

### Diskrete Strukturen

für die Studiengänge

- Angewandte Informatik
- Technische Informatik

05 Beweise und Beweisen

Prof. Dr. David Sabel Wintersemester 2024/25

Stand der Folien: 16. Dezember 2024

#### Inhalt



- Einführendes
- Beweisarten
- Fallunterscheidung
- Schubfachprinzip
- Vollständige Induktion
- Induktive Definitionen



# **EINFÜHRENDES**

- Mathematische Texte
- Warum beweisen?
- Was kennzeichnet Beweise?

#### Aufbau mathematischer Texte



Axiom: Grundaussage, wird als gültig angenommen (und nicht bewiesen)

Definition: führt Begriffe/Notation ein. Keine Aussagen, werden daher nicht bewiesen.

Satz: Aussagen (fast immer Wenn-Dann-Aussagen), müssen bewiesen werden.

Lemma: ein Hilfssatz

Satz: wichtig

Theorem: sehr wichtig

Korollar: Satz der direkt aus anderen Sätzen folgt (daher ohne Beweis)

Beweis: zeigt die Korrektheit eines Satzes.

Bemerkung: Erläuterung, Motivationen, interessante Beispiele

Vermutung: Aussage, die nicht bewiesen ist und deren Wahrheitswert daher ungeklärt ist.

Beispiel: Illustriert Begriffe und Aussagen, tragen meistens sehr zum Verständnis bei.

Es ist sehr sinnvoll alle Kategorien zu nummerieren und zu referenzieren, damit eindeutig klar ist, was warum folgt

#### Warum will man beweisen?



- Sachverhalte ein f
  ür allemal kl
  ären.
- Kritik und Irrtümer ausräumen
- Neues Wissen schaffen
- In der Informatik: Zeige Eigenschaften von neuen Algorithmen: Korrektheit, Laufzeit-, Platzverhalten; tieferer Einblick, wie der Algorithmus funktioniert
- Beweis negativer Aussagen wie "Für dieses Problem gibt es keinen Algorithmus": Vergeude keine Zeit mit der Suche nach dem Unmöglichen.

### Was kennzeichnet Sätze und Beweise?



- Beispiele sind kein Beweis! "Für alle  $n \in \mathbb{N}$ :  $n^2 + n + 41$  ist eine Primzahl" gilt für die ersten 30 Zahlen, aber das ist kein Beweis! (die Aussage gilt auch nicht!, betrachte n=41)
- Sätze müssen allgemeine bewiesen oder durch Gegenbeispiel widerlegt werden.
- Mathematische Sätze sind Wenn-Dann-Aussagen der Form  $F \to G$ : Unter den Aussagen F (der Voraussetzung) folgt Aussage G (die Behauptung). Z.B.

Wenn a,b,c die Seitenlängen eines rechtwinkligen Dreiecks sind, dann gilt  $a^2+b^2=c^2$ .

- Behauptung ergibt sich ausschließlich durch die Gesetze der Logik.
   Diese Ableitung nennt man Beweis
- Beenden eines mathematischen Beweises: Mit der Box □ oder mit "Q.E.D." ("quod erat demonstrandum" / "was zu beweisen war")



### **BEWEISARTEN**

- Direkter Beweis
- Kontraposition
- Beweis durch Widerspruch

#### Direkter Beweis



Aus der Voraussetzung F wird "direkt" die Behauptung G bewiesen.

#### Muster:

```
Sei F erfüllt.
...(Diese Lücke ist zu füllen)
Also gilt G.
```

#### Beispiel:

**Satz.** Wenn eine natürliche Zahl n durch 10 teilbar ist, dann ist n gerade.

#### Beweis.

Sei n durch 10 teilbar.

Dann gibt es  $k \in \mathbb{N}$  mit  $n=10 \cdot k$ . D.h.  $n=2 \cdot (5 \cdot k)$ . Daher ist 2 ein Teiler von n. Also ist n gerade.

### Kontraposition



Beweis durch Kontraposition verwendet die Äquivalenz

$$(F \to G) \equiv (\neg G \to \neg F)$$

Anstelle von F auf G zu schließen, schließt man von  $\neg G$  auf  $\neg F$ .

#### Muster

Sei 
$$\neg G$$
 erfüllt. ... (Diese Lücke ist zu füllen) Also gilt  $\neg F$ .

## Beweis durch Kontraposition: Beispiel



**Satz.** Wenn  $n^2$  eine ungerade Zahl ist, dann ist n eine ungerade Zahl.

Beweis.

Wir verwenden Kontraposition und zeigen die äquivalente Aussage:

Wenn n keine ungerade Zahl ist, dann ist  $n^2$  keine ungerade Zahl.

Sei n keine ungerade natürliche Zahl.

