) M.z x) (Nz.2)

C.B (oN] a.p

(Az1.21) ((Ay.y) (Az.2)) ((Ay1.y1) (Az1.21)) (Az.2) (Az1.21) (A22.22)

—» Confluence of i cannot be proved by the previous lemma

— Idea:
. . ., CB,0v1 C,B, C,B,*
@ Another reduction relation —; with ﬂ—) Cc—+ C i) and 5 = L

@ Prove diamond-property of —1. This implies diamond-property of 5= ﬂ>

B - - & 5 Confonce e Ve e~ ComoxeL_Turg Com]

D. Sabel | PLF — 03 Lambda Calculus | WS 2024/25

a I Hochschule RheinMain

Closures of ﬁ)

. C, . C,
o With s <—ﬁ> t we denote the symmetric closure of B,

(i.e.s&tiffs%tort%s)

. C,p, . L. C,
o With s ﬂ) t we denote the reflexive-transitive closure of AB%

. .8, . .. C,
o With s <ﬂ> t we denote the reflexive-transitive closure of <—ﬁ>

. C,Bx . . . T
The relation +— is sometimes also called S-equivalence or also convertibility.

a Hochschule RheinMain

—1-Reduction

The relation —; C (Expr x Expr) is inductively defined by:
s —1 s for all expressions s.
if s1 —1 s2 and t1 —1 to, then (81 82) —1 (tl tz).

if s1 —1 s2 and t1 —1 to, then (()\1'81) tl) —1 Sg[tg/x].

© 0 ©0 O

if s —1 t, then Az.s —1 \z.t.

%C—)l \
Y

Proof. Let C[(\a.s) #] 22 Cls[t/x]]. We show C[(Aa.s) #] —1 Cs[t/z]] b
structural induction on C.
If C =[], then (A\z.s) t —1 s[t/z] by @, since s —1 sand t =1t by @.

If C' # [-] we use as IH that C'[(Az.s) t] =1 C'[s[t/z]] where C” is a proper
subcontext of context C.

0 If C=(C'"r), thenr —1 7 by @, C'[(Az.5) t] =1 C'[s[t/x]] by the IH and thus
Cl(Ax.s) t] = (C'[(M\x.s) t] r) =1 (C'[s[t/z]] 7) = C[s]t/x]] by @.
@ The case C' = (r ') is completely analogous to the previous one.

o If C = \y.C, then C’'[(Ax.s) t] —1 C'[s[t/x]] by the IH and thus
Cl(Ax.s) t] = A\y.C'[(Az.s) t] =1 Ay.C'[s[t/z]] = C[s[t/x]] by @. O

a Hochschule RheinMain

Examples for — (2)

Az.z) (Ayy) (Az.2))

/\

(Az1.21) (Az.2) Ar.x x) (A\z.2)

\/

(Az1.21) (Az.2)

a I Hochschule RheinMain

Examples for —

(Az.z x) (Ay.y) (Mz.2)
((My1y1) (Az1.21)) (Myey) (Az.2)) Az z) (Az.2)

\/

(Az1.21) (Az.2)

a Hochschule RheinMain

—1 and Substitutions

If s —1 7 and t —1 w then s[t/x] —1 ru/x].

Proof. This can be shown by induction on s —; 7.
The base case s = r can be shown by structural induction on s.
For the induction step, we only show one exemplary case:
o If s =(s1 82) —1 (r1 72) = 7 with s; =1 r; for i = 1,2, the IH shows
si[t/x] =1 ri[u/x] for i = 1,2 and thus (s1[t/x] s2[t/z]) —1 (r1[u/z] ro[u/x]).
Since s[t/x] = (s1 s2)[t/x] and (r1 r2)[u/x] = r[u/z], the claim holds.

Diamond Property for —1 *Hochschule RheinMain

Relation —1 has the diamond property. I

Proof. We show that whenever s — t then for all r with s — r there exists ' with
t—1r andr — 7.

We use induction on the definition of — in s —1 t.
Base case: t = s, i.e. s =1 s. Then choose " = r and the claim holds.

For the induction step, all other cases of the definition of —; have to be considered.
We show one exemplary case.

a Hochschule RheinMain

- . C’ ’*
Coincidence of i> and i>1

C,B,x *
— ="

Proof (Sketch).
. C,8 C,B,x *
Since = C —; (Lemma 3.3.7), = C —; also holds.

1 C ﬁ) can be proved by inspecting the different cases of the inductive definition of
—1-

. C, . CBx * CBx* .8,
Finally, i>1 C —’B> holds, since l>1 C (&) and & = ﬂ)

a I Hochschule RheinMain

If s = ((Az.s1) s2) and t = t1[ta/x] where s; —1 t;, then for s —1 r there are two
cases:
o s=((Az.s1) s2) =1 (Az.r1) r2) with 81 —1 71 and sg —1 9.
Applying the IH to s; —1 t; and s; —1 71 and also to so —; t2 and s — 1o
shows that there exists r} and r} such that: t; —1 7}, r; —1 7} for i = 1, 2.
This shows that t;[ta/x] —1 ri[rh/x] and ((Az.r1) ro) —1 ri[rh/x] (using the
previous lemma). Thus the diamond property holds.

