

Inhalt

- Mengen beschreiben
- Operationen auf Mengen
- Mengen und Logik
- Martesisches Produkt
- Mächtigkeiten und Zählformeln

D. Sabel | DS - 03 Mengen | WS 2024/25

2/57

Mengen Operationen Logik Kartesisches Produkt Mächtigke

Hochschule **RheinMain**

MENGEN BESCHREIBEN

- Was sind Mengen?
- Grundlegende Notationen
- Mengen beschreiben durch Aufzählen
- $\hbox{-} \quad {\sf Mengen \ beschreiben \ durch \ Eigenschaften}$

Was sind Mengen?

Georg Cantors Definition

"Unter einer 'Menge' verstehen wir jede Zusammenfassung M von bestimmten wohl-unterschiedenen Objekten m unserer Anschauung oder unseres Denkens (welche die 'Elemente' von M genannt werden) zu einem Ganzen."

Baut man darauf auf, so kann dies zu Widersprüchen führen!

Russelsche Antinomie

- Menge $R := \{x \mid x \not\in x\}$
- ullet R ist die Menge aller Mengen, die sich nicht selbst enthalten.
- Aber weder $R \in R$ noch $R \notin R$ kann gelten (Widerspruch!).
 - → Definition von Mengen ist schwierig (axiomatische Mengenlehre)

Wir machen keine Mengendefinition, sondern beschreiben Mengen durch Aufzählen / durch Eigenschaften

Grundlegende Begriffe und Notationen

- Die Objekte einer Menge nennt man Elemente.
- Eine Menge können wir aufschreiben, indem wir die Elemente aufzählen.

Definition (Notation für Mengen)

- Elemente einer Menge werden mit Kommas getrennt und durch geschweifte Klammern { und } umschlossen.
- Wenn Objekt m in Menge M enthalten ist, schreiben wir $m \in M$, sonst $m \notin M$.
- Die leere Menge Ø oder {} ist die Menge, welche keine Elemente enthält.

Beispiele:

- $\{1,2,3\}$ die Menge der Zahlen 1,2 und 3
- {Schwarz, Weiß} ist die Menge der Farben Schwarz und Weiß
- $4 \in \{2, 4, 6, 9\}$ und $5 \notin \{2, 4, 6, 9\}$
- $4 \notin \emptyset$ und Weiß $\notin \{\}$

bel | DS - 03 Mengen | WS 2024/25

Gleichheit und Teilmengen

Definition

- Menge M ist eine **Teilmenge** von N ($M \subseteq N$) wenn $\forall x \in M : x \in N$ gilt.
- Menge M ist eine echte Teilmenge von N, $(M \subset N)$ wenn $M \subset N \land \exists y \in N : y \notin M$.
- Mengen M und N sind gleich (M = N), wenn $M \subseteq N$ und $N \subseteq M$ gilt.
- → Die Reihenfolge der Elemente spielt in einer Menge keine Rolle.
- → Ebenso werden Elemente in einer Menge nicht mehrfach betrachtet.

Beispiele:

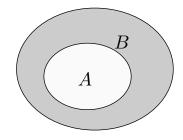
- $\{1,2,3\} \subseteq \{1,2,3\}$
- $\{1,2\} \subseteq \{1,2,3\}$
- $\{1,2\} \subset \{1,2,3\}$
- $\{1,2,3\} = \{3,2,1\} = \{1,1,2,2,2,3,3,3,3\}$

Sabel | DS - 03 Mengen | WS 2024/25

Venn-Diagramme

Graphische Darstellung von Mengen und deren Beziehungen (benannt nach John Venn)

Gilt $A \subset B$ so zeichnet man:



Zahlenmengen

Definition (Zahlenmengen)

Wir definieren Symbole für bekannte Zahlenmengen:

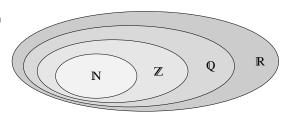
- Menge der natürlichen Zahlen $\mathbb{N} := \{1, 2, 3, \ldots\}$
- Menge der natürlichen Zahlen und 0: $\mathbb{N}_0 = \{0, 1, 2, 3 \dots\}$
- Menge der ganzen Zahlen $\mathbb{Z} := \{\ldots, -2, -1, 0, 1, 2, \ldots\}$
- ullet Menge der rationalen Zahlen $\mathbb{Q}:=$ alle gekürzten Brüche, bzw. endliche oder periodische Dezimalzahlen.
- Menge der reellen Zahlen $\mathbb{R} :=$ alle Dezimalzahlen.