Dann ist n gerade und 2 ein Teiler von n, d.h. n=2k für ein  $k \in \mathbb{N}$ .

Dann ist  $n^2 = 4k^2 = 2 \cdot (2k^2)$ . Damit ist  $n^2$  eine gerade und daher keine ungerade Zahl.

### Beweis durch Widerspruch



Idee: Man nimmt an, dass die Aussage falsch ist, und führt diese zu einem Widerspruch.

Dann darf man schließen, dass die Aussage wahr ist.

Logisch: Statt  $F \to G$  als wahr (eine Tautologie) zu zeigen, zeigt man  $\neg(F \to G)$  ist falsch (ein Widerspruch).

Logisch umgeformt ergibt dies  $\neg(F \to G) \equiv \neg(\neg F \lor G) \equiv F \land \neg G$ .

D.h.: Man nimmt an, F gilt, aber G gilt nicht und zeigt, dass dies ein Widerspruch ist.

Muster für einen Beweis durch Widerspruch ist:

Sei F erfüllt. Angenommen G wäre falsch.

... (Diese Lücke ist zu füllen)

Also ergibt sich ein Widerspruch. Daher war die Annahme falsch und G gilt.  $\Box$ 



### **Satz.** Die reelle Zahl $\sqrt{2}$ ist keine rationale Zahl.

Beweis. Wir verwenden einen Beweis durch Widerspruch.

Wir nehmen an,  $\sqrt{2}$  ist eine rationale Zahl.

Dann gibt es teilerfremde Zahlen  $p \in \mathbb{N}_0, q \in \mathbb{N}$  mit  $\frac{p}{q} = \sqrt{2}$  (der Bruch ist gekürzt).

Dann ist  $\left(\frac{p}{q}\right)^2 = \frac{p^2}{q^2} = 2$ , d.h.  $p^2 = 2q^2$ .

Daher ist  $p^2$  und auch p durch 2 teilbar, d.h. es gibt eine Zahl  $m \in \mathbb{N}_0$  mit p = 2m.

Dann gilt  $4m^2 = 2a^2$ , d.h.  $a^2 = 2m^2$ .

Daher ist  $q^2$  und auch q durch 2 teilbar, d.h. es gibt Zahl  $n \in \mathbb{N}$  mit q = 2n.

Dann ist aber  $\frac{p}{a} = \frac{2m}{2n}$  noch kürzbar. Ein Widerspruch!

Daher war unsere Annahme falsch und  $\sqrt{2}$  ist keine rationale Zahl.

# Äquivalenzen



Äquivalenzen sind Sätze der Form  $F \leftrightarrow G$ .

Da dies logisch äquivalent zu  $(F \to G) \land (G \to F)$  ist, können wir den Beweis einer solchen Äquivalenz in zwei Teilen führen nach dem Muster:

#### Beweis.

Wir zeigen beide Richtungen.

- $F \rightarrow G$ : ...
- $\bullet$   $G \rightarrow F$ : ...



### **FALLUNTERSCHEIDUNG**

- Fallunterscheidung, logisch
- Beispiele
- Wiederholte Fallunterscheidung

## Fallunterscheidung



Da

$$(F \to G) \land (\neg F \to G) \equiv G$$

kann man G beweisen, indem man die Fälle "F gilt" und "F gilt nicht" jeweils einmal annimmt und zeigt, dass in beiden Fällen auch G gelten muss.

Man unterscheidet also die Fälle

- F gilt
- F gilt nicht

Das ganze kann man natürlich wiederholt machen Wichtig: Keinen Fall vergessen.



#### Satz

Für jede ganze Zahl z gilt  $z^2 \ge 0$ .

#### Beweis.

Wir unterscheiden zwei Fälle: z < 0 und z > 0.

- **①** z < 0: Dann ist  $z^2 = z \cdot z$  das Produkt zweier negativer Zahlen, was positiv ist. Also gilt die Aussage.
- 2  $z \ge 0$ . Wir unterscheiden nochmal: z = 0 oder z > 0.
  - $z = 0: 0^2 = 0 \cdot 0 = 0 > 0$
  - 2 z>0: Dann ist  $z^2=z\cdot z$  das Produkt zweier positiver Zahlen, welches positivist.



#### Satz

Für jede natürliche Zahl n > 1 ist  $n(n^2 - 1)$  ein Vielfaches von 3.