Diamond Property for —; (Cont'd)

o If s = ((Az.s1) s2) and r = ri[ra/x] where s; —1 71 and s —1 ro. Applying the
IH to s1 —1 t1 and s1 —1 r1 and also to s9 —1 ¢ and sy —1 79 shows that there
exists | and 4 such that: ¢; —1 7}, ; —1 7} for i = 1,2. This shows that
t1[te/x] =1 ri[rh/x] and r1[re/x] —1 74 [rh/z] (using the previous lemma). Thus
the diamond property holds.

Church-Rosser-Theorem *Hochschule RheinMain

. C,B, .
For the lambda calculus the following holds: If a &) b, then there exists ¢, such

C,B, C,B,
thata&candb&c

Proof.
Applying Lemma 3.3.3 for — (using Lemma 3.3.11) shows that —; is confluent and

that =5 has the diamond property.
With the equation of Lemma 3.3.12, we have that % has the diamond property

c,B . . .
and thus — is confluent. Finally, Lemma 3.3.2 then shows the claim. O
[0Sl | PLF ~02 Lo Cocte | WS 2020125 TS, 0 i 5 Confence N Valo Necd = ConsrLTurng Com |

a Hochschule RheinMain Ca | |'bY' N ame Eva I Uation a I Hochschule RheinMain

Ideas:

CALL-BY-NAME EVALUATION

@ do not reduce below A

Reduction contexts
Alternative definition with labeling o reduce the leftmost-outermost [3-redex

Convergence @ in (A\x.s) t pass ¢ to the function body without evaluating ¢

Standardisation-Theorem

Reduction contexts R are built by the following grammar:

RCtxt =[] | (RCtxt Expr)

If 1 ﬁ) r9 and R is a reduction context,
nam.

then R[r1] ™™ R[ro] is a call-by-name reduction step.
v

Example *Hochschule RheinMain Alternative Definition of Call-by-Name Reduction *Hochschule RheinMain

Use a labeling algorithm to mark the redex:
o For expression s, start with s*.
@ Apply the label shifting as long as possible:
(Aw.w) ((Auww) (M) (Az.((Ay.y) (Az.2))) (51 52)* = (51 52)

2 (Awa) (W) (A ((Ayy) (Az.2)))

name ()«u.v) ()\x.((/\y.y) (/\zz))) The result is of the form (s} s2 ... s,), where s; is not an application.
o If s1 is an abstraction Az.s] and n > 2, then reduce as follows:

name

— Az.((M\y.y) (Az.2)) / name.

name ()\.73.81) §9 ...8, — (81[52/1’] Sn)

o If 51 is an abstraction and n = 1, then no call-by-name reduction is applicable
(since the whole expression is an abstraction)

o If 51 is a variable, then no call-by-name reduction is applicable
(since a free variable has been detected)

Exam pIe *Hochschule RheinMain
(((Aw.w) ()\u.u) (Av.v)))* (Az.((\y.y) ()\zz)))>*
zamme, (((Auw)* (A) (Az.((M\y.y) (Az. z))))
sy (et (A (Ogy) (122))”
=5 (e (Qgy) (A22))”
[0- b L =03 Lambis ot | WS 202/25 RIS i Confunc Nama Vo e~ Conon - Tung o

a Hochschule RheinMain

@ Goal: show that call-by-name evaluation is optimal w.r.t. convergence

Standardisation (Preparations)

@ Technique: —j-reduction, also on contexts:
C'is treated like an expression with constant [-]

o If R = R’ for a reduction context R, then R’ is also a reduction context.
o If C —1 C’, s =1 ¢, where C is a context, then C[s] —; C|[s]

IfR—1 R, s—; s, t—=1t, and R is a reduction context, then

R[(A\z.s) t] 2% R'[s'[t'/z]]

Let —>1 =—1\ Z19Me, | be the internal L reduction.

name name

Note that: —= C —>1 C -
[0 Sobe | PLF~ 03 Lombis Cocur | W5 2028/25 PO oo ConuencName Vo et~ Conio o Cor |

Convergence

a I Hochschule RheinMain

o Call-by-name reduction is deterministic: if s —— ¢ and s —— ! = t =1’

@ No call-by-name reducion is applicable iff s = R[z] or if s is an abstraction (called
an FWHNF (functional weak head normal form))

@ Reaching an FWHNF means success

name,+ name,* name

and " are the transitive and reflexive-transitive closure of ——.

