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@ what is computable by a computer program compute, what not?

@ do you have an intuition?
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@ what is computable by a computer program compute, what not?
@ do you have an intuition?

@ we use the following definition:

A (partial) function f : N& — Ny is computable iff there exists an algorithm (a
program in a modern programming language) that computes f, i.e.
on input (nq,...,n;) € Nk
o if f(ny,...,ng) is defined, then the program terminates after a finite number of
steps and returns f(ny,...,ng) as result.

o if f(ni,...,nk) is undefined, then the program runs forever.
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Let f: (Np x Ng) — Ny be the function f(z,y) =z +y.

Is the function f computable?
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Let f: (Np x Ng) — Ny be the function f(z,y) =z +y.

Is the function f computable?
Yes, the algorithm with inputs nq,n2 € Ny and program code:

result == ni + no;
return result;

computes f.
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Let f: No — N be the partial function that is undefined for all inputs
(often written as f(z) = L).

Is f computable?
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Let f: No — N be the partial function that is undefined for all inputs
(often written as f(z) = L).

Is f computable?
Yes, the algorithm with input n € Ny and program code

while true {skip};

computes f.
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| 1, if nis a prefix of the digits of the decimal representation of 7
kst ) = { 0, otherwise

For example, f(31) =1 f(314) =1 f(2)=0 f(315) =0.

Is f computable?
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Prefix of 7

Let f(n) = 1, if nis a prefix of the digits of the decimal representation of m
1 0, otherwise

For example, f(31) =1 f(314) =1 f(2)=0 f(315) =0.
Is f computable?

Yes, the function f is computable:
@ There are algorithms that can compute the first x digits of 7
@ Choose x large enough to capture the digits of n

@ Compare the digits with the digits of n and return 1 if all match, and 0 otherwise
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1, if nis a substring of the digits of the decimal representation of m
otherwise

Let f(n) = { 0.

Is f computable?

D. Sabel | PLF — 02 Computability | WS 2024/25 8/26 Intuitively Computability



Intuitive Computability: Examples *Hoohschule RheinMain

Substring of 7

| 1, if nis a substring of the digits of the decimal representation of 7
ks ) = { 0, otherwise

Is f computable?

@ There is no known algorithm to check the condition

e If we would know, that 7 contains every sequence of numbers (an open problem),
then f is trivially computable (always return 1)
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1, if the digits of the decimal representation of 7
Let f(n) = contains the substring 3™ for some number m > n
0, otherwise

Is f computable?
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Specific substring of 7

1, if the digits of the decimal representation of 7
Let f(n) = contains the substring 3" for some number m > n
0, otherwise

Is f computable?

The problem looks as hard as the previous one, but this is not the case.
@ If w contains all strings 3", then f is the constant function 1, which is computable
@ If there is a bound M such that 7 contains 3, but 7 does not contain 3% with
x > M, then f can be computed:
Check if n < M holds. If yes, return 1, else return 0.
One of both algorithms computes f, and thus f is computable.
It is not relevant, that we do not know which one is the correct algorithm.
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1, fP=NP

Letfbef(”):{ 0, if P#NP

If f computable?

D. Sabel | PLF — 02 Computability | WS 2024/25 10/26 Intuitively Computability



Intuitive Computability: Examples *Hoohschule RheinMain

Function depending on open question

1, if P=NP
Letfbef(”):{ 0, if P#£NP

If f computable?

Yes, because either P = NP holds (then f(n) =1 for all n), or P # NP holds (then
f(n) =0 for all n).

Again, we do not know which algorithm is the right one, but we are sure that an
algorithm that computes f exists.
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Let f" be the function and r be a real number

| 1, if nis prefix of the digits of the decimal representation of r
fn) = 0, otherwise

Are all functions f" computable?
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A lot functions
Let f" be the function and r be a real number

| 1, if nis prefix of the digits of the decimal representation of r
fr(n) = ;
0, otherwise

Are all functions f” computable?