#### Beweis.

Wir unterscheiden drei Fälle:  $n \mod 3 = 0$ ,  $n \mod 3 = 1$ ,  $n \mod 3 = 2$ 

- $\bullet$   $n \mod 3 = 0$ , dann gibt es  $k \in \mathbb{N}$  mit  $n = 3 \cdot k$  und  $3 \cdot k \cdot (9k^2 1)$ .
- ②  $n \bmod 3 = 1$ , dann gibt es  $k \in \mathbb{N}$  mit  $n = 3 \cdot k + 1$  und  $(3k+1) \cdot ((3k+1)^2 1) = (3k+1) \cdot (9k^2 + 6k + 1 1) = (3k+1) \cdot (9k^2 + 6k) = (3k+1) \cdot (3k^2 + 2k) \cdot 3$ .
- ③  $n \mod 3 = 2$ , dann gibt es  $k \in \mathbb{N}$  mit  $n = 3 \cdot k + 2$  und  $(3k+2) \cdot ((3k+2)^2 1) = (3k+2) \cdot (9k^2 + 12k + 4 1) = (3k+1) \cdot (9k^2 + 12k + 3) = (3k+1) \cdot (3k^2 + 4k + 1) \cdot 3.$

Aus logischer Sicht wird zweimal unterscheiden:

 $n \bmod 3 = 0$  und  $n \bmod 3 \neq 0$  und hier nochmal in  $n \bmod 3 = 1$  und  $n \bmod 3 \neq 1$ 



### **SCHUBFACHPRINZIP**

- Schubfachprinzip
- Beispiele
- Verallgemeinertes Schubfachprinzip

## Schubfachprinzip



### Satz (Schubfachprinzip, auch Taubenschlagprinzip)

Seien m Objekte in n Kategorien eingeteilt.

Wenn m > n, gibt es mindestens eine Kategorie, die mindestens zwei Objekte enthält.

Beweis (durch Widerspruch).

- Seien m > n Objekte in n Kategorien verteilt und jede Kategorie enthält < 1 Objekte.
- Summe aller Objekte  $\leq$  Anzahl an Kategorien = n.
- Dies ist ein Widerspruch, dass m > n Objekte gegeben waren.

"Taubenschlagprinzip" kommt von Dirichlets Veranschaulichung des Prinzips:

Wenn man viele Tauben auf wenige Taubenschläge verteilt, dann sitzen in einem Taubenschlag mindestens zwei Tauben.



Einfache Beispiele, die aus dem Schubfachprinzip folgen, sind:

- Unter 13 Personen gibt, es mindestens zwei, die im selben Monat Geburtstag haben, unter 367 gibt es mindestens zwei die am selben Tag und Monat Geburtstag haben.
- Unter 4 Studierenden aus den Studiengängen AI,TI,WI gibt es mindestens zwei aus demselben Studiengang.



Einfache Beispiele, die aus dem Schubfachprinzip folgen, sind:

- Unter 13 Personen gibt, es mindestens zwei, die im selben Monat Geburtstag haben, unter 367 gibt es mindestens zwei die am selben Tag und Monat Geburtstag haben.
- Unter 4 Studierenden aus den Studiengängen Al, TI, WI gibt es mindestens zwei aus demselben Studiengang.

#### Aufgabe:

Wie viele Personen sind mindestens notwendig. damit zwei am gleichen Wochentag Geburtstag haben?



Einfache Beispiele, die aus dem Schubfachprinzip folgen, sind:

- Unter 13 Personen gibt, es mindestens zwei, die im selben Monat Geburtstag haben, unter 367 gibt es mindestens zwei die am selben Tag und Monat Geburtstag haben.
- Unter 4 Studierenden aus den Studiengängen AI, TI, WI gibt es mindestens zwei aus demselben Studiengang.

#### Aufgabe:

Wie viele Personen sind mindestens notwendig, damit zwei am gleichen Wochentag Geburtstag haben?





In der Sockenkiste von Emil befinden sich 8 graue und 8 braune Socken. Wie viele muss er herausnehmen, um

• garantiert zwei gleichfarbige Socken zu erhalten?

• garantiert zwei graue Socken zu erhalten?



In der Sockenkiste von Emil befinden sich 8 graue und 8 braune Socken. Wie viele muss er herausnehmen, um

• garantiert zwei gleichfarbige Socken zu erhalten?

Schubfachprinzip mit 2 Kategorien — 3 Socken reichen.

• garantiert zwei graue Socken zu erhalten?



In der Sockenkiste von Emil befinden sich 8 graue und 8 braune Socken. Wie viele muss er herausnehmen, um

• garantiert zwei gleichfarbige Socken zu erhalten?

Schubfachprinzip mit 2 Kategorien → 3 Socken reichen.

garantiert zwei graue Socken zu erhalten?

Schlimmster Fall: erst 8 braune Socken, dann 2 graue Socken → 10 Socken.



#### Satz

Unter je sechs natürlichen Zahlen gibt es stets zwei, deren Differenz durch 5 teilbar ist.

