
0,0015,50 15,50

Programming Language
Foundations

02 Computability

Prof. Dr. David Sabel

Wintersemester 2024/25 Last update: November 26, 2024

Contents

Intuitively computable functions

Turing machines and Turing computability

The Church-Turing thesis

Turing completeness

D. Sabel | PLF – 02 Computability | WS 2024/25 2/26 Intuitively Computability Turing Computability Church-Turing Thesis

D. Sabel | PLF – 02 Computability | WS 2024/25 3/26 Intuitively Computability Turing Computability Church-Turing Thesis

0,0015,50 15,50

INTUITIVE COMPUTABILITY

Intuitive Computability

what is computable by a computer program compute, what not?

do you have an intuition?

we use the following definition:

Definition (Intuitive Computability)

A (partial) function f : ℕk
0 → ℕ0 is computable iff there exists an algorithm (a

program in a modern programming language) that computes f , i.e.
on input (n1, . . . , nk) ∈ ℕk

0

if f(n1, . . . , nk) is defined, then the program terminates after a finite number of
steps and returns f(n1, . . . , nk) as result.

if f(n1, . . . , nk) is undefined, then the program runs forever.

D. Sabel | PLF – 02 Computability | WS 2024/25 4/26 Intuitively Computability Turing Computability Church-Turing Thesis

Intuitive Computability: Examples

Computing the sum of two numbers

Let f : (ℕ0 ×ℕ0) → ℕ0 be the function f(x, y) = x+ y.

Is the function f computable?

Yes, the algorithm with inputs n1, n2 ∈ ℕ0 and program code:

result := n1 + n2;
return result ;

computes f .

D. Sabel | PLF – 02 Computability | WS 2024/25 5/26 Intuitively Computability Turing Computability Church-Turing Thesis

Intuitive Computability: Examples

Always undefined function

Let f : ℕ0 → ℕ0 be the partial function that is undefined for all inputs
(often written as f(x) = ⊥).

Is f computable?

Yes, the algorithm with input n ∈ ℕ0 and program code

while true {skip};

computes f .

D. Sabel | PLF – 02 Computability | WS 2024/25 6/26 Intuitively Computability Turing Computability Church-Turing Thesis

Intuitive Computability: Examples

Prefix of π

Let f(n) =

{
1, if n is a prefix of the digits of the decimal representation of π
0, otherwise

For example, f(31) = 1 f(314) = 1 f(2) = 0 f(315) = 0.

Is f computable?

Yes, the function f is computable:

There are algorithms that can compute the first x digits of π

Choose x large enough to capture the digits of n

Compare the digits with the digits of n and return 1 if all match, and 0 otherwise

D. Sabel | PLF – 02 Computability | WS 2024/25 7/26 Intuitively Computability Turing Computability Church-Turing Thesis

Intuitive Computability: Examples

Substring of π

Let f(n) =

{
1, if n is a substring of the digits of the decimal representation of π
0, otherwise

Is f computable?

There is no known algorithm to check the condition

If we would know, that π contains every sequence of numbers (an open problem),
then f is trivially computable (always return 1)

D. Sabel | PLF – 02 Computability | WS 2024/25 8/26 Intuitively Computability Turing Computability Church-Turing Thesis

Intuitive Computability: Examples

Specific substring of π

Let f(n) =

1, if the digits of the decimal representation of π

contains the substring 3m for some number m ≥ n
0, otherwise

Is f computable?

The problem looks as hard as the previous one, but this is not the case.
1 If π contains all strings 3m, then f is the constant function 1, which is computable
2 If there is a bound M such that π contains 3M , but π does not contain 3x with

x > M , then f can be computed:
Check if n ≤ M holds. If yes, return 1, else return 0.

One of both algorithms computes f , and thus f is computable.
It is not relevant, that we do not know which one is the correct algorithm.

D. Sabel | PLF – 02 Computability | WS 2024/25 9/26 Intuitively Computability Turing Computability Church-Turing Thesis

Intuitive Computability: Examples

Function depending on open question

Let f be f(n) =

{
1, if P = NP
0, if P ̸= NP

If f computable?

Yes, because either P = NP holds (then f(n) = 1 for all n), or P ̸= NP holds (then
f(n) = 0 for all n).

Again, we do not know which algorithm is the right one, but we are sure that an
algorithm that computes f exists.

D. Sabel | PLF – 02 Computability | WS 2024/25 10/26 Intuitively Computability Turing Computability Church-Turing Thesis

Intuitive Computability: Examples

A lot functions

Let f r be the function and r be a real number

f r(n) =

{
1, if n is prefix of the digits of the decimal representation of r
0, otherwise

Are all functions f r computable?