No, the argument is:

[ #£ f2 for ry # roy

|R| different algorithms are required

@ the set of algorithms is countable

the real numbers are not countable
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tape consisting of cells

ar|azias| - | dn (unbounded to the left and to the right)

A~
< >

control umt\ read- /write-head

(finite (may move to the left or to the right)
states)

@ introduced in 1936 by Alan Turing

@ memory is represented by the infinite tape (divided into cells)

@ in one step: TM reads the current cell, replaces the symbol, and may move the
head by one cell
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A Turing machine (TM) is a 7-tuple M = (Q, %,T, 0, o, 0, F') where
@ (@ is a finite, non-empty set of states,
@ X is a finite set of symbols, the input alphabet,
o ' D X is a finite set of symbols, the tape alphabet,

@ J is the state transition function where in the case of a deterministic Turing
machine (DTM), 6 : (@ xT') — (@ xI' x {L, R, N}), and in case of a
non-deterministic Turing machine (NTM), §: (Q xT') = P(Q xT' x {L,R,N}),

qo € @ is the start state,
O eI\ X is the blank symbol,
F C Q@ is the set of final states.

For a deterministic Turing machine, an entry 6(q,a) = (¢, b, z) means that in state g,
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A configuration of a Turing machine is a word wqw’ € T*QT'* I

A configuration wqw’ means
@ the TM is in state ¢

@ the tape content is ww’ and infinitely many blank symbols left and right from wuw’

@ the current head position is on the first symbol of w’.

Initially the TM is in state gy and the head is on the first symbol of the input word:

For input w, the start-configuration of a TM M = (Q, X, T, 4, qo,0, F) is gow.




Transition Relation

(Q,%,T,6,q0,0, F), the relation )y is defined as follows
(¢',c,x) in case of an NTM means (¢, c,z) € d(q,a)):

Fora TM M =
(where 6(q,a) =

wlw’

bl"'bm-"'
b - Bgay - - -
bl"'bm-"'

b - - by /gay
gay---a,

Y

an Fap by
an Fap by
an Fap by

Far b1

bm-a2 cean
bm—l-az e

m-CL2

~m-

Far (@ 8eas - -

T

a I Hochschule RheinMain

if ¢ € F (no transition for final states).

if 6(q,a1) = (¢,¢,N), m>0,n>1,q& F
an, if 0(q,a1) = (¢,c, L), m>1,n>1,q¢ F

if 0(q,a1) = (¢, ¢, R), m>0,n>2,q¢F

if 0(¢,a1) =(¢',¢,R) and m > 0,9 ¢ F

if 6(q,a1) = (¢',e, L) andn>1,q¢ F

I—ZM is the i-fold application of -j;
W the reflexive-transitive closure of -,/
We omit the index M in Fj; and write b is M is clear from the context.

D. Sabel | PLF — 02 Computability | WS 2024/25

16726



Exa m ple a I Hochschule RheinMain

DTM M = ({CJO’ q1, q2, q3}7 {Oa ]-}7 {Oa 1, D}7 5a q0, L, {q3}) with

6(g0,0) = (0,0,R)  6(qo,1) = (90,1, R)  d(q0,00) = (q1,00, L)
6(q1,0) = (g2, 1, L) 6(q1,1) = (q1,0, L) 6(q1,0) = (g3,1, N)
6(q2,0) = (g2,0,L) 6(q2,1) = (g2, 1, L) 6(q2,0) = (g3,10, R)
6(q3,0) = (g3,0,N)  d(g3,1) = (g3,1,N)  6(gs,0) = (g3, 00, N)

interprets the input as binary number

In state g it moves the head to the right end and switches to ¢;
In q1 it adds 1 to the input, including a carryover

If no more carryover occurs, it switches to ¢o

in g9 it moves the head to the left end and switches to g3

it accepts in g3
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q00011

D. Sabel | PLF — 02 Computability | WS 2024/ 18/26 Turing Computability



EXa m ple exeCUt|0n al Hochschule RheinMain

0011 F 0gy011
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q00011 - 0gp011
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00011 - 0gg011 - 00gy11
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00011 F 0ge011 + 00lggT