#### Beweis.

- Wir verwenden das Schubfachprinzip. Objekte sind die 6 natürlichen Zahlen  $k_1, \ldots, k_6$ , die Kategorien sind:
  - durch 5 teilbar ohne Rest,
  - durch 5 teilbar mit Rest 1
  - durch 5 teilbar mit Rest 2
  - durch 5 teilbar mit Rest 3
  - durch 5 teilbar mit Rest 4
- Schubfachprinzip --> in mindestens einer Kategorie sind mindestens zwei Zahlen
- d.h. es gibt  $k_i$  und  $k_j$  (mit  $1 \le i < j \le 6$ ) mit  $k_i = 5 \cdot x + m$  und  $k_j = 5 \cdot y + m$ .
- Differenz  $k_i k_j = 5 \cdot (x y)$  ist durch 5 teilbar

## Aufgabe



Zeige mit dem Schubfachprinzip:

Unter 4 natürlichen Zahlen gibt es stets zwei, deren Differenz durch 3 teilbar ist.

## Aufgabe



#### Zeige mit dem Schubfachprinzip:

Unter 4 natürlichen Zahlen gibt es stets zwei, deren Differenz durch 3 teilbar ist.

#### Beweis.

- Objekte sind die 4 natürlichen Zahlen  $k_1, \ldots, k_4$ , die Kategorien sind:
  - durch 3 teilbar ohne Rest.
  - durch 3 teilbar mit Rest 1
  - durch 3 teilbar mit Rest 2
- Schubfachprinzip -- in mindestens einer Kategorie sind mindestens zwei Zahlen
- D.h. es gibt  $k_i$  und  $k_i$  (mit  $1 \le i \le j \le 4$ ) mit  $k_i = 3 \cdot x + m$  und  $k_i = 3 \cdot y + m$ .
- Differenz  $k_i k_j = 3 \cdot (x y)$  ist durch 3 teilbar

# Verallgemeinertes Schubfachprinzip



### Satz (Verallgemeinertes Schubfachprinzip)

Seien m Objekte in n Kategorien eingeteilt. Wenn  $m>r\cdot n$ , dann gibt es mindestens eine Kategorie, die mindestens r+1 Objekte enthält.

Beweis durch Widerspruch.

Hätte jede Kategorie höchstens r Objekte, so gäbe es höchstens  $r\cdot n$  Objekte, was ein Widerspruch zu  $m>r\cdot n$  ist.

Beispiel: Unter 25 Personen haben mindestens 3 im selben Monat Geburtstag. (Schubfachprinzip mit  $m=25,\ n=12,\ r=2$  und r+1=3)

# Aufgabe



Wie viele Tauben muss man auf 5 Taubenschläge mindestens verteilen, damit es sicher mindestens einen Taubenschlag mit mindestens 4 Tauben gibt?

# Aufgabe



Wie viele Tauben muss man auf 5 Taubenschläge mindestens verteilen, damit es sicher mindestens einen Taubenschlag mit mindestens 4 Tauben gibt?

 $r+1=4,\ n=5$  und es muss mehr als  $r\cdot n=15$  Tauben geben, also 16



# VOLLSTÄNDIGE INDUKTION

- Notation: Summenzeichen und Produktzeichen
- Beweisprinzip der vollständigen Induktion
- Vollständige Induktion mit anderem Startwert
- Starke vollständige Induktion
- Fibonacci-Zahlen die Binet-Formel
- Der goldene Schnitt

### Notation: Summenzeichen



- Sei  $k \leq n$ ,  $h: \mathbb{N} \to \mathbb{R}$  eine reellwertige Funktion mit Definitionsbereich  $\mathbb{N}$ .
- ullet Dann bezeichnet  $\sum_{i=1}^{n} h(i)$  die Summe

$$h(k) + h(k+1) + \dots + h(n)$$

ullet Für k>n setzen wir per Definition (leere Summe)  $\sum h(i):=0.$ 

#### Beispiele:

• 
$$\sum_{i=1}^{5} i^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 1 + 4 + 9 + 16 + 25 = 55$$

$$\sum_{i=2}^{4} 2^{i} = 2^{3} + 2^{4} = 8 + 16 = 24$$

### Notation: Produktzeichen



- Sei  $k \leq n, h : \mathbb{N} \to \mathbb{R}$  eine reellwertige Funktion mit Definitionsbereich  $\mathbb{N}$ .
- Dann bezeichnet  $\prod_{i=k}^{n} h(i)$  das Produkt

$$h(k) \cdot h(k+1) \cdots h(n)$$

ullet Das leere Produkt  $\prod_{i=k}^n := 1$  (falls k>n)

Beispiel: 
$$\prod_{i=1}^{n} i = n!$$

## Aussagen über alle natürliche Zahlen



Wie zeigt man Aussagen der Form "Für alle natürlichen Zahlen n gilt A(n)"?

