

Grundlagen der Analysis

Wintersemester 2019/20

Differentiation

Prof. Dr. David Sabel

LFE Theoretische Informatik

Wir betrachten nun wieder reelle Funktionen.

Definition (Differenzierbarkeit)

Sei $f \colon D \to W$ mit $D \subseteq \mathbb{R}$ und $W \subseteq \mathbb{R}$. Die Funktion f heißt an der Stelle $x \in D$ differenzierbar, wenn der Grenzwert

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

existiert. Man schreibt dann f'(x) für diesen Grenzwert.

Bemerkungen

- Man findet auch die Notation $\frac{df(x)}{dx}$ ("df(x) nach dx").
- Das ist jedoch nicht der Quotient zweier reeller Zahlen df(x) und dx! (sondern entspricht $\frac{df(x)}{dx} = \lim_{\Delta x \to 0} \frac{\Delta f(x)}{\Delta x}$)

Differenzierbarkeit: Bemerkungen

- $\bullet \ \, \text{Der Grenzwert} \, \lim_{h \to 0} \frac{f(x+h) f(x)}{h} \, \, \text{muss nicht immer} \\ \text{existieren.}$
- Daher sind nicht alle Funktionen überall differenzierbar.
- Z.B. ist f(x) = |x| an der Stelle 0 nicht differenzierbar, da $\frac{|0+h|-|0|}{h} = \frac{|h|}{h} = \begin{cases} -1, & \text{wenn } h < 0 \\ 1, & \text{wenn } h > 0 \end{cases}$
- ullet Nicht differenzierbar aber stetig an x entspricht in etwa: Funktionsgraph hat einen Knick

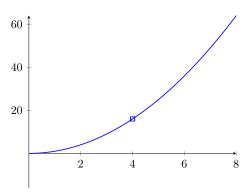
WS 2019/20

f'(a) ist Steigung der Tangenten

- Die Zahl f'(a) ist die Steigung der Tangente am Graphen von f an der Stelle a, also die Steigung des Graphen im Punkt a.
- Die Tangente im Punkt a ist die lineare Funktion t(x) = (x-a)f'(a) + f(a).

Beispiel: Tangente

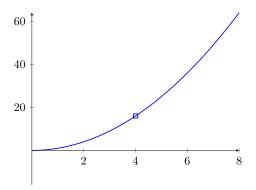
$$f(x) = x^2$$



Beispiel: Tangente

$$f(x) = x^2$$

$$f'(4) = \lim_{h \to 0} \frac{(4+h)^2 - 4^2}{h} = \lim_{h \to 0} \frac{4^2 + 8h + h^2 - 4^2}{h} = \lim_{h \to 0} \frac{h(8+h)}{h} = \lim_{h \to 0} 8 + h = 8$$



WS 2019/20

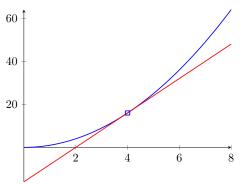
Beispiel: Tangente

$$f(x) = x^2$$

$$f'(4) = \lim_{h \to 0} \frac{(4+h)^2 - 4^2}{h} = \lim_{h \to 0} \frac{4^2 + 8h + h^2 - 4^2}{h} = \lim_{h \to 0} \frac{h(8+h)}{h} = \lim_{h \to 0} 8 + h = 8$$

Tangente im Punkt 4:

$$t(x) = (x-4)f'(4) + f(4) = (x-4) * 8 + 16 = 8 * x - 16$$



Ableitung

Die durch

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

definierte Funktion f' heißt die Ableitung von f.

• Für f(x) = c mit $c \in \mathbb{R}$ gilt f'(x) = 0:

Es gilt
$$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} = \lim_{h\to 0} \frac{c-c}{h} = 0$$
,

also f'(x) = 0 und der Grenzwert existiert für alle $x \in \mathbb{R}$.

TCS |

• Für f(x) = c mit $c \in \mathbb{R}$ gilt f'(x) = 0:

Es gilt
$$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} = \lim_{h\to 0} \frac{c-c}{h} = 0$$
,

also f'(x) = 0 und der Grenzwert existiert für alle $x \in \mathbb{R}$.

• Für f(x) = x gilt f'(x) = 1, denn

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{x+h-x}{h} = 1.$$

Beispiele (2)

• Für $f(x) = x^2$ gilt f'(x) = 2x, denn

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{2xh + h^2}{h} = 2x .$$

Beispiele (2)

• Für $f(x) = x^2$ gilt f'(x) = 2x, denn

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{2xh + h^2}{h} = 2x.$$

• Für $f(x) = \frac{1}{x}$ gilt $f'(x) = -\frac{1}{x^2}$, denn

WS 2019/20

$$\lim_{h \to 0} \frac{\frac{1}{x+h} - \frac{1}{x}}{h} = \lim_{h \to 0} \frac{x - (x+h)}{x(x+h)h} = \lim_{h \to 0} \frac{-h}{x(x+h)h} = \lim_{h \to 0} \frac{-1}{x(x+h)}$$
$$= \lim_{h \to 0} \frac{-1}{x^2 + x \cdot h} = \frac{-1}{x^2 + x \cdot \lim_{h \to 0} h} = \frac{-1}{x^2 + x \cdot 0} = -\frac{1}{x^2}.$$

Beispiele (3)

Für $f(x) = \exp(x)$ gilt $f'(x) = \exp(x)$, denn

$$\lim_{h \to 0} \frac{\exp(x+h) - \exp(x)}{h} = \lim_{h \to 0} \frac{\exp(x) \exp(h) - \exp(x)}{h}$$
$$= \exp(x) \lim_{h \to 0} \frac{\exp(h) - 1}{h} = \exp(x) .$$