Expression s (call-by-name) converges s| iff Jabstraction v : s ——" o,

If s does not converge, we write sf} and say s diverges.

a Hochschule RheinMain

Standardisation (Preparations, cont'd)

Counting the contracted redexes:

Define the measure ¢ : —1 — Ny inductively as

¢(x —1) = 0,if z is a variable

d(Ax.s =1 Az.8) =¢(s — &)

(M) t) =1 §'[t'/x]) = 1+ d(s =1 ') + k- d(t —1 t'), where k is the number of
free occurrences of z in s

P((s 1) =1 (s 1))

Measure ¢ is defined for every —1-step and it is well-founded.

=¢(s =1 5) + ot =1)

a I Hochschule RheinMain

Splitting —1

name,* int
If s —1 t, then s —— o/ ™, ¢,

Proof. If s 2%, t, then the claim holds.

Otherwise, s “"% 1 t,i.e. s = R[(Az.r) u), r =17, u =1 v/, R —1 R, t = R'[r'[u’ /z]].
Then s ™™ R[r[u/x]] —1 R'['[«//x]] and this can be iterated. If the iteration

stops, the demanded reduction sequence is constructed.

For termination, we verify ¢(s —1 t) > ¢(R[r[u/x]] =1 R'[r'[v//z]]):

d(R[(Az.m) u] =1 R'[r'[v//z]]) = ¢(R =1 R') + ¢((A\x.1) u —1 7|/ /x])
=¢(R—1 R)+1+¢(r —17") +ko(u —1 o)
O(R[r[u/z]]] =1 R'[r'[//2]]) = (R =1 R) + ¢(r =1 7") + ko(u —1 u')

where k is the number of free occurrences of = in 7. O
[0 Sube | L~ 03 Lambas Corcuus | W 2020/25 T 110 Conuence Name Vol T~ Conte T Conp |

a Hochschule RheinMain

Shifting ——" over —

Applying Lemma 3.4.11 iteratively shows:

name,*

ame* , int

If s =1 t 2% o v is an FWHNF, then s ——% ¢/ ™%, v where v’ is an FWHNF.

The induction is on the number of =% _steps.

For the base case, observe that iitn steps do not transform non-FWHNFs into
FWHNFs.

For the induction step, apply Lemma 3.4.11 and use the induction hypothesis.

a I Hochschule RheinMain

Shifting =% over —

S —
Let s —1 t 2% 7, then there exists u namet | 1 lname
name,+ int Ty
such that s —2Ty ¢ 2, .] Jﬁt?r
Proof.
. name,* int,
By Lemma 3.4.10 s — ¢ %% r can be written as s —2 ¢/ 5 ¢ 2GS g

name

Since t X% 1, we can assume that t = R[(\x.to) t1] —% Rlto[t1/x]] = 7.

Since ¢/ m—tn t is internal, t' = R/[(Az.t() t}] where R’ —1 R, t(, —1 to, and t] —1 t1.

Then t' = R'[(Az.t)) ty] =% R'[t)[t)/2]] 2 Rlto[t1/x]] = r holds. O
[D_Sabel | PLF 03 Lambda Caleulus [WS 2024/25 __ RURUM 5/nio o &5 Coniluence Name Value Need . Contert L Turing Compl]

) Hochschule RheinMain

Standardisation-Theorem

Call-by-name evaluation is an optimal strategy w.r.t. termination:

If s %) v where v is a FWHNF, then sJ.

. . . . C,
Proof. The given sequence is also a sequence of —1-reductions, since —B> C —1.
We show by induction on n: if s 2y, v where v is an FWHNF, then 8.
If n =0, then the claim holds. The induction step:

s s’ ol v
1 1
name,* | name,*
v Y
’U” wnt - ’Ul

Dashed steps follow from the IH, dotted steps follow by Lemma 3.4.12
|

a Hochschule RheinMain Ca”'bY'Value Evaluation al Hochschule RheinMain

CALL-BY-VALUE EVALUATION

@ Used in strict functional programming languages like ML, F#, ...

o Difference to call-by-name: (-reduction is only permitted if the argument is a
value (an abstraction)

The (direct) (Byaiue)-reduction is defined as

(Az.s) v aieN s[v/x] where v is a variable or an abstraction.

We write M for the contextual closure of M)

[0-Ssber | PLF - 02 Lo Cocte | WS 2020125 TR 5 i o 5 Contence Name Vol Necd o ConteL Turng Com |
Ca”'bY'Value Evaluatlon (Contyd) *Hochschule RheinMain Example *Hochschule RheinMain
Call-by-value evaluation requires to evaluate parameters before calling the function!
(Az.(z (z 2))) (Ay-y y) (Az.2))
Call-by-value reduction contexts E are built as follows: value, (Az.(z (z 7)) (Az1.21)(A22.22))
I
ECtxt ::= [] | (ECtxt Expr) | (A\V.Expr) ECtxt) S (Aa(x (2 7)) (Az.22)
value
If ry Bratue, ro and E is a call-by-value reduction context, then > (Az.22) ((Azs.23) (A24.24))
value
Az2.29) (Az4.2
E[] value E[T‘g] l (2. 2) (4. 4)
M) ()\24 2’4)
is a call-by-value reduction.)