Dabei ist A(n) eine Aussage, die von n abhängt.

Beispiele aus der Mathematik und Informatik sind:

- Für alle Folgen von n Elementen berechnet der Algorithmus die sortierte Folge.
- ullet Der Sortieralgorithmus benötigt bei n Eingaben nicht mehr als  $n\log_2 n$  Vergleiche.
- Die Anzahl der möglichen Sitzordnungen für die Klausur für n Studierende auf n Stühlen ist n!.

• . . .

## Beweisprinzip der vollständigen Induktion



#### Definition (Beweisprinzip der vollständigen Induktion)

Um zu zeigen, dass eine Aussage A(n) für jede natürliche Zahl  $n \in \mathbb{N}$  gilt, genügt es, die folgenden beiden Aussagen zu zeigen:

- Induktionsanfang/Induktionsbasis: A(1) gilt.
- **1** Induktionsschritt: Für jede beliebige Zahl  $n \in \mathbb{N}$  gilt:

Nehme an, dass A(n) gilt (Induktionsannahme / Induktionshypothese).

Zeige, dass dann auch A(n+1) gilt.

# Korrektheit des Beweisprinzips



Die Aussage A(m) muss für beliebiges  $m \in \mathbb{N}$  gelten, denn:

- ullet Fange bei A(1) an: Die Induktionsbasis zeigt, dass die Aussage gilt.
- Jetzt wende m-1 mal den Induktionsschritt an:

```
Da A(1) gilt, gilt auch A(2).
```

Da 
$$A(2)$$
 gilt, gilt auch  $A(3)$ .

. . .

Da 
$$A(m-1)$$
 gilt, gilt auch  $A(m)$ .

# Beispiele



## Satz (Gaußsche Summenformel)

Für alle 
$$n \in \mathbb{N}$$
 gilt:  $\sum_{i=1}^{n} i = \frac{(n+1)n}{2}$ 

Beweis. Mit vollständiger Induktion über n, d.h. A(n) ist  $\sum_{i=1}^{n} i = \frac{(n+1)n}{2}$ .

# Beispiele



## Satz (Gaußsche Summenformel)

Für alle 
$$n \in \mathbb{N}$$
 gilt:  $\sum_{i=1}^{n} i = \frac{(n+1)n}{2}$ 

Beweis. Mit vollständiger Induktion über n, d.h. A(n) ist  $\sum_{i=1}^{n} i = \frac{(n+1)n}{2}$ .

• Induktionsbasis: Aussage A(1) gilt, denn:  $\sum_{i=1}^{1} i = 1$ .

# Beispiele



## Satz (Gaußsche Summenformel)

Für alle 
$$n \in \mathbb{N}$$
 gilt:  $\sum_{i=1}^{n} i = \frac{(n+1)n}{2}$ 

Beweis. Mit vollständiger Induktion über n, d.h. A(n) ist  $\sum_{i=1}^{n} i = \frac{(n+1)n}{2}$ .

- Induktionsbasis: Aussage A(1) gilt, denn:  $\sum_{i=1}^{1} i = 1$ .
- Induktionsschritt: Sei  $n \in \mathbb{N}$ . Induktionsannahme: A(n), d.h.  $\sum_{i=1}^{n} i = \frac{(n+1)n}{2}$  gilt. Wir müssen A(n+1) zeigen.

$$\sum_{i=1}^{n+1} i = n+1 + \sum_{i=1}^{n} i \stackrel{I.A.}{=} n+1 + \frac{(n+1)n}{2} = \frac{2(n+1) + (n+1)n}{2} = \frac{(n+2)(n+1)}{2}. \quad \Box$$

# Beispiel



### Satz

Die Summe der ersten n ungeraden Zahlen ist gleich zu  $n^2$  (als Summenformel geschrieben  $\sum\limits_{i=1}^n 2i-1=n^2$ ).

Beweis. Mit vollständiger Induktion über n:

- Induktionsbasis n = 1: Da  $1 = 1^2$  stimmt die Aussage.
- Induktionsschritt: Sei  $n \ge 1$  beliebig und  $\sum\limits_{i=1}^n 2i-1=n^2$  (Induktionsannahme).

$$\sum_{i=1}^{n+1} 2i - 1 = \left(\sum_{i=1}^{n} 2i - 1\right) + 2(n+1) - 1 = \left(\sum_{i=1}^{n} 2i - 1\right) + 2n + 1$$

$$\stackrel{I.A.}{=} n^2 + 2n + 1 = (n+1)^2 \quad \Box$$

# Aufgabe



Beweise mit vollständiger Induktion nach n:

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

# Vollständige Induktion mit anderem Startwert



Beispiel:  $n! > 2^n$  gilt nicht für  $n \in \{1, 2, 3\}$ , aber für alle  $n \ge 4$ .