No, the argument is:

f r1 ̸= f r2 for r1 ̸= r2

|ℝ| different algorithms are required

the set of algorithms is countable

the real numbers are not countable

D. Sabel | PLF – 02 Computability | WS 2024/25 11/26 Intuitively Computability Turing Computability Church-Turing Thesis D. Sabel | PLF – 02 Computability | WS 2024/25 12/26 Intuitively Computability Turing Computability Church-Turing Thesis

0,0015,50 15,50

TURING COMPUTABILTY

Turing Machines: Informally

· · · a1 a2 a3 · · · an · · · tape consisting of cells
(unbounded to the left and to the right)

read-/write-head
(may move to the left or to the right)

control unit
(finite
states)

introduced in 1936 by Alan Turing

memory is represented by the infinite tape (divided into cells)

in one step: TM reads the current cell, replaces the symbol, and may move the
head by one cell

D. Sabel | PLF – 02 Computability | WS 2024/25 13/26 Intuitively Computability Turing Computability Church-Turing Thesis

Turing Machine, formally

Definition

A Turing machine (TM) is a 7-tuple M = (Q,Σ,Γ, δ, q0,□, F) where

Q is a finite, non-empty set of states,

Σ is a finite set of symbols, the input alphabet,

Γ ⊃ Σ is a finite set of symbols, the tape alphabet,

δ is the state transition function where in the case of a deterministic Turing
machine (DTM), δ : (Q× Γ) → (Q× Γ× {L,R,N}), and in case of a
non-deterministic Turing machine (NTM), δ : (Q× Γ) → P(Q× Γ× {L,R,N}),
q0 ∈ Q is the start state,

□ ∈ Γ \ Σ is the blank symbol,

F ⊆ Q is the set of final states.

For a deterministic Turing machine, an entry δ(q, a) = (q′, b, x) means that in state q,
if the content of the current cell is a, the next state will be q′, the content of the
current cell will be b and the read-/write-head moves into direction x (which is left if
x = L, right if x = R and no move if x = N).
For a non-deterministic Turing machine the same holds if (q′, b, x) ∈ δ(q, a), but it
means, that the TM can do this, but it can also do some other state transition in
δ(q, a). It chooses non-deterministically between the choices in δ(q, a).

D. Sabel | PLF – 02 Computability | WS 2024/25 14/26 Intuitively Computability Turing Computability Church-Turing Thesis

Configuration of TMs

Definition

A configuration of a Turing machine is a word wqw′ ∈ Γ∗QΓ∗

A configuration wqw′ means

the TM is in state q

the tape content is ww′ and infinitely many blank symbols left and right from ww′

the current head position is on the first symbol of w′.

Initially the TM is in state q0 and the head is on the first symbol of the input word:

Definition

For input w, the start-configuration of a TM M = (Q,Σ,Γ, δ, q0,□, F) is q0w.

D. Sabel | PLF – 02 Computability | WS 2024/25 15/26 Intuitively Computability Turing Computability Church-Turing Thesis

Transition Relation

Definition (Transition relation on configurations)

For a TM M = (Q,Σ,Γ, δ, q0,□, F), the relation ⊢M is defined as follows
(where δ(q, a) = (q′, c, x) in case of an NTM means (q′, c, x) ∈ δ(q, a)):

wqw′ ̸⊢M if q ∈ F (no transition for final states).

b1 · · · bm qa1 · · · an ⊢M b1 · · · bm q′ca2 · · · an, if δ(q, a1) = (q′, c,N), m ≥ 0, n ≥ 1, q ̸∈ F

b1 · · · bmqa1 · · · an ⊢M b1 · · · bm−1 q
′bmca2 · · · an, if δ(q, a1) = (q′, c, L), m ≥ 1, n ≥ 1, q ̸∈ F

b1 · · · bm qa1 · · · an ⊢M b1 · · · bm cq′a2 · · · an, if δ(q, a1) = (q′, c, R), m ≥ 0, n ≥ 2, q ̸∈ F

b1 · · · bm qa1 ⊢M b1 · · · bm cq′□ , if δ(q, a1) = (q′, c, R) and m ≥ 0, q ̸∈ F

qa1 · · · an ⊢M q′□ca2 · · · an, if δ(q, a1) = (q′, c, L) and n ≥ 1, q ̸∈ F

⊢i
M is the i-fold application of ⊢M

⊢∗
M the reflexive-transitive closure of ⊢M

We omit the index M in ⊢M and write ⊢ is M is clear from the context.
D. Sabel | PLF – 02 Computability | WS 2024/25 16/26 Intuitively Computability Turing Computability Church-Turing Thesis