Alternative Definition with Labels Y Example Y

@ For s, start with s*.
@ Exhaustively apply the rules: (()\x(x (z x)))* (\y.y y)* ()‘sz))*)*
((A2.(2 (=

(s1 82)* = (s* 59) value, (\a. D)N* (Az1.21)* (Az2.20))%)

. " o «
(v* s) = (v s%) if v is an abstraction and s is not an abstraction or a variable value (Az.(z (z 2))) (}\22”22))
Three cases A\ K
M) (/\23 2’3)\24 2’4) ()\25.25)))
@ s is labeled with x and s is an abstraction: no reduction applicable *
value
e s = E[x*], i.e. a free variable in reduction position: no reduction applicable ((Az3.23)%)\25 Zs))
@ s = E[(Az.t)* v] where v is an abstraction or variable: value O\zs.25)*
value

Then E[(Az.t) v] —— E[t[v/x]]

Convergence a Hochschule RheinMain Ca”'bY'Na me vs. Ca | |'bY‘Va I ue a Hochschule RheinMain

Standardisation-Theorem immediately shows:

Note that call-by-value reduction is deterministic.
For all expressions s: sl,4ue = S}

Expression s converges for call-by-value evaluation:

i Jab value,x The converse does not hold:
Sdpaiue 1ff Jabstraction v : s —— v o 0= (\rx) (Mo).
0 O "M% () and also Q 4%

If =8} paiuer then we write sty uue (s diverges for call-by-value evaluation). e

Az Ay.y) Q@ —— Ay.y, thus Az Ay.y) Q)
Az Ayy) Q 22 Az My.y) Q, thus A2 2\y.y) Uoaiue

Call-by-Name vs. Call-by-Value (Cont'd) * v T

Consider f s1 s2 s3 CALL-BY-NEED EVALUATION

@ In call-by-value evaluation: first sq, then sg, then s3, then the application
—» Evaluation order is predictable

@ In call-by-name evaluation: first the application.
When (if it all) s1, s2, s3 are evaluated depends on the definition of f!
— Evaluation order is not predictable

@ This is relevant, if s; = print ¢

@ Main reason why strict functional languages (ML, Ocaml,...) permit direct
side-effects, but non-strict functional languages (Haskell) forbid them.

[0-Ssber | PLF ~02 Lo Cocte | W 2020125 TR S i o 5 Contence Name Vol Necd < ContotL Turng Com |
Call-by-Need Evaluation *Hochschule RheinMain Call-by-Need Lambda Calculus: Evaluation *Hochschule RheinMain
@ Also called: lazy evaluation with sharing
@ It optimizes the call-by-name evaluation: by avoiding duplicated evaluations: Reduction contexts are Roeeq:
] C0n5|der ()\m. AP AN .'L') t. Rneed - LR[A] | LR[let T = A in Rneed[mﬂ
@ In call-by-name evaluation ¢ is copied and perhaps evaluated several times!
: A = []| (A Expr)
o Idea of call-by-need: share the result of evaluating ¢
LR := []|let V=Expr in LR

@ We use a new construct for this sharing let x =t in ...

@ A = left into the application
o LR = right into the let

Expr :=V | \V.Expr | (Expr Expr) | let V = Expr in Expr

Note that 1et in Haskell is recursive, here we have a non-recursive let.

Call-by-Need Lambda Calculus: Evaluation (Cont'd) *HochschuleRheinMam Labeling-Algorithm *HochschuleRheinMain

Call-by-need reduction step “%;, defined by: o Labels: %0,
need @ xV o means % or ¢

(lbeta) Rpeea[(Ax.s) t] —— Rpeeq|let @ =t in s

o For s, start with s*.

need

(cp) LR[let = Ay.s in Rpealr]] 2% LR[let © = A\y.s in Ryeea[My.s]] Shifting-Rules:
(llet) LR[let z = (let y =s in t) in Ryeeq[7]] (1) (let x =s int)* = (letz=sint")
2% LR[let y =5 in (let o =t in Ryeealt])] (2) (let = Ci[y°] in Csfz®]) = (let = = Ci[y°] in Cafz])
(lapp) Rneed[(let z = s in t) 1] 2<% Ry gllet o = s in (¢ 7)) (3) (let z=sin C[z*"?]) = (let z =5 in C[2°])
(4) (st)*ve = (1)

o (lbeta) and (cp) replace (B),
o (lapp) and (llet) adjust lets

where (2) is preferred over (3)

Labeling-Algorithm: Reduction after Labeling *Hochschule RheinMain Example *Hochschule RheinMain
(let z = (Auw.w) (Mw.aw) in ((Ay.y))™

need lbeta, (let 2 = (Au.w) (Mw.w) in (let y = = in y))*
needfbela, (let = (let u = Aw.w in u) in (let y = z in y))¥

