

Grundlagen der Analysis Wintersemester 2019/20

Folgen und Grenzwerte

Prof. Dr. David Sabel

LFE Theoretische Informatik

Folgen

Definition (Folge)

Eine Folge $(a_n)_{n\in\mathbb{N}}$ ist gegeben durch eine reelle Zahl a_n für jede natürliche Zahl n.

Notation

- Wir schreiben auch (a_0, a_1, a_2, \dots) .
- Wir schreiben $(a_n)_{n>k}$ für die Folge $(a_k, a_{k+1}, a_{k+2}, \dots)$, d.h. $(a_{k+n})_{n\in\mathbb{N}}$.

- $a_n := \frac{1}{n}$ definiert die Folge $(a_n)_{n \geq 1} = (1, \frac{1}{2}, \frac{1}{3}, \dots)$.
- $a_n := (-1)^n$ definiert die Folge $(a_n)_{n \ge 1} = (-1,1,-1,1,\dots)$.
- $a_n := \frac{n}{n+1}$ definiert die Folge $(a_n)_{n \ge 1} = (\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots)$.
- $a_n := \frac{n}{2^n}$ definiert die Folge $(a_n)_{n \ge 1} = (\frac{1}{2}, \frac{2}{4}, \frac{3}{8}, \frac{4}{16}, \dots).$

Konvergenz und Grenzwert

Definition (Konvergenz einer Folge)

Eine Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert gegen $a\in\mathbb{R}$, falls es für jedes $\varepsilon > 0$ ein $N \in \mathbb{N}$ gibt, sodass $|a_n - a| < \varepsilon$ für alle n > N gilt.

Die reelle Zahl a heißt dann Grenzwert der Folge.

Konvergenz und Grenzwert

Definition (Konvergenz einer Folge)

Eine Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert gegen $a\in\mathbb{R}$, falls es für jedes $\varepsilon > 0$ ein $N \in \mathbb{N}$ gibt, sodass $|a_n - a| < \varepsilon$ für alle n > N gilt.

Die reelle Zahl a heißt dann Grenzwert der Folge.

Notation: Man schreibt $\lim a_n$ für den Grenzwert der Folge $(a_n)_{n\in\mathbb{N}}$, wenn dieser existiert.

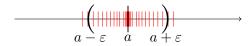
Eine Folge heißt

- konvergent, wenn der Grenzwert existiert
- divergent, wenn kein Grenzwert exisitiert

Veranschaulichung

Konvergenz von $(a_n)_{n\in\mathbb{N}}$ besagt:

Es gibt beliebig kleine ε -Umgebungen des Grenzwertes $a=\lim_{n o\infty}a_n$, so dass fast alle (nämlich alle bis auf endlich viele) Folgenglieder in der ε -Umgebung liegen.



$$\lim_{n \to \infty} \frac{1}{n} = 0$$

- Nach einer Konsequenz des Archimedischen Axioms
- $\bullet \text{ F\"{u}r alle } n>N \text{ g\'{i}lt: } \frac{1}{n}<\frac{1}{N}.$
- \bullet Daher gilt sicher auch $\frac{1}{-}<\varepsilon$ für alle n>N
- und damit gilt $\left|\frac{1}{n}-0\right|=\frac{1}{n}<\varepsilon$ für alle n>N

$$\lim_{n \to \infty} \frac{1}{n} = 0$$

- Sei $\varepsilon > 0$.
- Nach einer Konsequenz des Archimedischen Axioms
- $\bullet \ \mbox{F\"{u}r alle} \ n > N \ \mbox{gilt:} \ \frac{1}{n} < \frac{1}{N}.$
- \bullet Daher gilt sicher auch $\frac{1}{-}<\varepsilon$ für alle n>N
- und damit gilt $\left|\frac{1}{n}-0\right|=\frac{1}{n}<\varepsilon$ für alle n>N