D. Sabel | PLF — 02 Computability | WS 2024 /25 18/26 Turing Computability



EXa m ple exeCUt|0n al Hochschule RheinMain

40011 - 0ge011 - 00GgE1 F 001gg1
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qo0011 F 0ge011 F 00go11 F 0010
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00011 F 0go011 = 00g11 F 001ggT - 0011geC
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00011 F 0go011 = 00g11 F 001ge1 - 0011GHED
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00011 F 0go011 = 00g11 F 001ge1 - 0011GHED

- 00110
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400011 F 0go011 - 00g11 F 001go1 F 00110

- 001ggl0]
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400011 F 0go011 - 00g11 F 001go1 F 00110

- 0010 F 00g; 100
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400011 F 0go011 - 00g11 F 001go1 F 00110

- 001q; 10 + 00ggHoT
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400011 F 0go011 - 00g11 F 001go1 F 00110

- 001q, 10 F 00100 - 0g;0000
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400011 F 0go011 - 00g11 F 001go1 F 00110

- 001q, 10 F 00g; 100 - 000001
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400011 F 0go011 - 00g11 F 001go1 F 00110

- 001,10 F 00¢; 100 - 0gg0000 - go01000]
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400011 F 0go011 - 00g11 F 001go1 F 00110

- 001q, 10 F 00,100 - 0g,0000 F [g01000]
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300011 F 0go011 F 00g11 F 0011 - 0011g,0]

- 001q, 10 F 00,100 - 0¢,00000 F {50100

= qo101000
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300011 F 0go011 F 00g11 F 0011 - 0011g,0]

- 001,10 F 00,100 - 0¢,0000 F 5010000

= 1g2301000
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300011 F 0go011 F 00g11 F 0011 - 0011g,0]

- 001,10 F 00,100 - 0¢,0000 F 5010000
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300011 F 0go011 F 00g11 F 0011 - 0011g,0]

- 001,10 F 00,100 - 0¢,0000 F 5010000

- q,J01000] - Lligg01000Ld
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q00011 = 0gp011 F 00gp11 = 001gpl F 0011ge]

- 001,10 F 00,100 - 00000 - g501000
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Let bin(n) be the binary representation of number n € Ny.

Function f : Nk — Ny is Turing computable,
if there exists a DTM M = (Q, %,T, 6, g0, 0, F') such that for all ny,...,ng, m € Np:

fni,...,ng) =m
iff
qobin(ny)# ... #bin(ng) F* O...Ogrbin(m)d. .. O with g5 € F.

Function f : ¥X* — »* is Turing computable,
if there exists a DTM M = (Q,X%,T, 6, qo, 0, F') such that for all u,v € ¥*:

fu) =viff gou " 0O...Ogpo0. .. O with g € F.

If f(n1,...,nk) is undefined, we assume that the TM loops.
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@ The successor function f(z) = x + 1 is Turing computable.

We defined the corresponding TM in the last example.

@ The identity f(z) = z is Turing computable:

DTM M = ({QO}) {Oa 1, #}7 {07 1, #D}7 57 q0, D7 {QO}) with 5(q0a CL) = (QO7a)N)
for all @ € {0,1, 4,0}, we have gobin(n) F* gobin(n) for all n € Ny.

@ The function f(x) = L which is undefined for every input is Turing computable:

DTM M = ({QO}a {Oa 1, #}7 {07 1, #, D}v (57 qo, U, ®> with 5(q07 a) = (QO7 a, N)
loops for every input and never reaches a final state.
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e Turing machines and words can be encoded as numbers (called Gédel numbers)
@ Let f be a function that gets a number n and

e is undefined if n is not a valid encoding of a TM M and a word w

e is 1, if the TM M holds on input w

e is 0, otherwise
e Let f’ be a function that gets a number n and

e is undefined if n is not a valid encoding of a TM M and a word w
e is 1, if the TM M holds on input w
e is undefined, otherwise

@ Function f is not Turing computable, because the TM that computes f has to
solve the halting problem for Turing machines which is undecidable.

