a Hochschule RheinMain

Programming Language
Foundations

01 Introduction

Prof. Dr. David Sabel
Wintersemester 2024/25 Last update: November 26, 2024

PrOf. Dr. DaV'd Sabel al Hochschule RheinMain

@ Professor for Theoretical Computer Science
@ since July 2024 at Hochschule RheinMain

o www.davidsabel.de

Consultation hour
@ thursday 16-18h or by appointment
e office building C (north), room C 031 or online

Contact: David.Sabel@hs-rm.de

Lecture and Exercises *Hochschule RheinMain

@ Lecture: Wednesday, 14:15 - 15:45, C 407
@ Exercises: Wednesday, 16:00 - 17:30, C 413

Exa m al Hochschule RheinMain

@ oral exam

o register via COMPASS

@ exam registration: 30.12.2024. — 13.01.2025

@ exam date: individual dates by appointment (February 2025)

Exe rcises a I Hochschule RheinMain

understand the definitions by filling them with examples
calculate examples with pen and paper

“implement” the definitions as a program

Proposal: in the functional programming language Haskell

we also could try to verify the definitions?

What's your opinion / experience ?

Ressources *Hoohschule RheinMain

@ lecture notes
@ slides
@ exercises

@ references to books etc.

will be made available in StudIP — ILIAS

D. Sabel | PLF - 01 Introduction | WS 2024/25 6/13

https://studip.hs-rm.de/dispatch.php/course/details?sem_id=5f8f9d37b5591297cafa127a6679cbe8&again=yes

BOOks (SeleCtlon) *Hoohschule RheinMain

@ Glynn Winskel: The Formal Semantics of Programming Languages: An
Introduction, MIT Press, 1993

John C. Mitchell: Foundations for Programming Languages, MIT Press, 1996
Benjamin C. Pierce: Types and programming languages, MIT Press, 2002
Aaron Stump: Programming Language Foundations, Wiley 2013

Chris Hankin: An Introduction to Lambda Calculi for Computer Scientists, King's
College Publications, 2004

@ Henk Barendregt: The Lambda Calculus. Its Syntax and Semantics, Studies in
logic and the foundations of mathematics 103, North-Holland, 1985

@ Tobias Nipkow and Gerwin Klein: Concrete Semantics With Isabelle/HOL,
Springer, 2014

Web5|tes (SeleCtlon) *Hoohschule RheinMain

@ Programming Language Foundations in Agda:
https://plfa.github.io/

e Software Foundations:
https:/ /softwarefoundations.cis.upenn.edu/

@ Concrete Semantics:
https://www?21.in.tum.de/~nipkow/Concrete-Semantics/

Objectives of the Course *Hoohschule RheinMain

Objectives;
@ know some formal foundations of programming languages
@ know the techniques and methods
@ be able to apply most of the techniques

Formal foundations of programming languages
@ include problems to get the source code into the computer (lexing and parsing)
we mainly do not care about these problems!
@ of course, to represent programs we have to define their syntax:
we use grammars and side-conditions
@ our main question is:
How to define and reason about the meaning of programs?

Which Language Should We Investigate? *Hochschule RheinMain

Characteristics of Programming Languages

@ Programming Paradigm
@ Imperative programming languages:
@ focus on how to execute tasks
@ subclass: object-oriented languages
@ examples: C, C++4, Python, Java

@ Declarative programming languages:
@ focus on what the program computes
@ subclasses:
e logical programming languages (e.g. Prolog)

e functional programming languages (e.g. Haskell, ML).

Which Language Should We Investigate? (Cont'd) *Hoohschule RhelnMain

@ Level of Abstraction
@ Machine languages
o High-level languages

@ Mid-level Languages

@ Scope of Languages
@ General-purpose languages

@ Domain-specific languages

o Computational Power
@ Turing completeness

@ Non Turing complete languages

Which Language Should We Investigate? (Cont'd) *Hoohschule RhelnMain

All modern programming languages
@ rich syntax
o difficult constructs
@ often: no formal semantics, non-unique semantics

@ thus: to complex to investigate in a lecture

—» We look for mor basic models:

Turing Machine: Alan Turing's model of computation

WHILE Language: A very simple imperative language

Lambda Calculus: A very simple functional language
Note that the lambda calculus is often used to describe the semantics of imperative
languages, logics, ...

Contents al Hochschule RheinMain

@ Computability: Intuitive computability, Turing machines, Turing computability,
Church-Turing thesis

@ Lambda Calculus: syntax, a-renaming and S-reduction, Church-Rosser-Theorem,
call-by-name-, call-by-value, and call-by-need semantics, contextual equivalence,
context lemma, encodings of data and recursion

© Functional Core Languages: extended lambda calculi as core language of
functional programming, data constructors, case-expressions, recursive super
combinators, types, seq-operator

@ Polymorphic Type Inference: polymorphic types, type inference for expressions,
type inference for recursive functions, iterative type inference,
Hindley-Damas-Milner type inference

© Semantics: overview of formal semantics, variants of operational semantics for an
imperative core-language, denotational semantics for an imperative core language