$$\lim_{n \to \infty} \frac{1}{n} = 0$$

- Sei $\varepsilon > 0$.
- Nach einer Konsequenz des Archimedischen Axioms (Satz 3.13) gibt es ein $N \in \mathbb{N}$ mit $\frac{1}{N} < \varepsilon$.
- $\bullet \ \ \text{Für alle} \ n>N \ \text{gilt:} \ \frac{1}{n}<\frac{1}{N}.$
- \bullet Daher gilt sicher auch $\frac{1}{-}<\varepsilon$ für alle n>N
- und damit gilt $\left|\frac{1}{n}-0\right|=\frac{1}{n}<\varepsilon$ für alle n>N

$$\lim_{n \to \infty} \frac{1}{n} = 0$$

- Sei $\varepsilon > 0$.
- Nach einer Konsequenz des Archimedischen Axioms (Satz 3.13) gibt es ein $N \in \mathbb{N}$ mit $\frac{1}{N} < \varepsilon$.
- Für alle n > N gilt: $\frac{1}{n} < \frac{1}{N}$.
- \bullet Daher gilt sicher auch $\frac{1}{-}<\varepsilon$ für alle n>N
- und damit gilt $\left|\frac{1}{n} 0\right| = \frac{1}{n} < \varepsilon$ für alle n > N

$$\lim_{n \to \infty} \frac{1}{n} = 0$$

- Sei $\varepsilon > 0$.
- Nach einer Konsequenz des Archimedischen Axioms (Satz 3.13) gibt es ein $N \in \mathbb{N}$ mit $\frac{1}{N} < \varepsilon$.
- Für alle n > N gilt: $\frac{1}{n} < \frac{1}{N}$.
- \bullet Daher gilt sicher auch $\frac{1}{-}<\varepsilon$ für alle n>N
- und damit gilt $\left|\frac{1}{n}-0\right|=\frac{1}{n}<\varepsilon$ für alle n>N

$$\lim_{n \to \infty} \frac{1}{n} = 0$$

- Sei $\varepsilon > 0$.
- Nach einer Konsequenz des Archimedischen Axioms (Satz 3.13) gibt es ein $N \in \mathbb{N}$ mit $\frac{1}{N} < \varepsilon$.
- Für alle n > N gilt: $\frac{1}{n} < \frac{1}{N}$.
- \bullet Daher gilt sicher auch $\frac{1}{-}<\varepsilon$ für alle n>N
- und damit gilt $\left|\frac{1}{n}-0\right|=\frac{1}{n}<\varepsilon$ für alle n>N

 $(n)_{n\in\mathbb{N}}$ hat keinen Grenzwert (divergiert).

Beweis durch Widerspruch:

- Angenommen a sei der Grenzwert.
- Sei k = |a| + 1
- Dann gilt $k \geq a$ und $|(k+i)-a| \geq 1$ für alle $i \in \{1,2,\ldots\}$
- D.h. z.B. für $\varepsilon = \frac{1}{2}$ gibt es kein N, sodass

 $(n)_{n\in\mathbb{N}}$ hat keinen Grenzwert (divergiert).

Beweis durch Widerspruch:

- Angenommen a sei der Grenzwert.
- Sei k = |a| + 1
- Dann gilt $k \ge a$ und $|(k+i)-a| \ge 1$ für alle $i \in \{1,2,\ldots\}$
- D.h. z.B. für $\varepsilon = \frac{1}{2}$ gibt es kein N, sodass

 $(n)_{n\in\mathbb{N}}$ hat keinen Grenzwert (divergiert).

Beweis durch Widerspruch:

- Angenommen a sei der Grenzwert.
- Sei k = |a| + 1
- Dann gilt $k \geq a$ und $|(k+i)-a| \geq 1$ für alle $i \in \{1,2,\ldots\}$
- D.h. z.B. für $\varepsilon = \frac{1}{2}$ gibt es kein N, sodass

 $(n)_{n\in\mathbb{N}}$ hat keinen Grenzwert (divergiert).