@ Function f’ is Turing computable, because f’ can be computed by a Turing
machine, by simulating M on input w.
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In the 1930s also other notions of computability were invented, e.g.:
@ Kurt Godel and Jacques Herband: General recursive functions
@ Alonzo Church and Stephen Kleene: \-definable functions

Remarkable result:

All of the formalisms were shown to be equivalent, i.e. they define the same class of
functions.
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The class of Turing computable functions is identical to the class of intuitively
computable functions.

@ Thesis cannot be proved, since there is no formal definition of “intuitively
computable”.
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A formalism (a programming language, an instruction set of a computer, a rewrite
system etc.) is called Turing complete iff it can simulate a Turing machine.

Turing completeness means that every Turing computable function can also be
computed by the formalism.

@ several formalisms were shown to be Turing complete and thus they can be
replaced by Turing computability in the Church-Turing thesis — since they all
compute the same class of functions.

@ Among them are all modern programming languages, the lambda-definable
functions, the general recursive functions, WHILE-programs, GOTO-programs, the
RAM-model, etc.

@ You may convince yourself that your favourite programming language is Turing
complete by programming a simulation of Turing machines.
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@ We recalled Turing machines and Turing computability
@ Several other formalisms are Turing-complete

@ Church-Turing-Thesis: all these formalisms match the class of intuitively
computable functions

@ For considering foundational models of programming languages, we have several
choices as long as the model is Turing-complete
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APPENDIX

— Godel-numbering of Turing machines
— Undecidability of the halting problem
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Let M = (Q,%,T,6,q0,0, F) be a DTM with ¥ = {0, 1} and

o I'={ag,...,ar} whereag =0, a1 =#,a2=0,a3 =1
© Q=1{q,---qn}
° F:{Qn}

For 6(gr,as) = (g4, ay, D) generate a word over {0, 1, #}:

Wy stu,D = #HHIN(r)#bin(s)#bin(t)#bin(u)#bin(val(D))
with val(L) = 0,val(R) =1, and val(N) = 2
For M we generate wy;:

e Concatenate all words wy s¢, p for r € {0,...,n},s € {0,...,k} and ¢, u, D
given by 0(qr, as) = (q¢, ay, D)
@ Apply the following encoding to each symbol {0 — 00,1 — 01, # — 11}
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e Not every word over {0,1} is an encoding of a Turing machine
(i.e. there exists w such that w # wy for all TMs M)

o To fix this: Let M be a fixed (but arbitrary) Turing machine.

e For w € {0,1}* let M, be:

M, ifw=wy
My, =
s { M, otherwise

D. Sabel | PLF — 02 Computability | WS 2024/25



Undecidability of the Halting-Problem *Hochschule RheinMain

The halting problem is H := {wy;#w | TM M halts on input w}
@ Assumption: H is decidable, i.e. there exists a TM M that terminates for any
input wasF#w with output
e 1 (=VYes) if M halts on input w
@ 0 (=No) if M does not halt on input w

Using My and the Godel-numbering we can fill an (infinite) table, with entries Yes or
No, depending on whether or not M; halts on input wyy;

H W "u)]w2 "ij3 ‘
Mi || Yes | No
Ms || No | No
Ms || Yes | No




We construct a TM Mg
@ On input w, it checks whether M,, holds on w by using Mp.
o If yes, then Mg loops
@ If no, then My stops successfully.

By construction:
My halts on W, iff M; does not halt on W,
Since all TMs are in the table: there is a j such that M; = M.
M halts on input wyy; iff M; does not halt on input wyy;

This is a contradiction!
Our assumption was wrong: The halting problem is not decidable.
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