Zahlenmengen (2)

Mengenbeschreibung durch Eigenschaft

Es gilt: $\mathbb{N} \subset \mathbb{Z}$, $\mathbb{Z} \subset \mathbb{Q}$, $\mathbb{Q} \subset \mathbb{R}$, denn

- $?-1 \in \mathbb{Z}$ aber $?-1 \notin \mathbb{N}$
- $\frac{2}{3} \in \mathbb{Q}$ aber $\frac{2}{3} \notin \mathbb{Z}$
- $?\sqrt{2} \in \mathbb{R}$ aber $?\sqrt{2} \notin \mathbb{Q}$



D. Sabel | DS - 03 Mengen | WS 2024/25

9/57

Mengen Operationen Logik Kartesisches Produkt Machtigkeit

Definition (Mengenbeschreibung durch Eigenschaft)

Sei M eine bereits definierte Menge und P(x) eine Aussageform (mit x aus M). Dann beschreibt

$$\{x \in M \mid P(x)\}$$

die Teilmenge von M, die alle Elemente x enthält, die P(x) erfüllen.

Dabei steht "|" für "mit der Eigenschaft"

Beispiele:

- Menge aller ungeraden natürlichen Zahlen: $\{x \in \mathbb{N} \mid \mathsf{ungerade}(x)\}$ (wenn ungerade(x) entsprechende Aussageform ist)
- Natürliche Zahlen als Teilmenge der ganzen Zahlen: $\{x \in \mathbb{Z} \mid x > 0\}$
- Primzahlen: $\{x \in \mathbb{N} \mid x > 1 \text{ und } x \text{ ist nur durch } 1 \text{ und sich selbst teilbar}\}$

D. Sabel | DS - 03 Mengen | WS 2024/25

10/57

Mengen Operationen Logik Kartesisches Produkt Mächtigke

Weitere Schreibweisen

Erweiterung der Mengenbeschreibung durch Eigenschaft:

$$\{h(x) \mid x \in X, P(x)\}$$

wobei

- h ist eine Funktion, die auf x angewendet wird
- ullet P(x) ist eine Aussageform (mit x aus X)
- zu beachten ist, dass $x \in X$ hinter | steht.

Beispiele:

 \bullet Menge aller Quadratzahlen größer als 999 :

$$\{x^2 \mid x \in \mathbb{N}, x^2 > 999\}$$

• Die Menge aller Kubikzahlen (mit leerer Aussageform = immer wahr)

$$\{x^3 \mid x \in \mathbb{N}\}$$

Aufgabe

Stelle die folgenden Mengen durch Aufzählen der Elemente dar:

- $\{x \in \mathbb{N} \mid x \text{ teilt die Zahl 42}\} = \{1, 2, 3, 6, 7, 14, 21, 42\}$
- $\bullet \ \{x \in \mathbb{Z} \mid x \text{ ist ungerade und } -4 \leq x < 5\} = \{-3, -1, 1, 3\}$

Schreibweise für Intervalle

Hochschule RheinMain

Definition (Intervalle)

Für $a < b \in \mathbb{R}$ definieren wir Schreibweisen für Intervalle:

Geschlossenes Intervall: $[a,b] := \{x \in \mathbb{R} \mid a \leq x \leq b\}$ Offenes Intervall: $(a,b) := \{x \in \mathbb{R} \mid a < x < b\}$ Linksseitig halboffenes Intervall: $(a,b] := \{x \in \mathbb{R} \mid a < x \leq b\}$ Rechtsseitig halboffenes Intervall: $[a,b] := \{x \in \mathbb{R} \mid a < x \leq b\}$

Manchmal eckige Klammern "falsch herum" statt runder Klammern:

$$[a,b[,]a,b]$$
 und $[a,b[$

D. Sabel | DS - 03 Mengen | WS 2024/25

13/57

Mengen Operationen Logik Kartesisches Produkt Mächtigkei

D. Sabel | DS - 03 Mengen | WS 2024/25

Mengen Operationen Logik Kartesisches Produkt Mächtigke

Hochschule **RheinMain**

OPERATIONEN AUF MENGEN

- Schnitt
- Vereinigung
- Differenz
- Komplement

Operationen auf Mengen

Definition (Schnitt, Vereinigung, Differenz)

- $② \ \mathsf{Vereinigung:} \ M \cup N := \{x \mid x \in M \lor x \in N\}$

Weitere Schreibweisen und Vereinfachungen

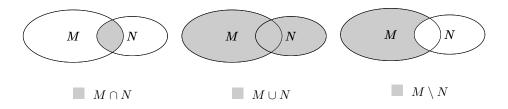
- wenn M klar ist - $\{x \mid P(x)\}$

• $x \in \{x \in M \mid P(x)\}$ kann man auch direkt $x \in M \land P(x)$ schreiben.

• statt $\{x \in M \mid P(x)\}$ schreiben wir auch $\{x \mid x \in M \land P(x)\}$ oder

Wenn M klar ist, kann man auch nur P(x) schreiben.