Beweis durch Widerspruch:

- Angenommen a sei der Grenzwert.
- Sei k = |a| + 1
- Dann gilt $k \geq a$ und $|(k+i) a| \geq 1$ für alle $i \in \{1, 2, \ldots\}$
- D.h. z.B. für $\varepsilon = \frac{1}{2}$ gibt es kein N, sodass

 $(n)_{n\in\mathbb{N}}$ hat keinen Grenzwert (divergiert).

- Angenommen a sei der Grenzwert.
- Sei k = |a| + 1
- Dann gilt $k \geq a$ und $|(k+i) a| \geq 1$ für alle $i \in \{1, 2, \ldots\}$
- D.h. z.B. für $\varepsilon = \frac{1}{2}$ gibt es kein N, sodass $|a_n - a| = |n - a| < \varepsilon$ für alle n > N(denn für alle n > k ist $|a_n - a| = |n - a| \ge 1 > \frac{1}{2}$).

 $(n)_{n\in\mathbb{N}}$ hat keinen Grenzwert (divergiert).

- Angenommen a sei der Grenzwert.
- Sei k = |a| + 1
- Dann gilt $k \geq a$ und $|(k+i) a| \geq 1$ für alle $i \in \{1, 2, \ldots\}$
- D.h. z.B. für $\varepsilon = \frac{1}{2}$ gibt es kein N, sodass $|a_n - a| = |n - a| < \varepsilon$ für alle n > N(denn für alle n > k ist $|a_n - a| = |n - a| \ge 1 > \frac{1}{2}$).
- Daher existiert a nicht.

$$((-1)^n)_{n\in\mathbb{N}}$$
 hat keinen Grenzwert (divergiert).

- Angenommen a wäre ein Grenzwert.
- Für ein beliebiges $\varepsilon > 0$ müsste dann $|a_n a| < \varepsilon$ für alle
- ullet Da die Folge immer abwechselnd die Werte 1 und -1
- Unsere Annahme, dass a ein Grenzwert der Folge ist, muss

$$((-1)^n)_{n\in\mathbb{N}}$$
 hat keinen Grenzwert (divergiert).

- Angenommen a wäre ein Grenzwert.
- Für ein beliebiges $\varepsilon > 0$ müsste dann $|a_n a| < \varepsilon$ für alle
- ullet Da die Folge immer abwechselnd die Werte 1 und -1
- Unsere Annahme, dass a ein Grenzwert der Folge ist, muss

$$((-1)^n)_{n\in\mathbb{N}}$$
 hat keinen Grenzwert (divergiert).

Beweis durch Widerspruch:

- Angenommen a wäre ein Grenzwert.
- Für ein beliebiges $\varepsilon>0$ müsste dann $|a_n-a|<\varepsilon$ für alle hinreichend großen n gelten.
- Da die Folge immer abwechselnd die Werte 1 und -1 annimmt, bedeutet das: $|1-a|<\varepsilon$ und $|-1-a|<\varepsilon$. Mit der Dreiecksungleichung folgt daraus aber $2=|1-a+a+1|\leq |1-a|+|a+1|=|1-a|+|-a-1|\leq 2\varepsilon$ also $1\leq \varepsilon$, was für beliebiges $\varepsilon>0$ sicher nicht wahr ist.
- Unsere Annahme, dass *a* ein Grenzwert der Folge ist, muss also falsch gewesen sein.

$$((-1)^n)_{n\in\mathbb{N}}$$
 hat keinen Grenzwert (divergiert).

Beweis durch Widerspruch:

- Angenommen a wäre ein Grenzwert.
- Für ein beliebiges $\varepsilon > 0$ müsste dann $|a_n a| < \varepsilon$ für alle hinreichend großen n gelten.
- Da die Folge immer abwechselnd die Werte 1 und -1annimmt, bedeutet das: $|1-a| < \varepsilon$ und $|-1-a| < \varepsilon$.
- Unsere Annahme, dass a ein Grenzwert der Folge ist, muss

$$((-1)^n)_{n\in\mathbb{N}}$$
 hat keinen Grenzwert (divergiert).

