
0,0015,50 15,50

Programming Language
Foundations

01 Introduction

Prof. Dr. David Sabel

Wintersemester 2024/25 Last update: November 26, 2024

Prof. Dr. David Sabel

Professor for Theoretical Computer Science

since July 2024 at Hochschule RheinMain

www.davidsabel.de

Consultation hour

thursday 16-18h or by appointment

office building C (north), room C 031 or online

Contact: David.Sabel@hs-rm.de

D. Sabel | PLF – 01 Introduction | WS 2024/25 2/13

Lecture and Exercises

Lecture: Wednesday, 14:15 - 15:45, C 407

Exercises: Wednesday, 16:00 - 17:30, C 413

D. Sabel | PLF – 01 Introduction | WS 2024/25 3/13

Exam

oral exam

register via COMPASS

exam registration: 30.12.2024. – 13.01.2025

exam date: individual dates by appointment (February 2025)

D. Sabel | PLF – 01 Introduction | WS 2024/25 4/13

Exercises

understand the definitions by filling them with examples

calculate examples with pen and paper

“implement” the definitions as a program

Proposal: in the functional programming language Haskell

we also could try to verify the definitions?

What’s your opinion / experience ?

D. Sabel | PLF – 01 Introduction | WS 2024/25 5/13

Ressources

lecture notes

slides

exercises

references to books etc.

will be made available in StudIP → ILIAS

D. Sabel | PLF – 01 Introduction | WS 2024/25 6/13

Books (Selection)

Glynn Winskel: The Formal Semantics of Programming Languages: An
Introduction, MIT Press, 1993

John C. Mitchell: Foundations for Programming Languages, MIT Press, 1996

Benjamin C. Pierce: Types and programming languages, MIT Press, 2002

Aaron Stump: Programming Language Foundations, Wiley 2013

Chris Hankin: An Introduction to Lambda Calculi for Computer Scientists, King’s
College Publications, 2004

Henk Barendregt: The Lambda Calculus. Its Syntax and Semantics, Studies in
logic and the foundations of mathematics 103, North-Holland, 1985

Tobias Nipkow and Gerwin Klein: Concrete Semantics With Isabelle/HOL,
Springer, 2014

D. Sabel | PLF – 01 Introduction | WS 2024/25 7/13

Websites (Selection)

Programming Language Foundations in Agda:
https://plfa.github.io/

Software Foundations:
https://softwarefoundations.cis.upenn.edu/

Concrete Semantics:
https://www21.in.tum.de/∼nipkow/Concrete-Semantics/

D. Sabel | PLF – 01 Introduction | WS 2024/25 8/13

https://studip.hs-rm.de/dispatch.php/course/details?sem_id=5f8f9d37b5591297cafa127a6679cbe8&again=yes

Objectives of the Course

Objectives;

know some formal foundations of programming languages

know the techniques and methods

be able to apply most of the techniques

Formal foundations of programming languages

include problems to get the source code into the computer (lexing and parsing)
we mainly do not care about these problems!

of course, to represent programs we have to define their syntax:
we use grammars and side-conditions

our main question is:

How to define and reason about the meaning of programs?

D. Sabel | PLF – 01 Introduction | WS 2024/25 9/13

Which Language Should We Investigate?

Characteristics of Programming Languages

Programming Paradigm

Imperative programming languages:

focus on how to execute tasks

subclass: object-oriented languages

examples: C, C++, Python, Java

Declarative programming languages:

focus on what the program computes

subclasses:

logical programming languages (e.g. Prolog)

functional programming languages (e.g. Haskell, ML).

D. Sabel | PLF – 01 Introduction | WS 2024/25 10/13

Which Language Should We Investigate? (Cont’d)

Level of Abstraction

Machine languages

High-level languages

Mid-level Languages

Scope of Languages

General-purpose languages

Domain-specific languages

Computational Power

Turing completeness

Non Turing complete languages

D. Sabel | PLF – 01 Introduction | WS 2024/25 11/13

Which Language Should We Investigate? (Cont’d)

All modern programming languages

rich syntax

difficult constructs

often: no formal semantics, non-unique semantics

thus: to complex to investigate in a lecture

We look for mor basic models:

Turing Machine: Alan Turing’s model of computation

WHILE Language: A very simple imperative language

Lambda Calculus: A very simple functional language

Note that the lambda calculus is often used to describe the semantics of imperative
languages, logics, . . .

D. Sabel | PLF – 01 Introduction | WS 2024/25 12/13

Contents

1 Computability: Intuitive computability, Turing machines, Turing computability,
Church-Turing thesis

2 Lambda Calculus: syntax, α-renaming and β-reduction, Church-Rosser-Theorem,
call-by-name-, call-by-value, and call-by-need semantics, contextual equivalence,
context lemma, encodings of data and recursion

3 Functional Core Languages: extended lambda calculi as core language of
functional programming, data constructors, case-expressions, recursive super
combinators, types, seq-operator

4 Polymorphic Type Inference: polymorphic types, type inference for expressions,
type inference for recursive functions, iterative type inference,
Hindley-Damas-Milner type inference

5 Semantics: overview of formal semantics, variants of operational semantics for an
imperative core-language, denotational semantics for an imperative core language

D. Sabel | PLF – 01 Introduction | WS 2024/25 13/13