(lbeta) ((Ax.s)°t) > letx=tins needliel, (let w = Aw.w in (let z = u in (let y = = in y)))*

(cp) let z = (\y.5)° in C[z®] — let z = Ay.s in C[\y.s] %jz? (let u = (Aw.w) in (let z = (\w.w) in (let y =z in y)))*

(llet) 1let z = (let y—s in #)° in Cle”] m (let v = (Aw.w) in (let £ = (w.w) in (let y = (Aw.w) in y)))*
—= (let u = (Aw.w) in (let z = (Aw.w) in (let y = Aw.w) in Aw.w))))

— let y = s in (let z =t in C[z])]
@ The final expression is a call-by-need FWHNF
o Call-by-need FWHNF: expression of the form LR[Az.s], i.e
let x1 = 51 in
(let 9 = s9 in

(let z,, = sy in Az.s)))

(lapp) ((letx=sint)°r) > letxz=sin (t7)

a I Hochschule RheinMain

Convergence

Expression s converges for call-by-need evaluation:

need,*

Slneed = IFWHNFv:5 —— v

Let s be (1et-free) expression, then s| <= $l,ceq-

—» W.r.t. convergence call-by-name and call-by-need are the same

D. Sabel | PLF — 03 Lambda Calculus | WS 2024/25

B <. i Contece e Vo N~ Cono T Como]

a Hochschule RheinMain

Equality in the Lambda Calculus

Up to now, we used three notions of equality:
@ Syntactic equality
@ «-equivalence
o B-convertibility <%

All of them are quite restrictive

—» We introduce a semantic equivalence, called contextual equivalence

a Hochschule RheinMain

CONTEXTUAL EQUIVALENCE

a Hochschule RheinMain

Idea of Contextual Equivalence

Leibniz’ law of the identity of indiscernibles:

o if objects 01 and 02 have the same property for all properties,
then o1 is identical to os.

@ equality thus means: in every context, we can exchange o1 by o2, but no
difference is observable.
For program calculi like the lambda calculus:

Expressions s and t are equal iff
their behaviour cannot be distinguished independently in which context they are used.
N—— —

convergence VC : Cls] and Ct] ...
0. Sabel | PLF 03 Lambda Calculus WS 2024/25 ______LQJRRH 5ot o &5 Coniluence Name Value Need ~c Context L Turing Compl]

a I Hochschule RheinMain

Contextual Approximation and Equivalence

For the call-by-name lambda calculus:
contextual approximation <. and contextual equivalence ~. are defined as

o s < tiff vVC: C[s]i = C[t]}
0 s~ tiff s<.tundt<,.s

For the call-by-value lambda calculus:
contextual approximation < ,qiue and contextual equivalence ~ yqiye are defined as:

0 5 <cuaiue t iff VO : If C[s], C[t] are closed and C[s]| 41ue, then also Ct]paiue

@ S ~cwalue tiff s Sc,value tandt Sc,value S

We omit the call-by-need lambda calculus.

D. Sabel | PLF — 03 Lambda Calculus | WS 2024/25

PO . . Cotocrce e Vlu e e Contrs L Turin o]

a Hochschule RheinMain

Contextual equivalence is the coarsest equivalence that distinguishes obviously different
expressions.
An important property is:

Properties of Contextual Equivalence

0 ~ and ~¢ e are congruences, i.e. they are equivalence relations (i.e. reflexive,
symmetric & transitive) and compatible with contexts (s ~t = C|[s] ~ C[t]).

o <. and <. yque are precongruences, i.e. they are preorders (i.e. reflexive &
transitive) and compatible with contexts (s <t = C[s] < C[t]).

Proof: We only consider the precongruences, since the congruences follows by
symmetry.

(next slide)

a I Hochschule RheinMain

Closing vs. Non-Closing Contexts

@ call-by-name: no difference if all, or only closing contexts are used in ~,

o call-by-value: there is a difference:
& ~cwalue AY-(@ y) holds, but would not hold, if all contexts are used

Variables represent
call-by-name | any expression
call-by-value | any value

Remark:
@ the transformation s — Az.(s x) is called eta-expansion

@ the inverse transformation Az.(s 2) — s is called eta-reduction

a Hochschule RheinMain

o reflexivity: for all contexts and expressions C[s]| = C]s]|, thus s <. s

<. is a Precongruence

@ transitivity: Let r <. s and s <.t and C[r|{.
We have to show C[t]|:
From r <. s we have C[s]|.