Beweis durch Widerspruch:

- Angenommen a wäre ein Grenzwert.
- Für ein beliebiges $\varepsilon > 0$ müsste dann $|a_n a| < \varepsilon$ für alle hinreichend großen n gelten.
- Da die Folge immer abwechselnd die Werte 1 und -1annimmt, bedeutet das: $|1-a| < \varepsilon$ und $|-1-a| < \varepsilon$. Mit der Dreiecksungleichung folgt daraus aber $2 = |1 - a + a + 1| \le |1 - a| + |a + 1| = |1 - a| + |-a - 1| \le 2\varepsilon$ also $1 \le \varepsilon$, was für beliebiges $\varepsilon > 0$ sicher nicht wahr ist.
- Unsere Annahme, dass a ein Grenzwert der Folge ist, muss

$$((-1)^n)_{n\in\mathbb{N}}$$
 hat keinen Grenzwert (divergiert).

- Angenommen a wäre ein Grenzwert.
- Für ein beliebiges $\varepsilon > 0$ müsste dann $|a_n a| < \varepsilon$ für alle hinreichend großen n gelten.
- Da die Folge immer abwechselnd die Werte 1 und -1annimmt, bedeutet das: $|1-a| < \varepsilon$ und $|-1-a| < \varepsilon$. Mit der Dreiecksungleichung folgt daraus aber $2 = |1 - a + a + 1| \le |1 - a| + |a + 1| = |1 - a| + |-a - 1| \le 2\varepsilon$ also $1 \le \varepsilon$, was für beliebiges $\varepsilon > 0$ sicher nicht wahr ist.
- Unsere Annahme, dass a ein Grenzwert der Folge ist, muss also falsch gewesen sein.

$$\lim_{n\to\infty}\frac{n}{n+1}=1$$

- Sei $\varepsilon > 0$.
- \bullet Nach Satz 3.13 gibt es $N \in \mathbb{N}$ mit $\frac{1}{{}^{1}\!\!\!/} < \varepsilon$
- $\bullet \ \ {\rm Damit \ ist \ auch \ } \frac{1}{n+1} < \varepsilon \ {\rm für \ alle} \ n > N$
- Damit ist auch $\left|\frac{n}{n+1}-1\right|=\frac{1}{n+1}<\varepsilon$ für alle n>N

$$\lim_{n\to\infty}\frac{n}{n+1}=1$$

- Sei $\varepsilon > 0$.
- Nach Satz 3.13 gibt es $N \in \mathbb{N}$ mit $\frac{1}{\mathbf{n}^{\gamma}} < \varepsilon$
- $\bullet \ \ {\rm Damit \ ist \ auch \ } \frac{1}{n+1} < \varepsilon \ {\rm für \ alle} \ n > N$
- Damit ist auch $\left|\frac{n}{n+1}-1\right|=\frac{1}{n+1}<\varepsilon$ für alle n>N

$$\lim_{n\to\infty}\frac{n}{n+1}=1$$

- Sei $\varepsilon > 0$.
- \bullet Nach Satz 3.13 gibt es $N \in \mathbb{N}$ mit $\frac{1}{\mathcal{N}} < \varepsilon$
- $\bullet \ \, \text{Damit ist auch} \, \, \frac{1}{n+1} < \varepsilon \, \, \text{für alle} \, \, n > N$
- Damit ist auch $\left|\frac{n}{n+1}-1\right|=\frac{1}{n+1}<\varepsilon$ für alle n>N

$$\lim_{n\to\infty}\frac{n}{n+1}=1$$

- Sei $\varepsilon > 0$.
- \bullet Nach Satz 3.13 gibt es $N \in \mathbb{N}$ mit $\frac{1}{N} < \varepsilon$
- $\bullet \ \ {\rm Damit \ ist \ auch \ } \frac{1}{n+1} < \varepsilon \ {\rm für \ alle} \ n > N$
- Damit ist auch $\left|\frac{n}{n+1}-1\right|=\frac{1}{n+1}<\varepsilon$ für alle n>N