3 Differenzmenge (M ohne N): $M \setminus N := \{x \mid x \in M \land x \notin N\}$



D. Sabel | DS - 03 Mengen | WS 2024/25

16/57

Mengen Operationen Logik Kartesisches Produkt Mächtigkeit

Beispiele

Hochschule RheinMair

- $\{1,2,3\} \cap \{2,4,6\} = \{2\}$
- $\{1,2,3\} \cup \{2,4,6\} = \{1,2,3,4,6\}$
- $\{1,2,3\} \setminus \{2,4,6\} = \{1,3\}$

Mit M= Alle Informatikstudierenden, N= Alle Erstsemester

- ullet $M \cap N = \mathsf{Alle}$ Informatikstudierenden im ersten Semester
- $M \cup N =$ Alle Studierende, die im ersten Semester sind oder Informatik studieren (oder beides)
- ullet $M \setminus N =$ Alle Informatik-Studierende, die nicht im ersten Semester studieren

 $\mathsf{Mit}\ C = \mathsf{Menge}\ \mathsf{aller}\ \mathsf{durch}\ 3\ \mathsf{teilbaren}\ \mathsf{Zahlen}\ \mathsf{und}\ D = \mathsf{Menge}\ \mathsf{aller}\ \mathsf{geraden}\ \mathsf{Zahlen}$

- $C \cap D$ = Menge aller durch 6 teilbaren Zahlen.
- ullet $C \cup D =$ Menge aller durch 2 oder 3 teilbaren Zahlen
- ullet $C\setminus D=$ Menge aller Zahlen, die durch 3 aber nicht durch 6 teilbar sind.

D. Sabel | DS - 03 Mengen | WS 2024/25

17/57

Mengen Operationen Logik Kartesisches Produkt Mächtigkeit

Disjunkte Mengen

Definition

Mengen M und N sind disjunkt, wenn sie kein gemeinsames Element haben, d.h. $M \cap N = \emptyset$.

Beispiele:

- \bullet $\{1,2,3\}$ und $\{4,5,6\}$ sind disjunkt
- Die Menge aller roten Socken und die Menge aller grünen Hemden sind disjunkt
- $\{x \in U \mid P(x)\}$ und $\{x \in U \mid \neg P(x)\}$ sind für jede Menge U und Aussageform P(x) disjunkt

Aufgabe

Sei $A=\{4,8,12,16,20\}$, $B=\{2,6,10,14,18\}$ und $C=\{6,12,18\}$. Bestimme

- $\bullet A \cap B = \emptyset$
- $A \cap C = \{12\}$
- $B \cap C = \{6, 18\}$
- $A \cup B = \{2, 4, 6, 8, 10, 12, 14, 16, 18, 20\}$
- $A \cup B \cup C = \{2, 4, 6, 8, 10, 12, 14, 16, 18, 20\}$
- $A \setminus B = \{4, 8, 12, 16, 20\}$
- $A \setminus C = \{4, 8, 16, 20\}$
- $A \setminus (B \cap C) = \{4, 8, 12, 16, 20\} \setminus \{6, 18\} = \{4, 8, 12, 16, 20\}$

D. Sabel | DS - 03 Mengen | WS 2024/25

18/57

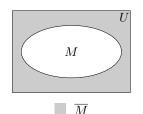
Mengen Operationen Logik Kartesisches Produkt Mächtigkeit

Komplement

Definition

Sei U ein Universum und $M\subseteq U$ eine Teilmenge.

Das Komplement \overline{M} von M ist definiert als: $\overline{M}:=U\setminus M$.



Beispiele:

- Für U= alle Menschen und E= Volljährige $\overline{E}=$ Kinder und Jugendliche
- \bullet Für $U=\mathbb{N}$ und G= alle geraden natürlichen Zahlen $\overline{G}=$ alle ungerade natürlichen Zahlen

Manchmal: $M^{\mathcal{C}}$ statt \overline{M} .

MENGEN UND LOGIK

- Korrespondenz Logik un d Mengen
- Satz von de Morgan
- Rechengesetze

Mengen und Logik

Mengenoperationen werden letztlich auf Logikoperationen zurückgeführt, denn:

Für ein Universum U und Teilmengen M, N davon gilt:

- Schnitt: $M \cap N := \{x \in U \mid x \in M \land x \in N\}$
- Vereinigung: $M \cup N := \{x \in U \mid x \in M \lor x \in N\}$
- Differenz: $M \setminus N := \{x \in U \mid x \in M \land \neg (x \in N)\}$
- Komplement: $\overline{M} := \{x \in U \mid \neg (x \in M)\}$

Da $\cap, \cup, \overline{\cdot}$ auf die logischen Verknüpfungen \wedge, \vee, \neg zurückgeführt werden können, übertragen sich die Gesetze der Logik ebenfalls auf die Mengenoperationen!