Example

DTM M = ({q0, q1, q2, q3}, {0, 1}, {0, 1,□}, δ, q0,□, {q3}) with

δ(q0, 0) = (q0, 0, R) δ(q0, 1) = (q0, 1, R) δ(q0,□) = (q1,□, L)
δ(q1, 0) = (q2, 1, L) δ(q1, 1) = (q1, 0, L) δ(q1,□) = (q3, 1, N)
δ(q2, 0) = (q2, 0, L) δ(q2, 1) = (q2, 1, L) δ(q2,□) = (q3,□, R)
δ(q3, 0) = (q3, 0, N) δ(q3, 1) = (q3, 1, N) δ(q3,□) = (q3,□, N)

interprets the input as binary number

In state q0 it moves the head to the right end and switches to q1

In q1 it adds 1 to the input, including a carryover

If no more carryover occurs, it switches to q2

in q2 it moves the head to the left end and switches to q3

it accepts in q3

D. Sabel | PLF – 02 Computability | WS 2024/25 17/26 Intuitively Computability Turing Computability Church-Turing Thesis

Example execution

q00011 ⊢ 0q0011 ⊢ 00q011 ⊢ 001q01 ⊢ 0011q0□

⊢ 001q11□ ⊢ 00q110□ ⊢ 0q1000□ ⊢ q20100□

⊢ q2□0100□ ⊢ □q30100□

D. Sabel | PLF – 02 Computability | WS 2024/25 18/26 Intuitively Computability Turing Computability Church-Turing Thesis

Turing Computability

Let bin(n) be the binary representation of number n ∈ ℕ0.

Definition

Function f : ℕk
0 → ℕ0 is Turing computable,

if there exists a DTM M = (Q,Σ,Γ, δ, q0,□, F) such that for all n1, . . . , nk,m ∈ ℕ0:

f(n1, . . . , nk) = m
iff

q0bin(n1)# . . .#bin(nk) ⊢∗ □ . . .□qfbin(m)□ . . .□ with qf ∈ F .

Function f : Σ∗ → Σ∗ is Turing computable,
if there exists a DTM M = (Q,Σ,Γ, δ, q0,□, F) such that for all u, v ∈ Σ∗:

f(u) = v iff q0u ⊢∗ □ . . .□qfv□ . . .□ with qf ∈ F .

If f(n1, . . . , nk) is undefined, we assume that the TM loops.
D. Sabel | PLF – 02 Computability | WS 2024/25 19/26 Intuitively Computability Turing Computability Church-Turing Thesis

Examples

The successor function f(x) = x+ 1 is Turing computable.

We defined the corresponding TM in the last example.

The identity f(x) = x is Turing computable:

DTM M = ({q0}, {0, 1,#}, {0, 1,#□}, δ, q0,□, {q0}) with δ(q0, a) = (q0, a,N)
for all a ∈ {0, 1,#,□}, we have q0bin(n) ⊢∗ q0bin(n) for all n ∈ ℕ0.

The function f(x) = ⊥ which is undefined for every input is Turing computable:

DTM M = ({q0}, {0, 1,#}, {0, 1,#,□}, δ, q0,□, ∅) with δ(q0, a) = (q0, a,N)
loops for every input and never reaches a final state.

D. Sabel | PLF – 02 Computability | WS 2024/25 20/26 Intuitively Computability Turing Computability Church-Turing Thesis

Not Turing Computable Functions

Turing machines and words can be encoded as numbers (called Gödel numbers)

Let f be a function that gets a number n and

is undefined if n is not a valid encoding of a TM M and a word w
is 1, if the TM M holds on input w
is 0, otherwise

Let f ′ be a function that gets a number n and

is undefined if n is not a valid encoding of a TM M and a word w
is 1, if the TM M holds on input w
is undefined, otherwise

Function f is not Turing computable, because the TM that computes f has to
solve the halting problem for Turing machines which is undecidable.

Function f ′ is Turing computable, because f ′ can be computed by a Turing
machine, by simulating M on input w.

D. Sabel | PLF – 02 Computability | WS 2024/25 21/26 Intuitively Computability Turing Computability Church-Turing Thesis D. Sabel | PLF – 02 Computability | WS 2024/25 22/26 Intuitively Computability Turing Computability Church-Turing Thesis

0,0015,50 15,50

CHURCH-TURING-THESIS

Computability

In the 1930s also other notions of computability were invented, e.g.:

Kurt Gödel and Jacques Herband: General recursive functions

Alonzo Church and Stephen Kleene: λ-definable functions

Remarkable result:

All of the formalisms were shown to be equivalent, i.e. they define the same class of
functions.