Wobei $\lim_{h\to 0} \frac{\exp(h)-1}{h}=1$, denn

- Verwende die Reihendarstellung $\exp(h) = \sum_{k=0}^{\infty} \frac{h^k}{k!}$.
- Da $\frac{(\sum\limits_{k=0}^{n}\frac{h^{k}}{k!})-1}{h} = \sum\limits_{k=0}^{n}\frac{h^{k}}{k!} \frac{1}{h} = \frac{h^{0}}{0!} + \sum\limits_{k=1}^{n}\frac{h^{k}}{k!} \frac{1}{h} = \frac{1}{h} + \sum\limits_{k=1}^{n}\frac{h^{k}}{k!} \frac{1}{h} = \sum\limits_{k=0}^{n}\frac{h^{k}}{h^{k}!} = \sum\limits_{k=1}^{n}\frac{h^{k-1}}{h^{k}!} = \sum\limits_{k=0}^{n-1}\frac{h^{k}}{(k+1)!} \text{ gilt } \frac{\exp(h)-1}{1} = \sum\limits_{k=0}^{\infty}\frac{h^{k}}{(k+1)!}.$
- Beachte, dass diese Reihe für h=0 den Wert 1 hat. Die Reihe definiert eine stetige Funktion (das kann man wie in Satz 6.11 zeigen), d.h. $\lim_{h\to 0}\sum_{k=0}^{\infty}\frac{h^k}{(k+1)!}=1$.

Beispiele (4)

• Für $f(x) = \sin(x)$ gilt $f'(x) = \cos(x)$.

$$\lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h} = \lim_{h \to 0} \frac{\sin(x)\cos(h) + \cos(x)\sin(h) - \sin(x)}{h}$$
$$= \cos(x)\lim_{h \to 0} \frac{\sin(h)}{h} + \sin(x)\lim_{h \to 0} \frac{\cos(h) - 1}{h}$$
$$= \cos(x)$$

• Für $f(x) = \cos(x)$ gilt analog $f'(x) = -\sin(x)$.

Zur Erinnerung: Additionstheoreme:

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$$
$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$

Satz 8.3

Sei f eine im Punkt $a \in \mathbb{R}$ differenzierbare Funktion. Definiere die Funktion r durch

$$f(x) = f(a) + f'(a) \cdot (x - a) + r(x)$$
.

Dann gilt $\lim_{h\to 0} \frac{r(a+h)}{h} = 0$.

Erläuterungen:

- Die Funktion f wird zerlegt in die Summe einer linearen Funktion $f(a) + f'(a) \cdot (x a)$ (die Tangente von f im Punkt a) plus einen Rest r(x).
- Der Satz sagt, dass der Rest um den Punkt a einen geringeren als linearen Beitrag leistet.
- Es geht r(a+h) für $h \to 0$ schneller gegen 0 als die lineare Funktion h.

Beweis von Satz 8.3

Durch Umstellen von $f(x) = f(a) + f'(a) \cdot (x - a) + r(x)$ erhalten wir

$$\frac{r(x)}{(x-a)} = \frac{f(x) - f(a)}{(x-a)} - f'(a) .$$

Einsetzen von a+h für x ergibt

$$\frac{r(a+h)}{h} = \frac{f(a+h) - f(a)}{h} - f'(a).$$

Daraus folgt

$$\lim_{h \to 0} \frac{r(a+h)}{h} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} - f'(a) .$$

Nach Definition der Ableitung ist die rechte Seite gleich f'(a) - f'(a) = 0.

Satz 8.4

Sei f eine Funktion und seien $a,b\in\mathbb{R}$. Definiere r durch

$$f(x) = f(a) + b \cdot (x - a) + r(x) .$$

Wenn $\lim_{h\to 0} \frac{r(a+h)}{h} = 0$, dann gilt f'(a) = b.

Erläuterung:

- Das ist Umkehrung des vorherigen Satzes!
- Wenn man eine Funktion f so in eine lineare Funktion plus Rest zerlegen kann, sodass der Rest im Punkt a geringer als linear ist, dann muss die lineare Funktion die Tangente sein.

Durch Umstellen und Einsetzen wie im vorangegangenen Beweis erhalten wir

$$\lim_{h \to 0} \frac{r(a+h)}{h} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} - b = f'(a) - b.$$

Wenn der Grenzwert auf der linken Seite also 0 ist, dann muss auch f'(a)-b=0 gelten, also f'(a)=b.

Differenzierbarkeit impliziert Stetigkeit

Satz 8.5

Ist eine Funktion f in einem Punkt a differenzierbar, so ist sie in a auch stetig.

Beweis.

- ullet Wir müssen $\lim_{x \to a} f(x) = f(a)$ zeigen.
- Nach Satz 8.3 können wir f(x) als f(a)+f'(a)(x-a)+r(x) mit $\lim_{h\to 0}\frac{r(a+h)}{h}=0$ schreiben.
- Aus $\lim_{h\to 0} \frac{r(a+h)}{h} = 0$ folgt $\lim_{h\to 0} r(a+h) = 0$.
- Somit haben wir:

$$\lim_{x \to a} f(x) = \lim_{h \to 0} f(a+h) = \lim_{h \to 0} f(a) + f'(a) \cdot h + r(a+h) = f(a),$$

was zu zeigen war.

Umkehrung...

Die Umkehrung des Satzes gilt nicht immer, d.h. aus der Stetigkeit darf man nicht die Differenzierbarkeit folgern Beispiel:

- f(x) = |x| im Punkt x = 0 stetig, aber nicht differenzierbar.
- Anschaulich: f hat einen Knick im Punkt 0.

Differentiationsregeln: Linearität

Satz (Linearität)

Seien $f,g\colon D\to\mathbb{R}$ im Punkt x differenzierbare Funktionen und sei $\lambda\in\mathbb{R}.$ Dann gilt:

- (f+g)'(x) = f'(x) + g'(x).
- (f-g)'(x) = f'(x) g'(x).
- $(\lambda \cdot f)'(x) = \lambda \cdot f'(x)$.

Beweis: Das folgt aus den Rechenregeln für Grenzwerte von Folgen.