D. Sabel | DS - 03 Mengen | WS 2024/25

22/57

Mengen Operationen **Logik** Kartesisches Produkt Mächtigke

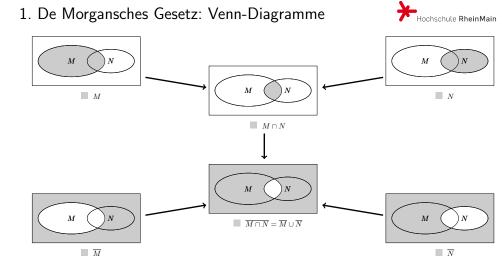
Satz von De Morgan

Satz von De Morgan

Seien M und N Teilmengen einer Menge U. Dann gilt:

Beweis. Wir zeigen den ersten Teil:

```
\begin{array}{ll} \overline{M \cap N} \\ = \{x \in U \mid \neg(x \in (M \cap N))\} & \text{(Einsetzen $\overline{\cdot}$)} \\ = \{x \in U \mid \neg(x \in \{x \in U \mid x \in M \land x \in N\})\} & \text{(Einsetzen $\cap$)} \\ = \{x \in U \mid \neg(x \in M \land x \in N)\} & \text{(Vereinfachung)} \\ = \{x \in U \mid \neg(x \in M) \lor \neg(x \in N)\} & \text{(logischer De Morgan)} \\ = \{x \in U \mid x \in \{x \in U \mid \neg(x \in M)\} \lor x \in \{x \in U \mid \neg(x \in N)\}\} & \text{(Vereinfachung)} \\ = \{x \in U \mid \neg(x \in M)\} \cup \{x \in U \mid \neg(x \in N)\} & \text{(Einsetzen $\cup$)} \\ = \overline{M} \cup \overline{N} & \text{(Einsetzen $\overline{\cdot}$)} & \Box \end{array}
```



Rechengesetze für Mengen

Rechengesetze für Mengen

Für alle Teilmengen M, N, O der Grundmenge U gelten die folgenden Gesetze:

- $\textbf{ § Kommutativgesetze: } M \cap N = N \cap M \text{ und } M \cup N = N \cup M$
- ② Assoziativgesetze: $((M \cap N) \cap O) = (M \cap (N \cap O))$ und $((M \cup N) \cup O) = (M \cup (N \cup O))$
- **3** Distributivgesetze: $M \cup (N \cap O) = (M \cup N) \cap (M \cup O)$ und $M \cap (N \cup O) = (M \cap N) \cup (M \cap O)$
- **©** Existenz neutraler Elemente: $M \cap U = M$ und $M \cup \emptyset = M$
- $\textbf{ § Existenz des Komplements: } M \cap \overline{M} = \emptyset \text{ und } M \cup \overline{M} = U$

1. Distributivgesetz: Venn-Diagramme

M $N \cap O$ $M \cup N$ $M \cup O$

Sabel | DS - 03 Mengen | WS 2024/25

Weitere Gesetze

Satz

Seien M, N Teilmengen von U. Dann gilt:

- ② Idempotenzgesetze: $M \cup M = M$ und $M \cap M = M$
- 1 Involutions gesetz (doppeltes Komplement): $\overline{\overline{M}} = M$

KARTESISCHES PRODUKT

- Paare und Tupel
- Binäres kartesisches Produkt
- Allgemeines kartesisches Produkt

Paare und Tupel

Definition

Seien M_1, \ldots, M_n Mengen und $x_1 \in M_1, \ldots, x_n \in M_n$. Dann nennt man (x_1, \ldots, x_n) ein n-Tupel (oder kurz, ein Tupel).

Für n=2 spricht man auch von einem (geordneten) Paar.

3-Tupel werden auch als Tripel bezeichnet.

- Die Reihenfolge der Elemente ist relevant: $(1, Gr\ddot{u}n, 3) \neq (1, 3, Gr\ddot{u}n)$.
- Mehrfaches Auftreten gleicher Elemente ist erlaubt und verschieden: $(1,2,3) \neq (1,1,2,2,3)!$

D. Sabel | DS - 03 Mengen | WS 2024/25

29/57

Mengen Operationen Logik Kartesisches Produkt Mächtigkeit

Weitere Beispiele

- $\{A, B, C, D, E, F, G, H\} \times \{1, 2, 3, 4, 5, 6, 7, 8\}$ beschreibt die Felder eines Schachbretts
- $\bullet \ \{ \spadesuit, \clubsuit, \diamondsuit, \heartsuit \} \times \{ 7, 8, 9, 10, B, D, K, A \} \ \text{beschreibt die Spielkarten eines Skatblatts}$
- Für $M = \{1, 2\}$, $N = \{A, B, C\}$, $O = \{\text{Rot}, \text{Grün}\}$ ist

$$\begin{split} (M\times N)\times O &= \{((1,A),\mathsf{Rot}), ((1,B),\mathsf{Rot}), ((1,C),\mathsf{Rot}),\\ &\quad ((2,A),\mathsf{Rot}), ((2,B),\mathsf{Rot}), ((2,C),\mathsf{Rot}),\\ &\quad ((1,A),\mathsf{Gr\"un}), ((1,B),\mathsf{Gr\"un}), ((1,C),\mathsf{Gr\"un}),\\ &\quad ((2,A),\mathsf{Gr\"un}), ((2,B),\mathsf{Gr\"un}), ((2,C),\mathsf{Gr\"un})\} \text{ und} \end{split}$$