D. Sabel | PLF – 02 Computability | WS 2024/25 23/26 Intuitively Computability Turing Computability Church-Turing Thesis

Church-Turing Thesis

Church-Turing Thesis

The class of Turing computable functions is identical to the class of intuitively
computable functions.

Thesis cannot be proved, since there is no formal definition of “intuitively
computable”.

D. Sabel | PLF – 02 Computability | WS 2024/25 24/26 Intuitively Computability Turing Computability Church-Turing Thesis

Turing Completeness

Definition (Turing completeness

A formalism (a programming language, an instruction set of a computer, a rewrite
system etc.) is called Turing complete iff it can simulate a Turing machine.

Turing completeness means that every Turing computable function can also be
computed by the formalism.

several formalisms were shown to be Turing complete and thus they can be
replaced by Turing computability in the Church-Turing thesis – since they all
compute the same class of functions.

Among them are all modern programming languages, the lambda-definable
functions, the general recursive functions, WHILE-programs, GOTO-programs, the
RAM-model, etc.

You may convince yourself that your favourite programming language is Turing
complete by programming a simulation of Turing machines.

D. Sabel | PLF – 02 Computability | WS 2024/25 25/26 Intuitively Computability Turing Computability Church-Turing Thesis

Conclusion

We recalled Turing machines and Turing computability

Several other formalisms are Turing-complete

Church-Turing-Thesis: all these formalisms match the class of intuitively
computable functions

For considering foundational models of programming languages, we have several
choices as long as the model is Turing-complete

D. Sabel | PLF – 02 Computability | WS 2024/25 26/26 Intuitively Computability Turing Computability Church-Turing Thesis

D. Sabel | PLF – 02 Computability | WS 2024/25 1/5

0,0015,50 15,50

APPENDIX

– Gödel-numbering of Turing machines

– Undecidability of the halting problem

Gödel-Numbering of Turing Machines

Let M = (Q,Σ,Γ, δ, q0,□, F) be a DTM with Σ = {0, 1} and

Γ = {a0, . . . , ak} where a0 = □, a1 = #, a2 = 0, a3 = 1

Q = {q0, . . . , qn}
F = {qn}

For δ(qr, as) = (qt, au, D) generate a word over {0, 1,#}:

wr,s,t,u,D = ##bin(r)#bin(s)#bin(t)#bin(u)#bin(val(D))

with val(L) = 0, val(R) = 1, and val(N) = 2
For M we generate wM :

Concatenate all words wr,s,t,u,D for r ∈ {0, . . . , n}, s ∈ {0, . . . , k} and t, u,D
given by δ(qr, as) = (qt, au, D)

Apply the following encoding to each symbol {0 7→ 00, 1 7→ 01,# 7→ 11}

D. Sabel | PLF – 02 Computability | WS 2024/25 2/5

Gödel-Numbering of Turing Machines (Cont’d)

Not every word over {0, 1} is an encoding of a Turing machine
(i.e. there exists w such that w ̸= wM for all TMs M)

To fix this: Let M̂ be a fixed (but arbitrary) Turing machine.

For w ∈ {0, 1}∗ let Mw be:

Mw :=

{
M, if w = wM

M̂, otherwise

D. Sabel | PLF – 02 Computability | WS 2024/25 3/5

Undecidability of the Halting-Problem

The halting problem is H := {wM#w | TM M halts on input w}
Assumption: H is decidable, i.e. there exists a TM MH that terminates for any
input wM#w with output
1 (=Yes) if M halts on input w
0 (=No) if M does not halt on input w

Using MH and the Gödel-numbering we can fill an (infinite) table, with entries Yes or
No, depending on whether or not Mi halts on input wMj

wM1 wM2 wM3 . . .

M1 Y es No . . .

M2 No No . . .

M3 Y es No . . .

.

D. Sabel | PLF – 02 Computability | WS 2024/25 4/5

We construct a TM MK :

On input w, it checks whether Mw holds on w by using MH .

If yes, then MK loops

If no, then MK stops successfully.

By construction:

MK halts on wMj iff Mj does not halt on wMj

Since all TMs are in the table: there is a j such that Mj = MK .

Mj halts on input wMj iff Mj does not halt on input wMj

This is a contradiction!
Our assumption was wrong: The halting problem is not decidable.

D. Sabel | PLF – 02 Computability | WS 2024/25 5/5

	Intuitively Computable Functions
	Turing Computability
	Church-Turing Thesis
	Appendix