From s <.t we also have C[t]{

o compatibility: Let s <.t and C be a context.
We have to show C|[s] <. C[t]
Let C’ be a context such that C'[C[s]]{.
Since C'[C[]] is also a context, s <.t shows C'[C[t]]}

<cwalue 15 @ Precongruence ')“Hochschule RheinMain Program Transformations ')“Hochschme RheinMain

o reflexivity and compatibility: similar to <.

o transitivity: let 7 <. yqiue 5 and s < paiue t @ Program transformation s — ¢ is correct iff s ~. t holds

Let C' be a context such that C[r] and C[t] are closed and C[r[|,qye- o Congruence property shows that local transformations preserve “global”

We have to show C[t],que- If C[s] is also closed, the reasoning is as for <. equivalence: if s ~ t then C[s] ~. C]t]
Otherwise, assume F'V(C[s]) = {z1,..., %5} @ Proving correctness is usually hard, because of the universal quantification on all
Let vy,..., v, be arbitrary closed values and D = (Az1,...,2n.[]) v1 ... Un. contexts
Since C[r] and Ct] are closed:))
o DIC[] value,* C[r] and D[] value,* el @ Decision problems s ~ t or s 7. t are undecidable, since:
e Thus: D[C[rl{paive = Clrllvaive and DIC[tpaine <= Cltlvatue s 726 € can be used to encode the halting problem
Since C[r]Lpatue: We have D[C[r]]yatue- (and since the lambda calculus is Turing complete)
From r <¢yaiue 5, we have D[C]s]]].
From s <cyatue t, we have D[C[t]| u1ue and thus also C[t]],q e O
[D-S1be | PLF =03 Lambc Cacs | WS 202025 OB S e 5 Contence Name Vo Nesi ~e Contrs . Tung Coml SRR O oo | PLP =03 Lo ot | W 2020125 OB ot 7 Cofence Name Vaue N - Coiot _Turg Coml
(ﬁ) IS CorreCt In the Call'bY‘Name Lambda CaICUhJS *Hochschule RheinMain *Hochschule RheinMain

CONTEXT LEMMA
In the call-by-name lambda calculus: if s i t, then s ~. t.

Proof. Let s ﬁ) t and C' be a context.

CtH = C[sli: Clsll = C[t:
- Cfs) — ==l
C[S] C[t] name,*i // h »
name,*v \Lname,* v , /C767* name,*
/ N
v v oy ¥ £
r v
—— given reductions — — > follows from the Church-Rosser-Theorem
v,r,v" are WHNFs. > follows from the Standardisation-Theorem

Context Lemma: |deas and Preparations *Hochschule RheinMain Context Lemma *Hochschule RheinMain

@ In general, a context lemma states that

Let s and ¢ be closed expressions. If for all reductions contexts R, the implication
R[s]J = RJ[t]{ holds, then also s <.t holds.

it suffices to check a subset of all contexts to conclude contextual equivalence

@ We only consider the case of the call-by-name lambda calculus Proof. We prove the more general claim using multi-contexts:

© We require multi-contexts: Contexts with several (or no) holes If for all closed expressions s;,t; and for i = 1,...,n: for all reduction

We write M[1, ..., -u] for a multi-context with n holes contexts R the implication R[s;]l = R|[t;] holds, then for all
multi-contexts M the implication M{s1,...,sp]d = M[t1,...,t,]J holds.

We write M[s1, ..., s,] if the hole -; of M is replaced by s; (for i =1,...,n).

The context lemma follows with n = 1.

[D-S1be | PLE =03 Lamb Cacs | WS 202025 RIS v 5 Contence Name Vo Nesi ~c Conir Turng Coml SRR O oo | PLP =03 oo s | W 2020125 RO i ot Confence Name Vaue N~ Contot - Turg Coml
Proof of the Context Lemma *Hochschule RheinMain Proof of the Context Lemma (Cont'd) *Hochschule RheinMain
If for all closed (.exprfassi(?ns si;ti and for i =1,...,n: for all reduction Case: There exists a hole 4, s.t. M[s1,...,8i—1, ", Si+1,- -, 5n] IS a reduction context
conl‘ia.exts ? trejl\;[nzlr:ca.tlor}.REiNW Rt led;}th]e\;[zor all £.]1 hold @ Then there exists a hole j, such that M[r,..., 71, j,Tj41,--.,™] i @
multi-contexts S IR Lo hiniv NOCs: reduction context for any expressions r1,...,T,.
Assume, the preconditions hold and M [s1,. .., sy] DA™, v where v is a WHNF. o Let M/ = M[1,...,5-1,5, j41:---»n)
We use induction on the following pair, ordered lexicographically; o Since M'[s1,...,8j-1,Sj+1,.-.,5n] = M[s1,..., 5], they have the same
@ The number m of call-by-name reductions from M][s1, ..., s,] to a WHNF. call-by-name evaluation
@ The number n of holes of M. @ M’ has n—1 holes, i.e. we can apply the IH, showing M'[t1,...,tj—1,tj41,tn]d-
Base case: (] Cs = M[Sl, ceey Si—15 75y Sy e e Sn] and Ct = M[tl, v ,tjfl, 'j7tj+17 e ,tn]
@ Let n =0 and m arbitrary: Then M is an expression and the claim holds. are both reduction contexts, M'[t1,...,tj—1,tj4+1,tn] = Ci[s;] and Ci[s;]].
Induction step: Thus the precondition shows that C;[t;]{.
o Let n >0, i.e. M has holes o Since Ci[t;] = M[t1,...,tp)], this shows the claim.