## Definition (Beweisprinzip der Vollständigen Induktion mit anderem Startwert)

Sei  $n_0 \in \mathbb{N}_0$ . Um zu zeigen, dass eine Aussage A(n) für jede Zahl  $n > n_0 \in \mathbb{N}_0$  gilt, genügt es, die folgenden beiden Aussagen zu zeigen:

- (Induktionsanfang/Induktionsbasis):  $A(n_0)$  gilt.
- (Induktionsschritt): Für jede beliebige Zahl  $n \geq n_0 \in \mathbb{N}_0$  gilt: Nehme an, dass A(n) gilt (Induktionsannahme / Induktionshypothese). Zeige, dass dann auch A(n+1) gilt.

# **Beispiel**



### Satz

Für jede natürliche Zahl  $n \ge 4$  gilt  $n! > 2^n$ .

### Beweis.

- Induktionsbasis: Für n = 4 gilt  $n! = 4 \cdot 3 \cdot 2 \cdot 1 = 24 > 16 = 2^4$ .
- Induktionsschritt. Sei  $n \ge 4$ . Wir nehmen  $n! > 2^n$  an (Induktionsannahme). Es gilt:

$$(n+1)! = (n+1)n! \stackrel{I.A.}{>} (n+1)2^n \stackrel{*}{>} 2 \cdot 2^n = 2^{n+1}$$

(\*) Für  $n \ge 4$  gilt n + 1 > 2

# **Beispiel**



### Satz

Jede n-elementige Menge hat  $2^n$  Teilmengen, d.h. für endliche Mengen  $M\colon |\mathcal{P}(M)|=2^{|M|}$ 

### Beweis.

- Induktionsbasis n=0:  $|\mathcal{P}(\emptyset)|=|\{\emptyset\}|=1=2^0$
- ullet Induktionsschritt: Sei  $n \geq 0$  beliebig.

Induktionssannahme: Jede n-elementige Menge hat  $2^n$  Teilmengen.

Sei M eine n+1-elementige Menge. Sei m ein Element aus M.

Dann ist  $M \setminus \{m\}$  eine n-elementige Menge.

Die Induktionsannahme, zeigt, dass  $M\setminus\{m\}$   $2^n$  Teilmengen hat.

Zu jeder dieser Teilmengen können wir m hinzufügen oder nicht.

D.h. M hat doppelt so viele Teilmengen wie  $M \setminus \{m\}$ , was  $2 \cdot 2^n = 2^{n+1}$  ergibt.

# Starke vollständige Induktion



Manchmal will man im Induktionsschritt  $A(n) \to A(n+1)$  nicht nur auf die Gültigkeit von A(n) zurückzugreifen, sondern z.B. auch auf A(n-1).

## Definition (Beweisprinzip der starken vollständigen Induktion)

Sei  $n_0 \in \mathbb{N}$ . Um zu zeigen, dass eine Aussage A(n) für jede natürliche Zahl  $n > n_0 \in \mathbb{N}$  gilt, genügt es, die folgende Aussage zu zeigen:

Induktionsschritt: Für jede beliebige Zahl  $n \geq n_0 \in \mathbb{N}$  gilt:

Nehme an, dass für alle i mit  $n_0 \le i \le n-1$  die Aussage A(i) gilt (Induktionsannahme / Induktionshypothese).

Zeige, dass dann auch A(n) gilt.

Basisfall ist im Induktionsschritt versteckt! Denn die Gültigkeit von  $A(n_0)$  muss ohne Induktionsannahme gezeigt werden.

## Mehr Basisfälle



Zurückgreifen auf vorherige Annahmen im Induktionsschritt erfordert i.a. mehr Basisfälle.

Genauer: Wenn der Induktionsschritt zum Folgern der Gültigkeit von A(n) die Gültigkeit von A(n-k) benötigt, dann kann man dieses Argument nicht für  $A(n_0), A(n_0+1), \ldots A(n_0+k-1)$  verwenden,

Daher muss man all diese Fälle als Basis zeigen.

# Beispiel: Falscher Beweis



Aussage: Alle natürlichen Zahlen ab 3 sind ungerade.

Falscher Induktionsbeweis:

Induktionsbasis: Für n=3 gilt die Aussage.

Induktionsschritt: Sei  $n \ge 3$  beliebig.

Induktionsannahme: Die Zahlen  $1 \le i \le n-1$  sind ungerade.

Da damit insbesondere n-2 ungerade ist, ist auch n-2+2 ungerade.

Damit folgt n ist ungerade.

Der Fehler ist z.B. bei n=4: Der Induktionsschritt greift auf n-2=2 zurück, aber die Induktionsannahme gibt A(2) nicht her!