Beispiel: Für $f(x) = 5x^2 + 3x$ gilt f'(x) = 10x + 3, da

- $f(x) = \lambda \cdot g(x) + h(x)$ mit $g(x) = x^2$, h(x) = 3x, $\lambda = 5$
- und g'(x) = 2x und h'(x) = 3

Satz (Produktregel)

Seien $f,g\colon D\to\mathbb{R}$ im Punkt x differenzierbare Funktionen. Dann gilt

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$
.

$$(fg)'(x) = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h}$$

Satz (Produktregel)

Seien $f,g\colon D\to\mathbb{R}$ im Punkt x differenzierbare Funktionen. Dann gilt

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$
.

$$(fg)'(x) = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x) - f(x)g(x+h) + f(x)g(x+h)}{h}$$

Satz (Produktregel)

Seien $f,g\colon D\to\mathbb{R}$ im Punkt x differenzierbare Funktionen. Dann gilt

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$
.

$$(fg)'(x) = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x) - f(x)g(x+h) + f(x)g(x+h)}{h}$$

$$= \lim_{h \to 0} \frac{(f(x+h) - f(x))g(x+h) + f(x)(g(x+h) - g(x))}{h}$$

Satz (Produktregel)

Seien $f,g\colon D\to\mathbb{R}$ im Punkt x differenzierbare Funktionen. Dann gilt

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$
.

$$(fg)'(x) = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x) - f(x)g(x+h) + f(x)g(x+h)}{h}$$

$$= \lim_{h \to 0} \frac{(f(x+h) - f(x))g(x+h) + f(x)(g(x+h) - g(x))}{h}$$

$$= \lim_{h \to 0} \frac{(f(x+h) - f(x))}{h} g(x+h) + f(x) \frac{(g(x+h) - g(x))}{h}$$

Satz (Produktregel)

Seien $f,g\colon D\to\mathbb{R}$ im Punkt x differenzierbare Funktionen. Dann gilt

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$
.

Beweis.

$$(fg)'(x) = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x) - f(x)g(x+h) + f(x)g(x+h)}{h}$$

$$= \lim_{h \to 0} \frac{(f(x+h) - f(x))g(x+h) + f(x)(g(x+h) - g(x))}{h}$$

$$= \lim_{h \to 0} \frac{(f(x+h) - f(x))}{h} g(x+h) + f(x) \frac{(g(x+h) - g(x))}{h}$$

$$= (\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}) (\lim_{h \to 0} g(x+h)) + f(x) \lim_{h \to 0} \frac{(g(x+h) - g(x))}{h}$$

$$= f'(x) = g(x)$$

dabei folgt $\lim_{h\to 0} g(x+h) = g(x)$ aus der Stetigkeit von g im Punkt x.

Satz (Produktregel)

Seien $f, g: D \to \mathbb{R}$ im Punkt x differenzierbare Funktionen. Dann gilt

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$
.

Beweis.

$$(fg)'(x) = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x) - f(x)g(x+h) + f(x)g(x+h)}{h}$$

$$= \lim_{h \to 0} \frac{(f(x+h) - f(x))g(x+h) + f(x)(g(x+h) - g(x))}{h}$$

$$= \lim_{h \to 0} \frac{(f(x+h) - f(x))}{h} g(x+h) + f(x) \frac{(g(x+h) - g(x))}{h}$$

$$= (\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}) (\lim_{h \to 0} g(x+h)) + f(x) \lim_{h \to 0} \frac{(g(x+h) - g(x))}{h}$$

$$= f'(x) = g(x)$$

dabei folgt $\lim g(x+h) = g(x)$ aus der Stetigkeit von g im Punkt x.

• Für $f(x) = (x^2 \cdot x) = x^3$: liefert die Produktregel:

$$f'(x) = 2x \cdot x + x^2 \cdot 1 = 3x^2$$

• Für $f(x) = (x^2 \cdot x) = x^3$: liefert die Produktregel:

$$f'(x) = 2x \cdot x + x^2 \cdot 1 = 3x^2$$

• Für $f(x) = \sin(x)\cos(x)$ gilt:

WS 2019/20

$$f'(x) = \cos(x)\cos(x) + \sin(x)(-\sin(x)) = \cos(x)^2 - \sin(x)^2$$

• Für $f(x) = (x^2 \cdot x) = x^3$: liefert die Produktregel:

$$f'(x) = 2x \cdot x + x^2 \cdot 1 = 3x^2$$

• Für $f(x) = \sin(x)\cos(x)$ gilt:

$$f'(x) = \cos(x)\cos(x) + \sin(x)(-\sin(x)) = \cos(x)^2 - \sin(x)^2$$

• Für $f(x) = x^{n+1}$ gilt $f'(x) = (n+1) \cdot x^n$ für alle $n \in \mathbb{N}$.

Beweis durch Induktion über n:

- $\bullet n = 0$: $f(x) = x^1$, $f'(x) = 1 = 1 \cdot x^0$
- $\bullet n \to n+1$: Für $f(x)=x^{n+1}=x\cdot x^n$ gilt mit der Produktregel und der Induktionsannahme:

$$f'(x) = 1 \cdot x^n + x \cdot n \cdot x^{n-1} = x^n + n \cdot x^n = (n+1) \cdot x_n$$

Differentiationsregeln: Quotientenregel

Satz (Quotientenregel)

Seien $f, g: D \to \mathbb{R}$ im Punkt x differenzierbare Funktionen und sei q im ganzen Definitionsbereich nichtnull. Dann gilt

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2} .$$

Beweis. Wir zeigen $\left(\frac{1}{q}\right)'(x) = \frac{-g'(x)}{q(x)^2}$. Der allgemeine Fall folgt

daraus mit der Produktregel, indem man $\left(\frac{f}{q}\right) = f \cdot \left(\frac{1}{q}\right)$ verwendet.

$$\left(\frac{1}{g}\right)'(x) = \lim_{h \to 0} \frac{\frac{1}{g(x+h)} - \frac{1}{g(x)}}{h} = \lim_{h \to 0} \frac{\frac{g(x) - g(x+h)}{g(x)g(x+h)}}{h}$$

$$= \lim_{h \to 0} \frac{1}{g(x)g(x+h)} \cdot \frac{g(x) - g(x+h)}{h}$$

$$= \frac{1}{g(x) \cdot \lim_{h \to 0} g(x+h)} \cdot -\lim_{h \to 0} \frac{g(x+h) - g(x)}{h} = \frac{1}{g(x)^2} \cdot \left(-g'(x)\right)$$

Im letzten Schritt wird wieder die Stetigkeit von g benutzt.

