a Hochschule RheinMain Contents al Hochschule RheinMain

@ Intuitively computable functions
@ Turing machines and Turing computability
@ The Church-Turing thesis

Program_ming Language @ Turing completeness
Foundations

02 Computability

Prof. Dr. David Sabel
Wintersemester 2024/25 Last update: November 26, 2024

a Hochschule RheinMain |ntu |t|Ve ComPUta bl | Ity a Hochschule RheinMain

INTUITIVE COMPUTABILITY @ what is computable by a computer program compute, what not?
@ do you have an intuition?
@ we use the following definition:

A (partial) function f : N§ — INj is computable iff there exists an algorithm (a
program in a modern programming language) that computes f, i.e.
on input (ng,...,n;) € NE
o if f(ni,...,nk) is defined, then the program terminates after a finite number of
steps and returns f(n,...,nx) as result.

o if f(n1,...,nk) is undefined, then the program runs forever.

D. Sabel | PLF — 02 Computability | WS 2024 /25 4/26 Intuitively Computability

a I Hochschule RheinMain

Intuitive Computability: Examples

Let f: (Ng x Ng) — Ny be the function f(z,y) =z + .

Is the function f computable?
Yes, the algorithm with inputs n1,ns € Ny and program code:

result := ny + no;
return result;

computes f.

) Hochschule RheinMain

Intuitive Computability: Examples

Let f(n) = { 1, if nis a prefix of the digits of the decimal representation of 7

0, otherwise

For example, f(31) =1 f(314)=1 f(2)=0 f(315) =0.
Is f computable?

Yes, the function f is computable:
@ There are algorithms that can compute the first = digits of 7
@ Choose x large enough to capture the digits of n
@ Compare the digits with the digits of n and return 1 if all match, and 0 otherwise

D. Sabel | PLF — 02 Computability | WS 2024/25 7/26

Intuitively Computability

a I Hochschule RheinMain

Intuitive Computability: Examples

Let f: Ng — Ng be the partial function that is undefined for all inputs
(often written as f(xz) = L1).

Is f computable?
Yes, the algorithm with input n € Ny and program code
while true {skip};

computes f.

D. Sabel | PLF — 02 Computability | WS 2024 /25

6/26 Intuitively Computability

a Hochschule RheinMain

Intuitive Computability: Examples

Let f(n) = { 1, if nis a substring of the digits of the decimal representation of 7

0, otherwise

Is f computable?

@ There is no known algorithm to check the condition

o If we would know, that 7 contains every sequence of numbers (an open problem),
then f is trivially computable (always return 1)

D. Sabel | PLF — 02 Computability | WS 2024 /25 8/26 Intuitively Computability

a I Hochschule RheinMain

Intuitive Computability: Examples

Specific substring of 7

—_

, if the digits of the decimal representation of m
contains the substring 3™ for some number m > n
0, otherwise

Let f(n) =

Is f computable?

The problem looks as hard as the previous one, but this is not the case.
@ If 7 contains all strings 3", then f is the constant function 1, which is computable
@ If there is a bound M such that 7 contains 3, but 7 does not contain 3% with
x > M, then f can be computed:
Check if n < M holds. If yes, return 1, else return 0.
One of both algorithms computes f, and thus f is computable.
It is not relevant, that we do not know which one is the correct algorithm.

D. Sabel | PLF — 02 Computability | WS 2024/25 9/26 Intuitively Computability

a Hochschule RheinMain

Intuitive Computability: Examples

A lot functions
Let f" be the function and r be a real number

£(n) = 1, if n is prefix of the digits of the decimal representation of r
"1 0, otherwise

Are all functions f" computable?

No, the argument is:
o fr £ fT2 for ry # ry
o |R| different algorithms are required
@ the set of algorithms is countable

@ the real numbers are not countable

D. Sabel | PLF — 02 Computability | WS 2024/25 11/26 Intuitively Computability

a I Hochschule RheinMain

Intuitive Computability: Examples

Function depending on open question

1, fP=NP
Letfbef(”):{ 0, if P£NP

If f computable?