@ We split into two cases (next slide)

Proof of the Context Lemma (Cont'd) *Hochschule RheinMain Equivalences on Open Expressions *Hochschule RheinMain

Case n > 0 and no hole is a reduction context.
o If m =0, then M(sy,...,s,] isa WHNF and M{[t1,..., sp] must be a WHNF too.

name_ , name,m—1
S

o Otherwise, M(s1,. .., sy)
@ Inspect what can happen with the subexpressions si,...,s, in M Let s and ¢ be expressions with free variables z1,...,z, Then s <, t iff for all closed
@ Since no hole of M is in a reduction context they can only change their position expressions t1,...,tn: S[t1/T1, ... tn/Tn] <c tlt1/T1, ... tn/Tn]
and maybe duplicated or removed.
@ Since s1,..., S, are closed no other expression can be copied inside any s;. Proof.
@ Thus: There exists M’ with k holes, such that e "=": This follows since <. is a precongruence and since () is correct.
o 5" = M'[s51y, .-+, 85m)] Where f:{1,...,m} = {1,...,n}. @ “«&": This can be shown by the context lemma and an induction on the number
o Mlry,...,ry) 2215 M'[rg(1y, -+ - 7f(m)] for any expressions r1,..., 7, of variables.
o in particular, M[ty,. .., t,] 227% M'[tpy, .- Teemy] =t
. m—1 .. .
Since ' —“™, 4 and the precondition holds for all pairs S13i), Ly for
1 =1,...,m we can apply the IH to s’ and ' showing ¢'| and thus also ¢]. |
Contextual Equivalence and Call-by-Value *Hochschule RheinMain Least and Greatest Elements *Hochschule RheinMain

I the call by-vale lambda clculs: Proposition

o (Buatue) € ~evatue (Without a proof) All c.Iosed diverging expressions are least elements w.r.t..gC and < yalue-
. For instance €2 <. s and also € <. ,q1ue $ for all expressions s.

° (ﬁ) g ~cwalue, SINCE (()\a:(Ayy)) Q)ﬂvalue and Ay'?;’*lfvalue .

With K := Az \y.x, Y := Af.(Qz.(f (xz x))) (Az.(f (z 2))), and

Z =M. (Ax.(f Az.(z x) 2)) Qx.(f Az.(z x) 2)):

The contextual equivalences w.r.t. call-by-name and call-by-value evaluation are not o Y K is a greatest element of <., i.e.Vs:s<.YV K

related: o Z K is a greatest element of <. ,qie, i.6. Vs:<. Z K

~e g ~ecvalue and ~cvalue g ~e

Eg (Az.(A\yy) Q) ~cwatue Q but (Az.(Ay.y)) Q) %e Q.

eteness }

We only prove the proposition for the call-by-name lambda calculus.

a I Hochschule RheinMain

Least Elements w.r.t. <,

@ Let | be a closed diverging expression and s be an arbitrary closed expression.
o Let R be an arbitrary reduction context, then R[] cannot converge, i.e. R[L]f}.
@ The context lemma now immediately shows | <. s.

@ Since L is closed, Proposition 3.8.2 shows L <. s for any (perhaps also open)
expression s

a Hochschule RheinMain

The Z-Combinator and Call-By-Value

We explain the call-by-value evaluation of (Z K):
o Z=Af.Ax.(f Az.(x) 2)) Az.(f Az.(z x) 2))
o Letr, = (Ax.(K Az.(z x) 2))

value value value

0o Z K —ryr, —— K Xe.((ryr2) 2) ——= Ay Az(ry rs) 2

@ For values vy,...,v5: (Z K) vy ... vy valuex, (ryr) v1 ... vy value,x
value value
. . z 'z L] n . z 1z “ee n
Ay Az.(ry ry) z) vy U —— (Az.(ry 72) 2) U2l Uy ——
(ry m2) v2v3... Uy vatue+ (ry r2) M) Ay Az (ry) 2

a I Hochschule RheinMain

Greatest Elements w.r.t. <.

o V= A.(Ax.(f (z 2))) (Az.(f (z 2)))
o Letry = (Az.K (z z)).
° ThenYK%ry ry%K(ry Ty)
o (YK)s1 ... sn%K (ry Ty) 51 ... sn%(ry Ty) S2 ... sn%
C.B .8
(ry 7y) == K (ry ry) == Ax.(ry 7y)
@ The Standardisation-Theorem shows that for all R: R[(Y K)]|.