• Für
$$f(x) = \tan(x) = \frac{\sin(x)}{\cos(x)}$$
 gilt
$$f'(x) = \frac{\cos(x)\cos(x) - \sin(x)(-\sin(x))}{\cos(x)^2} = \frac{1}{\cos(x)^2}.$$

• Für
$$f(x) = \tan(x) = \frac{\sin(x)}{\cos(x)}$$
 gilt
$$f'(x) = \frac{\cos(x)\cos(x) - \sin(x)(-\sin(x))}{\cos(x)^2} = \frac{1}{\cos(x)^2}.$$

• Für
$$f(x) = \frac{1}{\exp(x)}$$
 gilt

$$f'(x) = \frac{0 \cdot \exp(x) - \exp(x)}{\exp(x)^2} = -\frac{1}{\exp(x)}$$

• Für
$$f(x) = \tan(x) = \frac{\sin(x)}{\cos(x)}$$
 gilt
$$f'(x) = \frac{\cos(x)\cos(x) - \sin(x)(-\sin(x))}{\cos(x)^2} = \frac{1}{\cos(x)^2}.$$

• Für
$$f(x) = \frac{1}{\exp(x)}$$
 gilt

$$f'(x) = \frac{0 \cdot \exp(x) - \exp(x)}{\exp(x)^2} = -\frac{1}{\exp(x)}$$

• Für $f(x) = \frac{x^2}{2x+4}$ folgt mit der Quotientenregel

$$f'(x) = \frac{(2x \cdot (2x+4)) - (x^2 \cdot 2)}{(2x+4)^2} = \frac{4x^2 + 8x - 2x^2}{(2x+4)^2} = \frac{2x^2 + 8x}{(2x+4)^2}$$

Differentiationsregeln: Kettenregel

Satz (Kettenregel)

Seien $g\colon D\to W$ und $h\colon W\to \mathbb{R}$ und sei $f\colon D\to \mathbb{R}$ durch f(x)=h(g(x)) definiert. Ist g im Punkt x differenzierbar und h im Punkt g(x), dann gilt

$$f'(x) = h'(g(x)) \cdot g'(x) .$$

Beweis: siehe z.B. Buch von Forster.

Informell: Ableitung von h(g(x)) ist äußere mal innere Ableitung

Differentiationsregeln: Kettenregel

Satz (Kettenregel)

Seien $g: D \to W$ und $h: W \to \mathbb{R}$ und sei $f: D \to \mathbb{R}$ durch f(x) = h(g(x)) definiert. Ist g im Punkt x differenzierbar und h im Punkt g(x), dann gilt

$$f'(x) = h'(g(x)) \cdot g'(x) .$$

Beweis: siehe z.B. Buch von Forster.

Informell: Ableitung von h(g(x)) ist äußere mal innere Ableitung

Beispiele:

- Für $f(x) = \exp(-x^2)$ gilt $f'(x) = \exp(-x^2) \cdot (-2x)$.
 - Außere Ableitung $h'(z) = \exp(z)$ für $h(z) = \exp(z)$
 - Innere Ableitung g'(w) = -2w für $g(w) = -w^2$

Differentiationsregeln: Kettenregel

Satz (Kettenregel)

Seien $g\colon D\to W$ und $h\colon W\to \mathbb{R}$ und sei $f\colon D\to \mathbb{R}$ durch f(x)=h(g(x)) definiert. Ist g im Punkt x differenzierbar und h im Punkt g(x), dann gilt

$$f'(x) = h'(g(x)) \cdot g'(x) .$$

Beweis: siehe z.B. Buch von Forster.

Informell: Ableitung von h(g(x)) ist äußere mal innere Ableitung

Beispiele:

- Für $f(x) = \exp(-x^2)$ gilt $f'(x) = \exp(-x^2) \cdot (-2x)$.
 - Außere Ableitung $h'(z) = \exp(z)$ für $h(z) = \exp(z)$
 - Innere Ableitung g'(w) = -2w für $g(w) = -w^2$
- Für $f(x) = (\sin(x))^2$ gilt $f'(x) = 2\sin(x)\cos(x)$.
 - Äußere Ableitung h'(z) = 2z für $h(z) = z^2$
 - Innere Ableitung $g'(w) = \cos(w)$ für $g(w) = \sin(w)$

Differentiation der Umkehrfunktion

Satz (Differentiation der Umkehrfunktion)

Sei $f\colon D\to W$ und sei $g\colon W\to D$ die Umkehrfunktion von f (angenommen, dass diese existiert). Dann gilt

$$g'(f(x)) = \frac{1}{f'(x)}.$$

Beweis.

- Sei h durch h(x) = g(f(x)).
- Mit der Kettenregel: $h'(x) = g'(f(x)) \cdot f'(x)$.
- Da f die Umkehrfunktion von g ist, gilt h(x)=x und daher h'(x)=1.

23/53

- Daher $1 = g'(f(x)) \cdot f'(x)$
- Division durch f'(x) liefert die Behauptung.

- Für $f(x) = \exp(x)$ und $g(x) = \ln(x)$ gilt $g'(\exp(x)) = \frac{1}{\exp(x)}$, also $g'(z) = \frac{1}{z}$.
- Mit $\ln'(x) = \frac{1}{x}$ können wir auch die Ableitung allgemeiner Potenzen bestimmen.

Betrachte x^x . Nach Definition der allgemeinen Potenz gilt $x^x = \exp(x \ln(x))$.