Yes, because either P = NP holds (then f(n) =1 for all n), or P # NP holds (then
f(n) =0 for all n).

Again, we do not know which algorithm is the right one, but we are sure that an
algorithm that computes [exists.

D. Sabel | PLF — 02 Computability | WS 2024 /25

10/26 Intuitively Computability

a Hochschule RheinMain

TURING COMPUTABILTY

Turing Machines: Informally *Hochschule RheinMain Turing Machine, formally *Hochschule RheinMain

a1 |las|az| - |ap EZF;EOCS:(?:::C% :lfecrelic?c and to the right) A Turing ma-cl?ine (TM) is a 7-tuple M = (Q, %, T, 4, qo, 0, F) where
‘ T s o @ is a finite, non-empty set of states,
\ q o head o Y is a finite set of symbols, the input alphabet,
con(':qrsilt:nlt E:a);/;vgl\:_t;athe left or to the right) ol .3 Y is a finite se-.t.of symbc?ls, the tap.e alphabet, o .
states) 0 dis the state transition function where in the case of a dete.rmlnlstlc Turing
machine (DTM), 6 : (@ xT') — (@ x ' x {L, R, N}), and in case of a
@ introduced in 1936 by Alan Turing non-deterministic Turing machine (NTM), §: (@ xT') — P(Q x ' x {L, R, N}),
@ memory is represented by the infinite tape (divided into cells) @ qo € Q is the start state,
@ in one step: TM reads the current cell, replaces the symbol, and may move the o OeT\ X is the blank symbol,
head by one cell o F C (@ is the set of final states.)

For a deterministic Turing machine, an entry 6(g,a) = (¢, b, z) means that in state ¢,
D. Sabel | PLF — 02 Computability | WS 2024/25 13/26 D. Sabel | PLF — 02 Computability | WS 2024/25 14/26
current cell will be b and the read-/write-head moves into direction x (which is left if
x = L, right if x = R and no move if z = N).
For a non-deterministic Turing machine the same holds if (¢/,b,z) € §(q,a), but it
means, that the TM can do this, but it can also do some other state transition in
0(q,a). It chooses non-deterministically between the choices in 6(q, a).

Conflguratlon Of TMS *Hochschule RheinMain TranSItlon Relat|0n *Hochschule RheinMain
A configuration of a Turing machine is a word wqw’ € T*QI'* \ ForaTM M = (@ %,T, 5_’ g0,U, F'), the relation Iy is defined as follows
(where 6(q,a) = (¢, ¢, z) in case of an NTM means (¢, c,z) € §(q,a)):
A configuration wqu' means wigh' Vo if ¢ € F (no transition for final states).
@ the TM is in state ¢ by b @@ an Fag by bool@8as - - an, if 5(g,a1) = (¢',¢,N), m>0,n>1,q¢ F
@ the tape content is ww’ and infinitely many blank symbols left and right from wuw’ by Bmgasl - - an Fag by byo1@bméas - - an, if 6(q,a1) = (¢',e, L), m>1,n>1,q¢ F
o the current head position is on the first symbol of w'. bi - - bG8 - - an b by - b fEllaz - - - an, if 5(¢,a1) = (¢'sc,R), m>0,n>2,g¢ F
blbm- '_M blbm-r ifa(q7a1):(qlvc7R) a“dmZO,ng
Initially the TM is in state gy and the head is on the first symbol of the input word: lgai---a, Fur [@88as - - - an, if 6(¢,a1) = (¢,c, L) and n>1,q ¢ F

: i is the i-fold application of Iy
For input w, the start-configuration of a TM M = (Q, X, T, 4§, go, 0, F) is gow. -+, the reflexive-transitive closure of by

We omit the index M in ks and write - is M is clear from the context.