$$\lim_{n\to\infty}\frac{n}{n+1}=1$$

- Sei $\varepsilon > 0$.
- \bullet Nach Satz 3.13 gibt es $N \in \mathbb{N}$ mit $\frac{1}{\mathcal{N}} < \varepsilon$
- $\bullet \ \ {\rm Damit \ ist \ auch \ } \frac{1}{n+1} < \varepsilon \ {\rm für \ alle} \ n > N$
- Damit ist auch $\left|\frac{n}{n+1}-1\right|=\frac{1}{n+1}<\varepsilon$ für alle n>N

$$\lim_{n\to\infty}\frac{n}{2^n}=0$$

Beweis:

- Zeige zunächst $\frac{n}{2^n} < \frac{1}{n}$ für alle n > 4:
 - Zeige die äquivalente Aussage $n^2 < 2^n$ für alle n > 4 durch Induktion über n
 - n = 5 gilt, da $5^2 = 25 < 32 = 2^5$
 - Induktionsschritt $n \to n+1$ für $n \ge 5$: $(n+1)^2 = n^2 + 2n + 1 < n^2 + 3n < n^2 + n \cdot n = 2n^2 \stackrel{I.V.}{<} 2 \cdot 2^n = 2^n \stackrel{I.$
- Sei $\varepsilon > 0$. Aus $\lim_{n \to \infty} \frac{1}{n} = 0$, wissen wir: Es gibt $N \in \mathbb{N}$:

$$|rac{1}{n} - 0| = rac{1}{n} < arepsilon$$
 für alle $n > N$

• Daher gibt es auch $N'\in\mathbb{N}$ mit $|\frac{n}{2^n}-0|=\frac{n}{2^n}-0<\frac{1}{n}<\varepsilon$ für alle n>N'

$$\lim_{n\to\infty}\frac{n}{2^n}=0$$

- Zeige zunächst $\frac{n}{2^n} < \frac{1}{n}$ für alle n > 4:
 - Zeige die äquivalente Aussage $n^2 < 2^n$ für alle n > 4 durch Induktion über n
 - n=5 gilt, da $5^2=25<32=2^5$
 - Induktionsschritt $n \to n+1$ für $n \ge 5$: $(n+1)^2 =$ $n^2 + 2n + 1 < n^2 + 3n < n^2 + n \cdot n = 2n^2 \stackrel{I.V.}{<} 2 \cdot 2^n = 2^{n+1}$
- Sei $\varepsilon > 0$. Aus $\lim_{t \to 0} \frac{1}{t} = 0$, wissen wir: Es gibt $N \in \mathbb{N}$:
- Daher gibt es auch $N' \in \mathbb{N}$ mit $|\frac{n}{2n} 0| = \frac{n}{2n} 0 < \frac{1}{n} < \varepsilon$

$$\lim_{n\to\infty}\frac{n}{2^n}=0$$

Beweis:

- Zeige zunächst $\frac{n}{2^n} < \frac{1}{n}$ für alle n > 4:
 - Zeige die äquivalente Aussage $n^2 < 2^n$ für alle n > 4 durch Induktion über n
 - n=5 gilt, da $5^2=25<32=2^5$
 - Induktionsschritt $n \to n+1$ für $n \ge 5$: $(n+1)^2 =$ $n^2 + 2n + 1 < n^2 + 3n < n^2 + n \cdot n = 2n^2 \stackrel{I.V.}{<} 2 \cdot 2^n = 2^{n+1}$
- Sei $\varepsilon > 0$. Aus $\lim_{n \to \infty} \frac{1}{n} = 0$, wissen wir: Es gibt $N \in \mathbb{N}$:

$$|\frac{1}{n} - 0| = \frac{1}{n} < \varepsilon \text{ für alle } n > N$$

• Daher gibt es auch $N' \in \mathbb{N}$ mit $|\frac{n}{2^n} - 0| = \frac{n}{2^n} - 0 < \frac{1}{n} < \varepsilon$

$$\lim_{n\to\infty}\frac{n}{2^n}=0$$

Beweis:

- Zeige zunächst $\frac{n}{2^n} < \frac{1}{n}$ für alle n > 4:
 - Zeige die äquivalente Aussage $n^2 < 2^n$ für alle n > 4 durch Induktion über n
 - n=5 gilt, da $5^2=25<32=2^5$
 - Induktionsschritt $n \to n+1$ für $n \ge 5$: $(n+1)^2 =$ $n^2 + 2n + 1 < n^2 + 3n < n^2 + n \cdot n = 2n^2 \stackrel{I.V.}{<} 2 \cdot 2^n = 2^{n+1}$
- Sei $\varepsilon > 0$. Aus $\lim_{n \to \infty} \frac{1}{n} = 0$, wissen wir: Es gibt $N \in \mathbb{N}$:

$$|\frac{1}{n} - 0| = \frac{1}{n} < \varepsilon \text{ für alle } n > N$$

• Daher gibt es auch $N' \in \mathbb{N}$ mit $|\frac{n}{2^n} - 0| = \frac{n}{2^n} - 0 < \frac{1}{n} < \varepsilon$ für alle n > N'

Einzigartigkeit des Grenzwerts

Satz

Jede Folge hat höchstens einen Grenzwert.

Einzigartigkeit des Grenzwerts

Satz

Jede Folge hat höchstens einen Grenzwert.

Beweis. Durch Widerspruch

- Annahme: a und a' sind verschiedene Grenzwerte von $(a_n)_{n\in\mathbb{N}}$.
- Setze $\varepsilon := \frac{|a-a'|}{2}$.
- Da $a=\lim_{n\to\infty}a_n$, gibt es $N\in\mathbb{N}$ mit $|a_n-a|<\varepsilon$ für alle n>N.
- Da $a' = \lim_{n \to \infty} a_n$, gibt es $N' \in \mathbb{N}$ mit $|a_n a'| < \varepsilon$ für alle n > N'.
- Für alle $n > \max(N, N')$ gelten beide Ungleichungen.
- Daher durch Addition: $|a_n a'| + |a_n a| < 2\varepsilon$.
- Mit der Dreiecksungleichung:

$$|a - a'| = |(a_n - a') + (a - a_n)|$$

$$\leq |a_n - a'| + |a - a_n| = |a_n - a'| + |a_n - a| < 2\varepsilon = |a - a'|$$

• D.h. |a-a'| < |a-a'|. Widerspruch wegen (O1)

Einzigartigkeit des Grenzwerts

Satz

Jede Folge hat höchstens einen Grenzwert.

Beweis. Durch Widerspruch

• Annahme: a und a' sind verschiedene Grenzwerte von $(a_n)_{n\in\mathbb{N}}$.

$$\bullet \ \operatorname{Setze} \, \varepsilon := \frac{|a-a'|}{2}.$$

- Da $a=\lim_{n\to\infty}a_n$, gibt es $N\in\mathbb{N}$ mit $|a_n-a|<\varepsilon$ für alle n>N.
- Da $a' = \lim_{n \to \infty} a_n$, gibt es $N' \in \mathbb{N}$ mit $|a_n a'| < \varepsilon$ für alle n > N'.
- Für alle $n > \max(N, N')$ gelten beide Ungleichungen.
- Daher durch Addition: $|a_n a'| + |a_n a| < 2\varepsilon$.
- Mit der Dreiecksungleichung:

$$|a - a'| = |(a_n - a') + (a - a_n)|$$

Satz

Jede Folge hat höchstens einen Grenzwert.