$$\begin{split} M\times(N\times O) &= \{(1,(A,\mathsf{Rot})),(1,(A,\mathsf{Gr\"{u}n})),(1,(B,\mathsf{Rot})),\\ &\quad (1,(B,\mathsf{Gr\"{u}n})),(1,(C,\mathsf{Rot})),(1,(C,\mathsf{Gr\"{u}n})),\\ &\quad (2,(A,\mathsf{Rot})),(2,(A,\mathsf{Gr\"{u}n})),(2,(B,\mathsf{Rot})),\\ &\quad (2,(B,\mathsf{Gr\"{u}n})),(2,(C,\mathsf{Rot})),(2,(C,\mathsf{Gr\"{u}n}))\} \end{split}$$

 \bullet Das Kreuzprodukt $\mathbb{Z} \times \mathbb{N}$ ist eine Repräsentation der rationalen Zahlen.

Kartesisches Produkt

Definition

Für Mengen M und N ist das kartesische Produkt $M \times N$ (auch Kreuzprodukt):

$$M \times N = \{(x, y) \mid x \in M, y \in N\}$$

Wenn M oder N leere Menge, ist das Kreuzprodukt leer (d.h. $M \times \emptyset = \emptyset = \emptyset \times M$).

Beachte: Das erweitert erneut die Schreibweise für Mengen mit Eigenschaft Beispiele:

- Für $M = \{1\}$ und $N = \{4\}$ ist $M \times N = \{(1,4)\}$ und $N \times M = \{(4,1)\}$.
- \bullet Für $M=\{1,2\}$ und $N=\{4,5,6\}$ ist

$$\begin{split} M\times N &= \{(1,4),(1,5),(1,6),(2,4),(2,5),(2,6)\} \text{ und } \\ N\times M &= \{(4,1),(4,2),(5,1),(5,2),(6,1),(6,2)\} \end{split}$$

D. Sabel | DS - 03 Mengen | WS 2024/25

30/57

Mengen Operationen Logik Kartesisches Produkt Mächtigkeit

Aufgabe

Berechne $M \times N$ und $N \times M$ für $M = \{1, 2, 3, 5\}$ und $N = \{8, 13\}!$

$$M \times N = \{(1,8), (1,13), (2,8), (2,13), (3,8), (3,13), (5,8), (5,13)\}$$

$$N \times M = \{(8,1), (8,2), (8,3), (8,5), (13,1), (13,2), (13,3), (13,5)\}$$

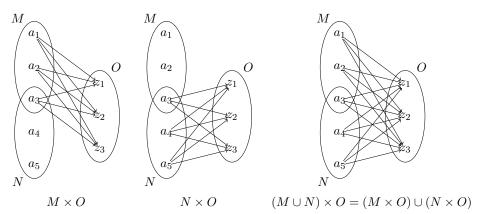
Eigenschaften des kartesischen Produkts

Veranschaulichung 1. Distributivgesetz

Das kartesische Produkt ist nicht kommutativ und nicht assoziativ.

Satz

- Distributivgesetze für U und X: $(M \cup N) \times O = (M \times O) \cup (N \times O)$ und $M \times (N \cup O) = (M \times N) \cup (M \times O)$
- Distributivgesetze für ∩ und ×: $(M \cap N) \times O = (M \times O) \cap (N \times O)$ und $M \times (N \cap O) = (M \times N) \cap (M \times O)$
- Distributivgesetze für \ und \x: $(M \setminus N) \times O = (M \times O) \setminus (N \times O) \text{ und } M \times (N \setminus O) = (M \times N) \setminus (M \times O)$



Allgemeines kartesisches Produkt

Definition

Für Mengen M_1, \ldots, M_n ist das kartesische Produkt $M_1 \times \cdots \times M_n$ definiert als

$$M_1 \times \cdots \times M_n = \{(x_1, \dots, x_n) \mid x_1 \in M_1, \dots, x_n \in M_n\}$$

Ist eine der Mengen M_i leer, so gilt $M_1 \times \cdots \times M_n = \emptyset$.

Notation für das n-fache kartesische Produkt von M mit sich selbst: M^n

Z.B. schreiben wir \mathbb{R}^3 für $\mathbb{R} \times \mathbb{R} \times \mathbb{R}$.