D. Sabel | PLF — 02 Computability | WS 2024/25 15/26 Turing Computability D. Sabel | PLF — 02 Computability | WS 2024 /25 16/26 Turing Computability

Example * Example execution *

DTM M = ({QOa q1,92, q3}7 {05 1}7 {07]-a D}a 65 q0, D, {QB}) with

8(q1,0 5 , 5(q.0) = (gs.1, N
a<3§,o> <3 D b >=<3 B 505.0) — (s, 0. F) 00011 - 0go011 F 00ge11 - 001ge1 F 0011gy00
0(g3,0) = (Q3,0N) d(gs3,1) = (¢3,1,N) d(gs3,0) = (¢3,0,N)

- 001q, 10 F 00q, 100 F 0,000 F ¢,01000

interprets the input as binary number

In state qg it moves the head to the right end and switches to ¢; - QDDOlOOD - DQ301OOD
In ¢ it adds 1 to the input, including a carryover

If no more carryover occurs, it switches to ¢

in go it moves the head to the left end and switches to g3

it accepts in g3

D. Sabel | PLF — 02 Computability | WS 2024 /25 17/26 Turing Computability D. Sabel | PLF — 02 Computability | WS 2024 /25 18/26 Turing Computability

Tu r ng Com pUta bl | Ity a Hochschule RheinMain Exa m ples a Hochschule RheinMain

Let bin(n) be the binary representation of number n € Ny.

Defwion o The succesor function f(x) = & + 1 is Tring computable.

Function f :]N’g — Ny is Turing computable, We defined the corresponding TM in the last example.
if there exists a DTM M = (@, X, T, 6, o, 0, F') such that for all ny,...,ng,m € Np:

fn . o The identity f(x) = x is Turing computable:
1.+ Nk) =

iff DTM M = ({q0}7 {07 17#}7 {07 17#D}a57 QO7D7 {qO}) with 5(q07a) = (QO,CL,N)
gobin(ny)# ... #bin(ng) F* O...Ogrbin(m)O...0O with g5 € F. for all a € {0,1,#,0}, we have gobin(n) F* gobin(n) for all n € No.

Function f : ¥* — ¥* is Turing computable, . L

The funct = 1 which defined f tis T table:
if there exists a DTM M = (Q, X, T, 6, qo,0, F) such that for all u,v € X*: ® The function f(x) WhIER 1S Undetined for every ln-pu 15 TUning comptrtabie
DTM M = ({qo}7 {07 1, #}7 {07 1,#, D}7 67 90,0, 0) with 5(Q07 a) = (QO7 a, N)

flu) =viff gou =" 0O...Ogpo0. .. 0O with g5 € F. loops for every input and never reaches a final state.

If f(n1,...,nk) is undefined, we assume that the TM loops.

D. Sabel | PLF — 02 Computability | WS 2024/25 19/26 Turing Computability D. Sabel | PLF — 02 Computability | WS 2024 /25 20/26 Turing Computability

Not Turing Computable Functions ')“Hochschule RheinMain Hochscme RheliMain

@ Turing machines and words can be encoded as numbers (called Gédel numbers) CHURCH-TURING-THESIS
o Let f be a function that gets a number n and
e is undefined if n is not a valid encoding of a TM M and a word w
e is 1, if the TM M holds on input w
e is 0, otherwise
o Let f/ be a function that gets a number n and

e is undefined if n is not a valid encoding of a TM M and a word w
e is 1, if the TM M holds on input w
o is undefined, otherwise

@ Function f is not Turing computable, because the TM that computes f has to
solve the halting problem for Turing machines which is undecidable.

@ Function f’ is Turing computable, because f’ can be computed by a Turing
machine, by simulating M on input w.

D. Sabel | PLF — 02 Computability | WS 2024 /25 21/26 Turing Computability

ComPUtablllty a Hochschule RheinMain ChurCh_Tu rlng TheSIS a Hochschule RheinMain

In the 1930s also other notions of computability were invented, e.g.:

o Kurt Godel and Jacques Herband: General recursive functions

The class of Turing computable functions is identical to the class of intuitively
computable functions.

@ Alonzo Church and Stephen Kleene: A-definable functions

Remarkable result:
@ Thesis cannot be proved, since there is no formal definition of “intuitively

All of the formalisms were shown to be equivalent, i.e. they define the same class of computable” .

functions.