Wir hätten A(4) auch direkt als Basis zeigen müssen (was nicht geht!)

## Fibonacci-Zahlen



Leonardo Fibonacci beschrieb das Wachstum einer Kaninchenpopulation:

- Zu Beginn gibt es ein Kaninchenpaar.
- Jedes Kaninchenpaar braucht 2 Monate nach der Geburt, bis es geschlechtsreif ist.
- Von da an gebiert es in jedem Monat ein neues Paar.
- Alle Kaninchen leben ewig.

Wie viele Kaninchenpaare gibt es zu Beginn des n. Monats?

| Monat | Paare                                                                   |
|-------|-------------------------------------------------------------------------|
| 1     | 1                                                                       |
| 2     | 1                                                                       |
| 3     | 2 (1  altes Paar + 1  neues Paar (Nachkommen aller Paare aus Monat 1))  |
| 4     | 3 (2 alte Paare $+$ 1 neues Paar (Nachkommen aller Paare aus Monat 2)   |
| 5     | 5 (3  alte Paare + 2  neue Paare (Nachkommen aller Paare aus Monat 3))  |
| 6     | 8 (5 alte Paare $+$ 3 neue Paare (Nachkommen aller Paare aus Monat 4))  |
| 7     | 13 (8 alte Paare $+$ 5 neue Paare (Nachkommen aller Paare aus Monat 5)) |

# Fibonacci-Zahlen (2)



Allgemeine Formel: Anzahl Monat n = Anzahl n - 1. Monat + Anzahl Monat n - 2.

Die Folge  $1, 1, 2, 3, 5, 8, 13, 21, \ldots$  nennt man die Fibonacci-Zahlen.

Die n. Fibonacci-Zahl kann durch  $\mathrm{fib}: \mathbb{N} \to \mathbb{N}$  rekursiv definiert werden:

$$\operatorname{fib}(n) := \begin{cases} 1 & \text{für } n \in \{1, 2\} \\ \operatorname{fib}(n-1) + \operatorname{fib}(n-2) & \text{für } n > 2 \end{cases}$$

## Binet-Formel



## Satz (Binet-Formel)

$$\text{F\"{u}r alle } n \in \mathbb{N} \text{ gilt } \mathrm{fib}(n) = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n}{\sqrt{5}}.$$

Beweis. Wir verwenden starke vollständige Induktion.

• Induktionsvoraussetzung für n=1 und n=2:

$$fib(1) = 1 = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{1} - \left(\frac{1-\sqrt{5}}{2}\right)^{1}}{\sqrt{5}} = \frac{\frac{1}{2} + \frac{\sqrt{5}}{2} - \frac{1}{2} - \frac{\sqrt{5}}{2}}{\sqrt{5}} = \frac{\sqrt{5}}{\sqrt{5}} = 1$$
$$fib(2) = 1 = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{2} - \left(\frac{1-\sqrt{5}}{2}\right)^{2}}{\sqrt{5}} = \frac{\left(\frac{1+2\sqrt{5}+5}{4}\right) - \left(\frac{1-2\sqrt{5}+5}{4}\right)}{\sqrt{5}} = \frac{\sqrt{5}}{\sqrt{5}} = 1$$

## Induktionsschritt



Sei  $n \geq 3$  beliebig. Induktionsannahme: Binet-Formel gilt für n-1 und n-2.

$$\begin{aligned} & \text{fib}(n) = & \text{fib}(n-1) + & \text{fib}(n-2) \\ & = & \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n-1} - \left(\frac{1-\sqrt{5}}{2}\right)^{n-1}}{\sqrt{5}} + \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n-2} - \left(\frac{1-\sqrt{5}}{2}\right)^{n-2}}{\sqrt{5}} \\ & = & \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n-1} - \left(\frac{1-\sqrt{5}}{2}\right)^{n-1} + \left(\frac{1+\sqrt{5}}{2}\right)^{n-2} - \left(\frac{1-\sqrt{5}}{2}\right)^{n-2}}{\sqrt{5}} \\ & = & \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n-1} + \left(\frac{1+\sqrt{5}}{2}\right)^{n-2} - \left(\left(\frac{1-\sqrt{5}}{2}\right)^{n-1} + \left(\frac{1-\sqrt{5}}{2}\right)^{n-2}\right)}{\sqrt{5}} \\ & = & \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n-2} \left(\left(\frac{1+\sqrt{5}}{2}\right) + 1\right) - \left(\left(\frac{1-\sqrt{5}}{2}\right)^{n-2} \left(\left(\frac{1-\sqrt{5}}{2}\right) + 1\right)\right)}{\sqrt{5}} \\ & = & \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n-2} \left(\frac{1+\sqrt{5}}{2}\right)^{2} - \left(\left(\frac{1-\sqrt{5}}{2}\right)^{n-2} \left(\frac{1-\sqrt{5}}{2}\right)^{2}\right)}{\sqrt{5}} = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n} - \left(\frac{1-\sqrt{5}}{2}\right)^{n}}{\sqrt{5}} \end{aligned}$$