Beispiele

• Für $M = \{0, 1\}$ ist

$$M^3 = M \times M \times M = \{(0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1)\}$$

• Für $M = \{a, b\}, N = \{C, D\}, O = \{1, 2\}$ ist

$$M\times N\times O=\{(a,C,1),(a,C,2),(a,D,1),(a,D,2),\\ (b,C,1),(b,C,2),(b,D,1),(b,D,2)\}$$

$$O \times M \times N = \{(1, a, C), (1, a, D), (1, b, C), (1, b, D), (2, a, C), (2, a, D), (2, b, C), (2, b, D)\}$$

- ullet $\mathbb{R} imes \mathbb{R} imes \mathbb{R}$ beschreibt die Menge aller dreidimensionalen Punkte im Raum
- $[-\frac{1}{2},\frac{1}{2}] \times [-\frac{1}{2},\frac{1}{2}] \times [-\frac{1}{2},\frac{1}{2}]$ beschreibt ? alle dreidimensionalen Punkte eines Würfels mit Seitenlänge 1, dessen Mittelpunkt im Ursprung liegt

MÄCHTIGKEITEN UND ZÄHLFORMELN

- Mächtigkeit
- Summenformel
- Siebformel
- Produktformel
- Potenzmenge
- Binomialkoeffizienten

Mächtigkeit

Definition

Für eine Menge M, bezeichnet |M| die Anzahl der Elemente von M.

|M| heißt die Mächtigkeit (oder Kardinalität) von M.

Wenn $|M| \in \mathbb{N}_0$, dann ist M endlich, ansonsten ist M unendlich (Notation $|M| = \infty$)

Beispiele:

- $\bullet |\{-1,0,1,2,3,4\}| = 6$
- $\bullet |\emptyset| = 0$
- $|\{\emptyset, 1, \{2, 3, 4, 5\}\}| = 3$ (denn die Menge hat die 3 Elemente \emptyset , 1 und $\{2, 3, 4, 5\}$).
- $|\mathbb{N}| = \infty, |\mathbb{R}| = \infty$
- $|\mathbb{N} \setminus \mathbb{Z}| = 0, |\mathbb{Z} \setminus \mathbb{N}| = \infty$

D. Sabel | DS - 03 Mengen | WS 2024/25

38/57

Mengen Operationen Logik Kartesisches Produkt Mächtigke

Aufgabe

Was ist die Mächtigkeit von

- $\{A, C, F, G, H\}$? $|\{A, C, F, G, H\}| = 5$
- $M = \{x \in \mathbb{N} \mid x \text{ ist Primzahl } \land 1 \le x \le 20\}$? $|\{2, 3, 5, 7, 11, 13, 17, 19\}| = 8$

Gebe Mengen M_1 und M_2 an, sodass gilt: $|M_1|=5$, $|M_2|=6$, $|M_1\cup M_2|=7$.

Z.B. $M_1 = \{1, 2, 3, 4, 5\}$ und $M_2 = \{2, 3, 4, 5, 6, 7\}$

Einfache Rechnenregeln zur Mächtigkeit

Satz

Seien M,N endliche Mengen mit $M\subseteq N$. Dann gilt $|N\setminus M|=|N|-|M|$.

Satz (Mächtigkeit des Komplements)

Sei U ein endliches Universum und M eine Teilmenge von U. Dann gilt $|\overline{M}|=|U\setminus M|=|U|-|M|.$

Beispiel:

|Volljährige| = |Kinder und Jugendliche| = |Menschen \ Kinder und Jugendliche| = |Menschen| - |Kinder und Jugendliche|

Summenformel

Aufgabe

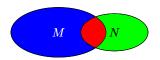
Satz (Summenformel)

Seien M und N endliche Mengen. Dann gilt:

$$|M \cup N| = |M| + |N| - |M \cap N|$$

Beweis:

- $M \cup N$ besteht aus drei disjunkten Mengen: $M \setminus N$ und $N \setminus M$ und $M \cap N$
- Daher gilt $|M \cup N| = |M \setminus N| + |N \setminus M| + |M \cap N|$ $= |M \setminus (M \cap N)| + |N \setminus (M \cap N)| + |M \cap N|$ $= |M| - |M \cap N| + |N| - |M \cap N| + |M \cap N|$ $= |M| + |N| - |M \cap N|.$



Beispiel:

$$\begin{split} M &= \{1,2,3\} \text{ und } N = \{2,3,4\} \\ |M \cup N| &= |M| + |N| - |M \cap N| \\ &= 3 + 3 - 2 = 4 \end{split}$$

| DS - 03 Mengen | WS 2024/25

Sabel | DS - 03 Mengen | WS 2024/25

Für die Essensbestellung werden die Teilnehmenden eines Seminars nach ihren

• 5 Personen haben sich sowohl für italienisch als auch für deutsch gemeldet.

 \longrightarrow Mit der Summenformel $|I \cup D| = |I| + |D| - |I \cap D| = 20 + 10 - 5 = 25$

Summenformel bei 3 Mengen

Die Summenformel für drei endliche Mengen M, N und O lautet:

$$|M\cup N\cup O|=|M|+|N|+|O|-|M\cap N|-|M\cap O|-|N\cap O|+|M\cap N\cap O|$$

Elemente,	Beitrag zu		
die in genau	M + N + O	$ - M\cap N - M\cap O - N\cap O $	$ M\cap N\cap O $
einer Menge sind	1	0	0
zwei Mengen sind	2	-1	0
drei Mengen sind	3	-3	1

Jedes Element wird daher in der Formel genau einmal gezählt.