D. Sabel | PLF — 02 Computability | WS 2024 /25 23/26 Church-Turing Thesis D. Sabel | PLF — 02 Computability | WS 2024 /25 24/26 Church-Turing Thesis

TU r ng Com pleteness a I Hochschule RheinMain COhCl usion a I Hochschule RheinMain

A formalism (a programming language, an instruction set of a computer, a rewrite
system etc.) is called Turing complete iff it can simulate a Turing machine.

@ We recalled Turing machines and Turing computability

Turing completeness means that every Turing computable function can also be @ Several other formalisms are Turing-complete
computed by the fc.)rmallsm.) @ Church-Turing-Thesis: all these formalisms match the class of intuitively
@ several formalisms were shown to be Turing complete and thus they can be computable functions

replaced by Turing computability in the Church-Turing thesis — since they all
compute the same class of functions.

@ Among them are all modern programming languages, the lambda-definable
functions, the general recursive functions, WHILE-programs, GOTO-programs, the
RAM-model, etc.

@ You may convince yourself that your favourite programming language is Turing
complete by programming a simulation of Turing machines.

D. Sabel | PLF — 02 Computability | WS 2024/25 25/26 Church-Turing Thesis D. Sabel | PLF — 02 Computability | WS 2024/25 26/26 Church-Turing Thesis

@ For considering foundational models of programming languages, we have several
choices as long as the model is Turing-complete

*Hochschule RheinMain GOdeI_Numberlng Of Turlng MaChInes *Hochschule RheinMain
Let M = (Q,%,T,6,q9,d, F) be a DTM with ¥ = {0,1} and
APPENDIX (Q,2,1,6,00.0, F) 0,1}
o I'={ag,...,ar} whereag =0, a1 =#, a2 =0, ag =1
— Godel-numbering of Turing machines ° _
Uttty o e el e @={w,. - an}
o F'= {Qn}

For 6(¢r, as) = (qt, ay, D) generate a word over {0, 1, #}:

Wrs tu,D = FHIN(r)Fbin(s)#bin(t)#bin(uw)#bin(val (D))
with val(L) = 0,val(R) = 1, and val(N) = 2
For M we generate wyy:
o Concatenate all words wy s, p for r € {0,...,n},s € {0,...,k} and t,u, D
given by 6(qr, as) = (g1, au, D)
@ Apply the following encoding to each symbol {0 — 00,1 +— 01, # — 11}

Godel-Numbering of Turing Machines (Cont'd) *Hochschum RheinMain Undecidability of the Halting-Problem *Hochschule RheinMain

The halting problem is H := {wp/#w | TM M halts on input w}

@ Assumption: H is decidable, i.e. there exists a TM My that terminates for any
o Not every word over {0, 1} is an encoding of a Turing machine input wys#w with output
(i.e. there exists w such that w # wyy for all TMs M) o 1 (=VYes) if M halts on input w
@ 0 (=No) if M does not halt on input w

® To fix this: Let M be a fixed (but arbitrary) Turing machine. Using My and the Gédel-numbering we can fill an (infinite) table, with entries Yes or

o For w € {0,1}* let M, be: No, depending on whether or not M; halts on input wyy;
A M, ifw=wy | wan, | wa, | wag, | -
Y| M, otherwise M, || Yes | No

D. Sabel | PLF — 02 Computability | WS 2024 /25 D. Sabel | PLF — 02 Computability | WS 2024 /25

We construct a TM M
@ On input w, it checks whether M,, holds on w by using M.
o If yes, then My loops
@ If no, then M stops successfully.

By construction:
My halts on W, iff M; does not halt on W,
Since all TMs are in the table: there is a j such that M; = M.
M; halts on input wyy, iff M; does not halt on input wyy,

This is a contradiction!
Our assumption was wrong: The halting problem is not decidable.

	Intuitively Computable Functions
	Turing Computability
	Church-Turing Thesis
	Appendix