Die Ableitung $(x^x)'$ kann nun mit Kettenregel und Produktregel bestimmt werden.

$$(x^x)' = (\exp(x \cdot \ln(x)))' = \exp(x \cdot \ln(x)) \cdot (x \ln(x))'$$
$$= \exp(x \cdot \ln(x)) \cdot \left(\ln(x) + x \cdot \frac{1}{x}\right) = x^x (\ln(x) + 1)$$

Beispiele (2)

- Für $f(x) = \sin(x)$ und $g(x) = \arcsin(x)$ haben wir $g'(\sin(x)) = \frac{1}{\cos(x)} = \frac{1}{\sqrt{1-\sin(x)^2}}$, also $g'(x) = \frac{1}{\sqrt{1-x^2}}$.
- Für $f(x)=\cos(x)$ und $g(x)=\arccos(x)$ haben wir $g'(\cos(x))=\frac{-1}{\sin(x)}=\frac{-1}{\sqrt{1-\cos(x)^2}}$, also $g'(x)=\frac{-1}{\sqrt{1-x^2}}$.
- Für $f(x) = \tan(x)$ und $g(x) = \arctan(x)$ haben wir $g'(\tan(x)) = \cos(x)^2 = \frac{1}{1+\tan(x)^2}$, also $g'(x) = \frac{1}{1+x^2}$. NR: $\tan(x)^2 = \frac{1-\cos(x)^2}{\cos(x)^2}$, also $\cos(x)^2 = \frac{1}{1+\tan(x)^2}$.

Anwendungsbeispiel

Satz

$$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x$$

Beweis:
$$\lim_{n \to \infty} \ln \left(\left(1 + \frac{x}{n} \right)^n \right) = \lim_{n \to \infty} n \cdot \ln \left(1 + \frac{x}{n} \right)$$

$$= \lim_{n \to \infty} x \cdot \frac{\ln \left(1 + \frac{x}{n} \right)}{\frac{x}{n}}$$

$$= \lim_{h \to 0} x \cdot \frac{\ln \left(1 + h \right)}{h}$$

$$= \lim_{h \to 0} x \cdot \frac{\ln \left(1 + h \right) - \ln 1}{h}$$

$$= \lim_{h \to 0} x \cdot \ln'(1)$$

$$= x$$

Die Formel folgt daraus und aus der Stetigkeit von exp

TCS |

Anwendungsbeispiel (2)

- Die Formel $\lim_{n\to\infty}\left(1+\frac{x}{n}\right)^n=e^x$ drückt "stetige Verzinsung" aus.
- Die jährlichen Zinsen seien x, z.B. x=0.03 (drei Prozent). Das Jahr wird in n Teile zerlegt, z.B. n=360, nach jedem Teil werden die Zinsen berechnet und zum Kapital addiert.
- Es multipliziert sich also mit $1 + \frac{x}{n}$, bzw. nach einem Jahr um $\left(1 + \frac{x}{n}\right)^n$.
- ullet Lässt man die Teile immer kleiner werden, so wird im Grenzwert das Kapital mit e^x multipliziert.

Komplexe Funktionen

Die Definition der Ableitung kann man auch auf Funktionen $f\colon \mathbb{C} \to \mathbb{C}$ übertragen:

$$f'(z) := \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$$

Dabei ist h eine komplexe Zahl, die betragsmäßig gegen 0 geht.

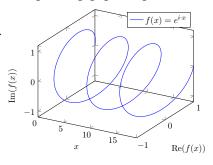
Komplexe Funktionen

Die Definition der Ableitung kann man auch auf Funktionen $f\colon \mathbb{C} \to \mathbb{C}$ übertragen:

$$f'(z) := \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$$

Dabei ist h eine komplexe Zahl, die betragsmäßig gegen 0 geht.

- Spezialfall $f: \mathbb{R} \to \mathbb{C}$: Dann definiert f eine Kurve in der Ebene.
- Zum Beispiel definiert $f(x) = e^{ix}$ den Einheitskreis.
- Die Ableitung f'(z) ist eine komplexe Zahl, die man als Tangentialvektor der Kurve verstehen kann.



Komplexe Funktionen (2)

- Die bisherigen Beispiele zur Differentiation von Funktionen $(c, x, x^2, \exp(x), \dots)$ sind auch im Komplexen korrekt.
- Insbesondere gilt $\exp'(z) = \exp(z)$ auch im Komplexen.
- Für eine komplexe Funktion $f\colon \mathbb{C} \to \mathbb{C}$ schreiben wir $\operatorname{Re} f\colon \mathbb{C} \to \mathbb{R}$ und $\operatorname{Im} f\colon \mathbb{C} \to \mathbb{R}$ für die Funktionen, die den Real- bzw. Imaginärteil von f angeben: $\operatorname{Re} f(z) := \operatorname{Re} (f(z))$ und $\operatorname{Im} f(z) := \operatorname{Im} (f(z))$
- Es gilt $f(z) = \text{Re}f(z) + i \cdot \text{Im}f(z)$.

Ableitung von Real- und Imaginärteil

Satz

Für
$$f: \mathbb{C} \to \mathbb{C}$$
 gilt $(\operatorname{Re} f)'(z) = \operatorname{Re}(f'(z))$ und $(\operatorname{Im} f)'(z) = \operatorname{Im}(f'(z))$.

Beweis.

$$\lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$$

$$= \lim_{h \to 0} \frac{\text{Re}(f(z+h)) + i \cdot \text{Im}(f(z+h)) - (\text{Re}(f(z)) + i \cdot \text{Im}(f(z)))}{h}$$

$$= \lim_{h \to 0} \frac{\text{Re}(f(z+h)) - \text{Re}(f(z))}{h} + i \cdot \lim_{h \to 0} \frac{\text{Im}(f(z+h)) - \text{Im}(f(z))}{h}$$

$$= (\text{Re}f)'(z) + i \cdot (\text{Im}f)'(z)$$

Ableitung der trigonometrischen Funktionen

Aus dem Satz ergeben sich alternative Beweise für die Ableitungen der trigonometrischen Funktionen.