Allgemeine Summenformel: Siebformel

Essensvorlieben (deutsch oder italienisch) befragt. • 20 Personen melden sich für italienisch,

Wie viele Personen wurden befragt (alle haben geantwortet)?

 \rightarrow Aus der Aufgabenstellung $|I| = 20, |D| = 10, |I \cap D| = 5$

• 10 Personen melden sich für deutsch.

Satz (Siebformel)

Seien M_1, \ldots, M_n endliche Mengen. Dann gilt:

$$|M_1 \cup \cdots \cup M_n| = \alpha_1 - \alpha_2 + \alpha_3 - \alpha_4 \cdots$$

wobei α_i die Summe aller Mächtigkeiten aller Schnitte von i Mengen ist, d.h. α_i berechnet sich durch die folgenden Schritte:

- Für je i Mengen der Mengen M_1, \ldots, M_n bilde deren Schnitt.
- Bestimme die Mächtigkeiten der Schnittmengen.
- Summiere die Mächtigkeiten der Schnittmengen.

Aufgabe

Produktformel

Wie lautet die Siebformel für vier Mengen?

$$\begin{aligned} &|M_1 \cup \dots \cup M_4| \\ &= &\alpha_1 - \alpha_2 + \alpha_3 - \alpha_4 \\ &= &|M_1| + |M_2| + |M_3| + |M_4| \\ &- (|M_1 \cap M_2| + |M_1 \cap M_3| + |M_1 \cap M_4| + |M_2 \cap M_3| + |M_2 \cap M_4| + |M_3 \cap M_4|) \\ &+ (|M_1 \cap M_2 \cap M_3| + |M_2 \cap M_3 \cap M_4| + |M_1 \cap M_3 \cap M_4| + |M_1 \cap M_2 \cap M_4|) \\ &- |M_1 \cap M_2 \cap M_3 \cap M_4| \end{aligned}$$

Satz

Seien M und N endliche Mengen, dann gilt $|M\times N|=|M|\cdot |N|$. Für k endliche Mengen M_1,\ldots,M_k gilt $|M_1\times\cdots\times M_k|=|M_1|\cdot\cdots\cdot |M_k|$.

Beweis.

- Sei |M| = m und |N| = n.
- Für jedes Paar $(x,y) \in M \times N$ hat man m Möglichkeiten für x.
- ullet Ist x festgelegt, so hat man n weitere Möglichkeiten um y festzulegen.
- Also gibt es $m \cdot n$ Möglichkeiten.

. Sabel | DS - 03 Mengen | WS 2024/25

45/57

Mengen Operationen Logik Kartesisches Produkt Mächtigkeit

D. Sabel | DS - 03 Mengen | WS 2024/25

46/57

Mengen Operationen Logik Kartesisches Produkt Mächtigke

Beispiele

• Für vierstellige PINs am Geldautomat gibt es

$$|\{0,\ldots,9\}^4| = 10^4 = 10000$$

Möglichkeiten.

Ein Schachbrett hat

$$|\{A, \dots, H\} \times \{1, \dots, 8\}| = |\{A, \dots, H\}| \cdot |\{1, \dots, 8\}| = 8 \cdot 8 = 64$$

Felder.

Aufgabe

Wie viele Karten hat ein Skatblatt, welches durch

$$\{ \spadesuit, \clubsuit, \diamondsuit, \heartsuit \} \times \{ 7, 8, 9, 10, B, D, K, A \}$$

repräsentiert wird?

$$|\{ \spadesuit, \clubsuit, \diamondsuit, \heartsuit \}| \cdot |\{7, 8, 9, 10, B, D, K, A \}| = 4 \cdot 8 = 32$$

Anwendung: Produktformel

Binäre Tupel sind Tupel, die nur aus 0en und 1en bestehen.

D.h. ein binäres n-Tupel ist von der Form (b_1, \ldots, b_n) mit $b_i \in \{0, 1\}$.

Beispiel:

- Die Menge aller binären 3-Tupel ist $\{(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)\}.$
- Das sind 8 Stück. Wie sieht es allgemein aus?

Satz

Die Anzahl der binären n-Tupel ist 2^n .

Beweis. Verwende die Produktformel für das n-fache Kreuzprodukt von $\{0,1\}$:

$$|\underbrace{\{0,1\}\times\cdots\times\{0,1\}}_{n\text{ Mal}}|=|\{0,1\}^n|=|\{0,1\}|^n=2^n$$

D. Sabel | DS - 03 Mengen | WS 2024/25

49/57

Mengen Operationen Logik Kartesisches Produkt Mächtigkeit

Mächtigkeit der Potenzmenge

Satz

Jede n-elementige Menge hat genau 2^n Teilmengen, d.h. für endliche Mengen M gilt $|\mathcal{P}(M)| = 2^{|M|}$.