@ Since (Y K) is closed, the context lemma shows s <. (Y K) for every closed
expression s

@ Proposition 3.8.2 shows s <. (Y K) for any (perhaps also open) expression s.

a Hochschule RheinMain

TURING COMPLETENESS OF
THE LAMBDA CALCULUS

TU rlng Completeness *Hochschule RheinMain FUnCt|0n Def|n|t|0ns *Hochschule RheinMain

Non-recursive Haskell-function f z1 ... z, = e can be represented by \z1,...,x,.e

e We do not provide a formal proof Recursive functions can be encoded by the fixpoint combinator:

@ In the lecture notes, a Haskell-implementation of Turing machines can be found For simplicity, let us assume, that e only calls f, but no other functions.

@ We argue that the program constructs used in the program, can be encoded in the Then f can be encoded by Y (Af.Azy ... zq.e):
lambda calculus o Let F = (AfAzy ... zp.e) and ry = (A\z.F (z x)).
: C C C .
Constructs: . o Theny F &5 ry Ty = (Az.F (z x)) 1y LN (ry Ty) EEp (Y F), ie.
@ Named functions Y F~,F (Y F).
@ Recursion o Thus Y F ~, F' (Y F) where F' is the i-fold application of F
o Data (booleans, numbers, pairs, lists) andalso Y F~e F (Y F) ~c Axq, ..., xn.e[(Y F)/f].
For mutual recursive functions, the encoding is a bit more complicated, but still
possible.
Data *Hochschule RheinMain BOOIeanS *Hochschule RheinMain
@ The Haskell-program uses data types and selectors Encoding:
o It suffices to represent booleans, tuples, lists of arbitrary length and natural true = Ar.\y.x
numbers to encode the program false = Az.\y.y

@ We sketch the so-called Church encoding of numbers, booleans, pairs and lists. b st for b€ {true, false} behaves like if b then s else .

Church Encoding of Numbers *Hochschule RheinMain

Idea:

@ Number i is represented by the i-fold function composition.
0 0=f=1id 1=f"2=/>2 ..

Encoding:

0 =Aflxx
i =Mz fla, ifi>0

D. Sabel | PLF — 03 Lambda Calculus | WS 2024/25

B <. i Contence e Vo e~ Conot L Trng Comp]

Church Encoding of Numbers (Cont'd) *Hochschule RheinMain

Successor:

suce = AnAf x.f (n f x).

Predecessor (complicated and pred 0 = 0):
pred = AnAf A xz.n (Ag. b (g f)) (Az.2) (Au.u)

Church Encoding of Numbers (Cont'd) *Hochschule RheinMain

Addition:
plus = dmAnAf z.m f (n f x)

Example:
plus 32 = (AmAnAf A zm f (n f x)) (Af e (f (f (f) Afrx.(f (f x)))
plus 2
EE A f A (M (f (f (f x)))f(nfx)) (A2 (f (f)
SE GnafaeOa(f (f (f 2)) (0 f 2)) (Afa(f (f 7))
% AnAFAZ(f (f (f (0 f) AfA2(f (f 2)))
CE N (f (F(F (MFA(f (f 2)) f)
SEL N (f (F (F (F (fa) =5
[D. Sabel | PLF - 03 Lamba Calelus [W5 2026/25 RN S/niox o &5 Confuence Name Value Need - Contoxt L Turing Compl
Pa I rs *Hochschule RheinMain
Encoding:

Pair = AT \Y.A\z.z2 T Y

The first two arguments are the arguments of the pair, the third one is for the selector.

Examples:
first =Xpp K
second = A\p.p K2

Note that first (pair s t) ~. s and second (pair s t) ~ t.

I—ISts a I Hochschule RheinMain Remarks a I Hochschule RheinMain

Non-empty lists can be encoded by pairs p:
@ the first component of p is the element
@ the second component of p is the tail of the list

With the empty list: additional pair pair flag p where flag is true or false and

@ pair true s means the empty list (independent of s) @ Church encoding does not distinguish between data and functions
o (false,p) is a non-empty list. @ Also different data is encoded in the same way (e.g. 0 and false)
Encoding:
nil = pair true true
cons := Mh.At.pair false (pair h t)
Examples:

isNil = first
head = M.first (second 1)
tail = M.second (second 1)

Types? *Hochschule RheinMain Discussion)‘ Hochschule RheinMain

@ Haskell only allows well-typed programs

the lambda calculus is too small to really program in it

also for a core language it is too difficult to express data and recursion
@ the lambda calculus has no types

equivalences in the lambda calculus do not necessarily hold in Haskell, since
different data is mapped to the same lambda expressions

@ This is not a restriction for Turing completeness, since the typed encoding can
also be used as an untyped one

Haskell has seq, the lambda calculus cannot simulate this

@ In the next chapter: We extend the lambda calculus to a real core language of
functional programming

This concludes our sketch on Turing completeness

	Syntax of the Lambda Calculus
	 &
	Confluence and the Church-Rosser-Theorem
	Name
	Value
	Need
	Contextual Equivalence
	ContextL.
	Turing Compl.