- Setze $f(x) := \exp(ix)$.
- Es gilt $\sin = \operatorname{Im} f$ und $\cos = \operatorname{Re} f$
- Mit der Kettenregel: $f'(x) = i \exp(ix)$
- Damit haben wir:

$$\sin'(x) = (\operatorname{Im} f)'(x) = \operatorname{Im} (f'(x))$$
$$= \operatorname{Im} (i \exp(ix)) = \operatorname{Re} \exp(ix) = \cos(x)$$

$$\cos'(x) = (\operatorname{Re} f)'(ix) = \operatorname{Re} (f'(ix))$$
$$= \operatorname{Re} (i \exp(ix)) = -\operatorname{Im} \exp(ix) = -\sin(x)$$

Lokale Extrema

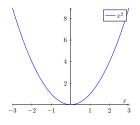
Definition (Lokale Extrema)

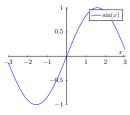
Seien $a < b \in \mathbb{R}$ und $f \colon (a,b) \to \mathbb{R}$. Die Funktion f hat in $x \in (a,b)$ ein lokales Maximum (bzw. lokales Minimum), wenn ein $\varepsilon > 0$ existiert, sodass für alle y mit $|x-y| < \varepsilon$ gilt $f(y) \le f(x)$ (bzw. $f(y) \ge f(x)$).

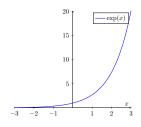
Ist die Ungleichung echt, so spricht man von einem strengen Maximum (bzw. Minimum).

Der Oberbegriff für Maxima und Minima lautet Extremum.

- $f(x) = x^2$ hat bei x = 0 ein lokales Minimum.
- $f(x)=\sin(x)$ hat lokale Maxima bei $\frac{\pi}{2}+2k\pi$ für $k\in\mathbb{Z}$ und lokale Minima bei $-\frac{\pi}{2}+2k\pi$ für $k\in\mathbb{Z}$.
- $f(x) = \exp(x)$ hat keine lokalen Extrema.







Extrema berechnen

Satz 8.18

Hat f ein lokales Extremum in x und ist f differenzierbar in x, dann gilt f'(x) = 0.

Beweis.

- Wir betrachten den Fall, dass f in x ein lokales Minimum hat.
- Sei ε wie in der Definition des lokalen Minimums.
- Dann gilt $\frac{f(x+h)-f(x)}{h} \geq 0$ für alle $h \in (0,\varepsilon)$ und daraus folgt

$$\lim_{h \to 0^+} \frac{f(x+h) - f(h)}{h} \ge 0 .$$

• Analog gilt $\frac{f(x+h)-f(x)}{h} \leq 0$ für alle $h \in (-\varepsilon,0)$. Daraus folgt

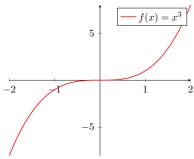
$$\lim_{h \to 0^-} \frac{f(x+h) - f(h)}{h} \le 0 .$$

• Die beiden Grenzwerte müssen aber mit der Ableitung f'(x)übereinstimmen, also muss f'(x) = 0 gelten.

Extrema berechnen (2)

Bemerkungen:

- f'(x) = 0 ist eine notwendige Bedingung für ein Extremum, aber keine hinreichende Bedingung, d.h.:
- Die Umkehrung des Satzes gilt nicht, z.B. ist f'(0) = 0 für $f(x) = x^3$, aber f hat kein Extremum an der Stelle 0.



Extrema berechnen (3)

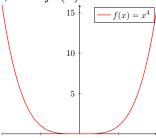
Satz 8.19

Gilt f'(x) = 0 und f''(x) > 0, so hat f bei x ein strenges lokales Minimum. Ist f''(x) < 0, so hat f bei x ein strenges lokales Maximum.

Der Beweis folgt später.

WS 2019/20

Bemerkung: Der Satz liefert ein hinreichendes (aber nicht notwendiges!) Kriterium für ein Extremum, z.B. hat $f(x)=x^4$ an Stelle 0 ein Minimum, aber $f''(x)=12x^2$ und daher f(0)=0.



Ein Hilfssatz

Satz 8.20

Seien $a,b \in \mathbb{R}$ mit a < b und sei $f \colon [a,b] \to \mathbb{R}$ eine stetige Funktion. Dann gibt es $c \in [a,b]$ sodass $f(c) \geq f(x)$ für alle $x \in [a,b]$ gilt.

"Eine stetige Funktion ist auf einem abgeschlossenen Intervall [a,b] stets nach oben beschränkt und nimmt ihr Maximum an"

Bemerkung: Für das Minimum gilt ein analoger Satz.

WS 2019/20

Ein Hilfssatz (2)

Satz 8.20

Seien $a, b \in \mathbb{R}$ mit a < b und sei $f: [a, b] \to \mathbb{R}$ eine stetige Funktion. Dann gibt es $c \in [a, b]$ sodass $f(c) \ge f(x)$ für alle $x \in [a, b]$ gilt.

Beweisskizze

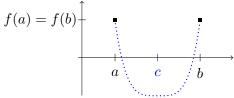
- f ist im Intervall [a, b] nach oben beschränkt, denn sonst:
 - Es gibt Folge $(x_n)_{n\in\mathbb{N}}$ mit $x_i\in[a,b]$ und $\lim_{n\to\infty}f(x_n)=\infty$
 - Die Folge (x_n) ist beschränkt (da $a \le x_i \le b$). Satz von Bolzano-Weierstrasss: Durch Weglassen von Elementen kann man $(x_n)_{n\in\mathbb{N}}$ zu einer konvergenten Teilfolge $(x_{k_n})_{n\in\mathbb{N}}$ machen
 - Mit $x := \lim_{n \to \infty} x_{k_n}$ folgt $\lim_{n \to \infty} f(x_{k_n}) = f(x)$, da f stetig.
 - Dann kann aber nicht $\lim_{n\to\infty} f(x_n) = \infty$ gelten.
 - Also muss f im Intervall [a, b] nach oben beschränkt sein.
- Mit ähnlichem Argument: Das Supremum der Funktionswerte von f im Intervall [a, b] wird in einem Punkt c angenommen.

Satz von Michel Rolle

Satz von Rolle

Seien $a,b\in\mathbb{R}$ mit a< b und sei $f\colon [a,b]\to\mathbb{R}$ eine stetige Funktion mit f(a)=f(b). Sei f im Intervall (a,b) differenzierbar. Dann gibt es $c\in (a,b)$ mit f'(c)=0.