# Induktionsschritt (2)



(\*) Die Gleichheiten  $\left(\frac{1+\sqrt{5}}{2}\right)+1=\left(\frac{1+\sqrt{5}}{2}\right)^2$  und  $\left(\frac{1-\sqrt{5}}{2}\right)+1=\left(\frac{1-\sqrt{5}}{2}\right)^2$  kann man nachrechnen:

$$\left(\frac{1+\sqrt{5}}{2}\right)^2 = \left(\frac{(1+\sqrt{5})^2}{4}\right) = \left(\frac{1+2\sqrt{5}+5}{4}\right) = \left(\frac{6+2\sqrt{5}}{4}\right) = \left(\frac{3+\sqrt{5}}{2}\right) = \left(\frac{1+\sqrt{5}}{2}\right) + 1$$

$$\left(\frac{1-\sqrt{5}}{2}\right)^2 = \left(\frac{(1-\sqrt{5})^2}{4}\right) = \left(\frac{1-2\sqrt{5}+5}{4}\right) = \left(\frac{6-2\sqrt{5}}{4}\right) = \left(\frac{3-\sqrt{5}}{2}\right) = \left(\frac{1-\sqrt{5}}{2}\right) + 1$$

## Der Goldene Schnitt



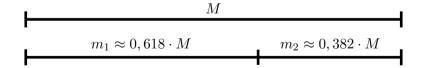
Die Zahl

$$\phi = \frac{1 + \sqrt{5}}{2} \approx 1,61$$

wird auch als der goldene Schnitt bezeichnet.

Mit wachsendem n nähert sich fib(n+1)/fib(n) an  $\phi$  an

Schöne Eigenschaft von  $\phi$ : Teilt man eine Strecke M in Teilstücke  $m_1$  und  $m_2$ , mit  $m_1 > m_2$ , sodass  $m_1/m_2 = M/m_1$ , dann ist dieses Verhältnis =  $\phi$ :



Dieses Verhältnis wird als besonders ästhetisch wahrgenommen und in der Kunst oder im Design zur Gestaltung oft verwendet.



# INDUKTIVE DEFINITIONEN

- Induktiv definieren
- Strukturelle Induktion

### Induktiv definieren



Wie beim Induktionsbeweis, kann man auch Strukturen induktiv definieren, indem man

- Basisfall (kleinste Strukturen) und
- Induktionsschritt zum rzeugen von größeren Strukturen aus kleineren angibt.

Beispiel: Natürliche Zahlen, induktiv definiert:

Basis: 1 ist eine natürliche Zahl.

Schritt: Wenn n eine natürliche Zahl ist, dann ist auch der Nachfolger n+1 eine natürliche Zahl.

## Arithmetische Ausdrücke



Induktive Definition für arithmetische Ausdrücke:

- Basis: Ganze Zahlen sind arithmetische Ausdrücke.
- Schritt: Wenn a, b arithmetische Ausdrücke sind, dann sind auch (a+b),  $(a \cdot b)$ , (a-b) und (a/b) arithmetische Ausdrücke.

### Bemerkung:

Die aussagenlogischen Formeln und die prädikatenlogischen Formeln waren ebenfalls induktiv definiert.

## Strukturelle Induktion



Eigenschaften einer indukive definierten Struktur kann man mit struktureller Induktion führen.

- Man zeigt, dass die Eigenschaft für die Basis gilt.
- Im Induktionsschritt nimmt man an, dass die Eigenschaft für die Teilstrukturen gilt und zeigt, dass sie dann auch für jede zusammengesetzte Struktur gilt.

# Beispiel



### Satz

Für jeden arithmetische Ausdruck a gilt: Wenn n-Operatoren in a vorkommen, dann enthält a mindestens n+1 Zahlen.

Beweis. Induktion über die Struktur von a.

- Induktionsbasis: a ist eine Zahl. Dann enthält a keine Operatoren und 1=0+1 Zahlen. Die Aussage stimmt also.
- Induktionsschritt: Seien a,b arithmetische Ausdrücke mit  $n_a$  und  $n_b$  Operatoren. Induktionsannahme: a enthält  $n_a+1$  Zahlen und b enthält  $n_b+1$  Zahlen. In  $(a\ op\ b)$  mit  $op\in\{+,-,\cdot,/\}$  gilt dann: Der Ausdruck enthält  $n_a+n_b+1$  Operatoren und  $n_a+1+n_b+1=(n_a+n_b+1)+1$  Zahlen.