Beweis.

- \bullet Sei $M=\{x_1,\ldots,x_n\}$ eine beliebige Nummerierung der n Elemente von M.
- Für jede Teilmenge N von M erzeuge ein binäres n-Tupel $B_N = (b_{N,1}, \ldots, b_{N,n})$ wobei $b_{N,i} = 0$, wenn $x_i \notin N$ und $b_{N,i} = 1$ wenn $x_i \in N$.
- Für jedes *n*-Tupel gibt es genau eine Teilmenge
- Anzahl der n-Tupel ist 2^n .

Potenzmenge

Definition

Sei M eine Menge.

Die Menge aller Teilmengen von M nennt man Potenzmenge von M. Wir schreiben $\mathcal{P}(M)$ für die Potenzmenge.

$$\mathcal{P}(M) := \{ M' \mid M' \subseteq M \}$$

Beispiel: $\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$

D. Sabel | DS - 03 Mengen | WS 2024/25

50/57

Mengen Operationen Logik Kartesisches Produkt Mächtigkeit

Aufgabe

Sei $M=\{a,b,c\}$, wobei die Elemente in der Reihenfolge a,b,c nummeriert sind. Welche binären 3-Tupel stellen die Teilmengen \emptyset , $\{b,c\}$, $\{a,c\}$ und $\{a,b,c\}$ entsprechend dem letzten Beweis jeweils dar?

Binomialkoeffizienten

Definition

Die Anzahl der k-elementigen Teilmengen einer n-elementigen Menge wird mit

$$\binom{n}{k}$$
 (gesprochen " n über k ")

bezeichnet. Diese Zahlen heißen Binomialkoeffizienten.

Beispiel:

$$\{1,2,3,4\} \text{ hat } \binom{4}{2} = 6 \text{ zweielementige Teilmengen: } \{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\} \text{ und } \{3,4\} \}$$

D. Sabel | DS - 03 Mengen | WS 2024/25

53/57

Mengen Operationen Logik Kartesisches Produkt Mächtigkeit

Rekursionsformel für Binomialkoeffizienten

Satz

Sei
$$1 \le k \le n$$
 mit $k, n \in \mathbb{N}$. Dann gilt $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$

Beweis.

- Sei M eine n-elementige Menge und $m \in M$.
- ullet Sei $M_k=\{M'\subseteq M\mid |M'|=k\}=$ alle k-elementigen Teilmengen von M, d.h. $\binom{n}{k}=|M_k|$
- ullet Teile die Mengen in M_k in zwei disjunkte Mengen auf:

$$A = \{ M' \in M_k \mid m \notin M' \} \quad B = \{ M' \in M_k \mid m \in M' \}$$

- ullet |A|= Anzahl der k-elementigen Teilmengen von $M\setminus\{m\}=inom{n-1}{k}$
- ullet |B|= Anzahl der k-1-elementigen Teilmengen von $M\setminus\{m\}=egin{pmatrix} n-1 \ k-1 \end{pmatrix}$

Weitere Beispiele

- $\binom{n}{0}=1$ für jedes n, da es genau eine nullelementige Teilmenge gibt die leere Menge
- $\binom{n}{n}=1$ für jedes n, da es genau eine n-elementige Teilmenge gibt die gesamte Menge
- $\binom{0}{0} = 1 \quad \text{da die leere Menge sich selbst als Teilmenge hat}$
- $egin{pmatrix} 0 \\ n \end{pmatrix} = 0$ für jedes n>0, da die leere Menge nur sich selbst als Teilmenge hat
- $\binom{n}{1} = n \quad \text{für jedes } n \text{, da es für jedes Element eine einelementige Menge gibt,} \\ \text{und diese eine Teilmenge ist (gilt auch für } n = 0!)$

D. Sabel | DS – 03 Mengen | WS 2024/25

54/57

Mengen Operationen Logik Kartesisches Produkt Mächtigkei

Explizite Formel für Binomialkoeffizienten

Fakultät von natürlichen Zahlen

$$n! := n \cdot (n-1) \cdots 2 \cdot 1$$

Wir definieren zusätzlich 0! := 1.

Satz

Seien $k, n \in \mathbb{N}_0$ mit $0 \le k \le n$. Dann gilt:

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

Beispiel

Bei Lotto "6 aus 49" werden 6 Zahlen aus 49 gegebenen Zahlen gezogen.

Möglichkeiten:
$$\binom{49}{6} = \frac{49!}{6! \cdot 43!} == \frac{49 \cdot 48 \cdot 47 \cdot 46 \cdot 45 \cdot 44}{6!} = 13.983.816$$

Wahrscheinlichkeit für 6 Richtige: $1/13.983.816 = 0,000000071 \cdots$

Mengen Operationen Logik Kartesisches Produkt Mächtigke