Veranschaulichung:



Satz von Michel Rolle (2)

Satz von Rolle

Seien $a,b\in\mathbb{R}$ mit a< b und sei $f\colon [a,b]\to\mathbb{R}$ eine stetige Funktion mit f(a)=f(b). Sei f im Intervall (a,b) differenzierbar. Dann gibt es $c\in (a,b)$ mit f'(c)=0.

Beweis.

- ullet Wenn f konstant ist, dann ist die Aussage klar.
- Sonst hat f nach Satz 8.20 (und dem analogen Satz f
 ür Minima) ein lokales Maximum oder Minimum (oder beides).
- ullet Ein solches Extremum wird in (mindestens) einem Punkt c auch angenommen.
- Mit Satz 8.18 folgt f'(c) = 0.

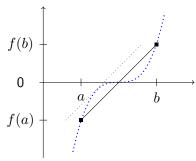
Mittelwertsatz der Differentialrechnung

Satz (Mittelwertsatz der Differentialrechnung)

Seien $a, b \in \mathbb{R}$ mit a < b, sei $f: [a, b] \to \mathbb{R}$ stetig und im Intervall (a,b) differenzierbar. Dann gibt es $c \in (a,b)$ mit

$$f'(c) = \frac{f(b) - f(a)}{b - a} .$$

Veranschaulichung



An einem Punkt in (a,b) entspricht die Steigung gerade der Steigung der Sekanten durch a und b.

Mittelwertsatz der Differentialrechnung (2)

Satz (Mittelwertsatz der Differentialrechnung)

Seien $a, b \in \mathbb{R}$ mit a < b, sei $f: [a, b] \to \mathbb{R}$ stetig und im Intervall (a,b) differenzierbar. Dann gibt es $c \in (a,b)$ mit

$$f'(c) = \frac{f(b) - f(a)}{b - a} .$$

Beweis. Definiere
$$g(x) := f(x) - f(a) - (x - a) \cdot \frac{f(b) - f(a)}{b - a}$$

Es gilt g(a) = g(b) = 0. Nach dem Satz von Rolle gibt es $c \in (a, b)$ mit g'(c) = 0. Nach den Rechenregeln für Ableitungen folgt aber

$$g'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$$
, woraus mit $g'(c) = 0$ die Aussage folgt.

Konsequenzen des Mittelwertsatzes

Satz 8.23

Ist I ein Intervall und $f\colon I\to W$ differenzierbar und gilt f'(x)=0 für alle $x\in I$, so ist f konstant, d.h. es gilt f(x)=c für ein $c\in W$ und alle $x\in I$.

Beweis.

- Seien $a, b \in I$ mit $a \neq b$.
- Nach dem Mittelwertsatz der Differentialrechnung gibt es $x \in I$ mit $\frac{f(b) f(a)}{b a} = f'(x) = 0$, also f(a) = f(b).
- Es gilt daher, f(x) = c für c := f(a) für beliebig gewähltes $a \in I$.

Konsequenzen des Mittelwertsatzes (2)

Satz

Ist I ein Intervall und $f\colon I\to W$ differenzierbar und gilt f'(x)=af(x) für alle $x\in I$, so existiert $c\in\mathbb{R}$ mit $f(x)=c\cdot\exp(ax)$.

Beweis.

- Betrachte $g(x) := f(x) \exp(-ax)$.
- Es gilt $g'(x) = f'(x) \exp(-ax) af(x) \exp(-ax) = 0$ nach Annahme an f.
- Also ist g(x) konstant und die Behauptung folgt.

Monotonie

Satz 8.25

Sei $f: [a,b] \to \mathbb{R}$ stetig und im Intervall (a,b) differenzierbar. Dann gilt:

- f ist in [a,b] monoton wachsend wenn $f'(x) \geq 0$ für alle $x \in (a,b)$.
- f ist in [a,b] streng monoton steigend wenn f'(x) > 0 für alle $x \in (a,b).$
- f ist in [a,b] monoton fallend wenn $f'(x) \leq 0$ für alle $x \in (a,b)$.
- f ist in [a,b] streng monoton fallend wenn f'(x) < 0 für alle $x \in (a,b).$

Beweis. Wir betrachten den ersten Punkt. Sei $a \le x < y \le b$. Wir müssen $f(x) \leq f(y)$ zeigen. Nach dem Mittelwertsatz der Differentialrechnung gibt es c mit x < c < y sodass $f'(c) = \frac{f(y) - f(x)}{y - x}$. Daraus folgt f(y) = $f(x) + f'(c) \cdot (y - x)$. Nach Annahme gilt $f'(c) \ge 0$ sowie y > x, also ist $f'(c) \cdot (y-x) > 0$. Es folgt f(y) > f(x), wie gewünscht.

Beweis von Satz 8.19

Satz 8.19

Gilt f'(x) = 0 und f''(x) > 0, so hat f bei x ein strenges lokales Minimum. Ist f''(x) < 0, so hat f bei x ein strenges lokales Maximum.

Beweis.

- Wir betrachten den Fall für ein lokales Minimum.
- Da $f''(x) = \lim_{h \to 0} \frac{f'(x+h) f'(x)}{h}$ folgt aus f''(x) > 0: Es gibt $\varepsilon > 0$ sodass $\frac{f'(x+h)-f'(x)}{h} > 0$ für alle h mit $|h| < \varepsilon$.
- Da f'(x) = 0, folgt daraus $\frac{f'(x+h)}{h} > 0$ für alle h mit $|h| < \varepsilon$.
- Für $h \in (0, \varepsilon)$ folgt daher f'(x+h) > 0
- Für $h \in (-\varepsilon, 0)$ folgt daher f'(x+h) < 0
- Mit Satz 8.25 folgt, dass f "links von x" streng monoton fallend ist und "rechts von x" streng monoton steigend. Dann liegt aber ein strenges lokales Minimum vor.

Regeln von l'Hospital

Satz (Regeln von l'Hospital)

Sei $-\infty \le a < b \le \infty$, seien $f,g:(a,b) \to \mathbb{R}$ differenzierbare Funktionen und sei entweder $x_0 = a$ oder $x_0 = b$. Es gelte $g'(x) \neq 0$ für alle $x \in (a,b)$ und $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$ existiert.

Unter diesen Annahmen gilt:

Wenn
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) \in \{0, \infty\}$$
, dann $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$.

Beweisskizze.

- Wir skizzieren nur den Fall mit $x_0 = b \in \mathbb{R}$ und $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = 0 \text{, in dem } f' \text{ und } g' \text{ auch noch stetig sind}.$
- Da $f(x_0) := 0$ und $g(x_0) := 0$ können wir f und g als stetige Funktionen mit Definitionbereich (a, b] auffassen.
-

Regeln von l'Hospital: Beweis Forts.

• Für alle $x \in (a, x_0)$ gibt es dann nach dem Mittelwertsatz jeweils $u \in (x, x_0)$ und $v \in (x, x_0)$ mit

$$f'(u) = \frac{f(x_0) - f(x)}{x_0 - x}$$
 und $g'(v) = \frac{g(x_0) - g(x)}{x_0 - x}$.

• Nach Annahme ist g' im ganzen Intervall (x, x_0) ungleich 0. Also können wir f'(u) durch g'(v) teilen und erhalten

$$\frac{f'(u)}{g'(v)} = \frac{f(x) - f(x_0)}{g(x) - g(x_0)} ,$$

• Wenn wir jetzt x gegen x_0 gehen lassen, dann gehen auch die entsprechenden u und v gegen x_0 , da diese im Intervall (x,x_0) liegen. Damit erhält man dann

$$\frac{\lim_{u \to x_0} f'(u)}{\lim_{v \to x_0} g'(v)} = \frac{\lim_{x \to x_0} f(x_0) - f(x)}{\lim_{x \to x_0} g(x_0) - g(x)}.$$

Regeln von l'Hospital: Beweis Forts. (2)

• Wir haben oben $f(x_0) = g(x_0) = 0$ gesetzt, also folgt mit den Rechenregeln für Grenzwerte:

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \lim_{x \to x_0} \frac{f(x)}{g(x)}$$

• Grenzwert vom Typ $\frac{0}{0}$:

$$\lim_{x \to 0} \frac{\exp(x) - 1}{x} = ?$$

• Grenzwert vom Typ $\frac{0}{0}$:

$$\lim_{x \to 0} \frac{\exp(x) - 1}{x} = \lim_{x \to 0} \frac{\exp(x)}{1} = 1$$

• Grenzwert vom Typ $\frac{0}{0}$:

$$\lim_{x\to 0}\frac{\exp(x)-1}{x}=\lim_{x\to 0}\frac{\exp(x)}{1}=1$$

• Grenzwerte vom Typ $0\cdot\infty$ können auf den Typ $\frac{\infty}{\infty}$ reduziert werden:

$$\lim_{x \to 0} x \ln(x) = -\lim_{x \to 0} \frac{-\ln(x)}{\left(\frac{1}{x}\right)} = -\lim_{x \to 0} \frac{\left(\frac{-1}{x}\right)}{\left(\frac{-1}{x^2}\right)} = -\lim_{x \to 0} x = 0$$

• Grenzwert vom Typ $\frac{0}{0}$:

$$\lim_{x \to 0} \frac{\exp(x) - 1}{x} = \lim_{x \to 0} \frac{\exp(x)}{1} = 1$$

• Grenzwerte vom Typ $0 \cdot \infty$ können auf den Typ $\frac{\infty}{\infty}$ reduziert werden:

$$\lim_{x \to 0} x \ln(x) = -\lim_{x \to 0} \frac{-\ln(x)}{\left(\frac{1}{x}\right)} = -\lim_{x \to 0} \frac{\left(\frac{-1}{x}\right)}{\left(\frac{-1}{x^2}\right)} = -\lim_{x \to 0} x = 0$$

• Grenzwerte vom Typ 0^0 können auf den Typ $\frac{\infty}{\infty}$ reduziert werden:

$$\lim_{x \to 0} x^x = \lim_{x \to 0} \exp(x \cdot \ln(x)) = \exp\left(-\lim_{x \to 0} \frac{-\ln(x)}{\frac{1}{x}}\right) = \exp(0) = 1$$

Beispiele (2)

Manchmal ist es hilfreich, die l'Hospitalschen Regeln mehrfach nacheinander anzuwenden.

$$\lim_{x \to \infty} \frac{\exp(x)}{x^2} = \lim_{x \to \infty} \frac{\exp(x)}{2x} = \lim_{x \to \infty} \frac{\exp(x)}{2} = \infty$$

Umformungen: Übersicht

• Wenn $\lim_{x \to \infty} f(x) \cdot g(x) = "0 \cdot \infty"$ dann verwende:

$$\lim_{x \to x_0} f(x) \cdot \frac{1}{\frac{1}{g(x)}} \text{ oder } \lim_{x \to x_0} \frac{1}{\frac{1}{f(x)}} \cdot g(x)$$

• Wenn $\lim_{x \to x_0} f(x) - g(x) = "\infty - \infty"$, dann verwende:

$$\lim_{x \to x_0} f(x) - g(x) = \frac{\frac{1}{g(x)} - \frac{1}{f(x)}}{\frac{1}{f(x) \cdot g(x)}}$$

• Wenn $\lim_{x\to x_0} f(x)^{g(x)} = 0^0$ oder ∞^0 oder 1^∞ , dann verwende:

$$\lim_{x \to x_0} f(x)^{g(x)} = \lim_{x \to x_0} \exp(g(x) \cdot \ln(f(x)))$$

Bemerkung

Achtung: Damit die Regel von L'Hospital anwendbar ist, **muss** eine der sogenannten unbestimmten Formen, also $\frac{0}{0}$, $\frac{\infty}{\infty}$ oder $\frac{-\infty}{-\infty}$ vorliegen.

Zum Beispiel gilt

$$0 = \lim_{x \to 0} \frac{x}{1+x} \neq \lim_{x \to 0} \frac{1}{1} = 1 .$$