- Annahme: a und a' sind verschiedene Grenzwerte von $(a_n)_{n\in\mathbb{N}}$.
- Setze $\varepsilon := \frac{|a-a'|}{2}$.
- $\bullet \ \ \mathsf{Da} \ a = \lim_{n \to \infty} a_n \text{, gibt es } N \in \mathbb{N} \ \mathsf{mit} \ |a_n a| < \varepsilon \ \mathsf{für alle} \ n > N.$
- Da $a'=\lim_{n\to\infty}a_n$, gibt es $N'\in\mathbb{N}$ mit $|a_n-a'|<\varepsilon$ für alle n>N'.
- Für alle $n > \max(N, N')$ gelten beide Ungleichungen.
- Daher durch Addition: $|a_n a'| + |a_n a| < 2\varepsilon$.
- Mit der Dreiecksungleichung:
- D.h. |a-a'| < |a-a'|. Widerspruch wegen (O1)

Satz

Jede Folge hat höchstens einen Grenzwert.

- Annahme: a und a' sind verschiedene Grenzwerte von $(a_n)_{n\in\mathbb{N}}$.
- Setze $\varepsilon := \frac{|a-a'|}{2}$.
- $\bullet \ \ \mathsf{Da} \ a = \lim_{n \to \infty} a_n \text{, gibt es } N \in \mathbb{N} \ \mathsf{mit} \ |a_n a| < \varepsilon \ \mathsf{für alle} \ n > N.$
- Da $a'=\lim_{n\to\infty}a_n$, gibt es $N'\in\mathbb{N}$ mit $|a_n-a'|<\varepsilon$ für alle n>N'.
- Für alle $n > \max(N, N')$ gelten beide Ungleichungen.
- Daher durch Addition: $|a_n a'| + |a_n a| < 2\varepsilon$.
- Mit der Dreiecksungleichung:
- D.h. |a-a'| < |a-a'|. Widerspruch wegen (O1)

Satz

Jede Folge hat höchstens einen Grenzwert.

- Annahme: a und a' sind verschiedene Grenzwerte von $(a_n)_{n\in\mathbb{N}}$.
- Setze $\varepsilon := \frac{|a-a'|}{2}$.
- $\bullet \ \ \mathsf{Da} \ a = \lim_{n \to \infty} a_n \text{, gibt es } N \in \mathbb{N} \ \mathsf{mit} \ |a_n a| < \varepsilon \ \mathsf{für alle} \ n > N.$
- Da $a' = \lim_{n \to \infty} a_n$, gibt es $N' \in \mathbb{N}$ mit $|a_n a'| < \varepsilon$ für alle n > N'.
- Für alle $n > \max(N, N')$ gelten beide Ungleichungen.
- Daher durch Addition: $|a_n a'| + |a_n a| < 2\varepsilon$.
- Mit der Dreiecksungleichung:
- D.h. |a-a'| < |a-a'|. Widerspruch wegen (O1)

Satz

Jede Folge hat höchstens einen Grenzwert.

- Annahme: a und a' sind verschiedene Grenzwerte von $(a_n)_{n\in\mathbb{N}}$.
- Setze $\varepsilon := \frac{|a-a'|}{2}$.
- $\bullet \ \ \mathsf{Da} \ a = \lim_{n \to \infty} a_n \text{, gibt es } N \in \mathbb{N} \ \mathsf{mit} \ |a_n a| < \varepsilon \ \mathsf{für alle} \ n > N.$
- Da $a' = \lim_{n \to \infty} a_n$, gibt es $N' \in \mathbb{N}$ mit $|a_n a'| < \varepsilon$ für alle n > N'.
- Für alle $n > \max(N, N')$ gelten beide Ungleichungen.

- D.h. |a-a'| < |a-a'|. Widerspruch wegen (O1)

Satz

Jede Folge hat höchstens einen Grenzwert.

- Annahme: a und a' sind verschiedene Grenzwerte von $(a_n)_{n\in\mathbb{N}}$.
- Setze $\varepsilon := \frac{|a-a'|}{2}$.
- $\bullet \ \ \mathsf{Da} \ a = \lim_{n \to \infty} a_n \text{, gibt es } N \in \mathbb{N} \ \mathsf{mit} \ |a_n a| < \varepsilon \ \mathsf{für alle} \ n > N.$
- Da $a' = \lim_{n \to \infty} a_n$, gibt es $N' \in \mathbb{N}$ mit $|a_n a'| < \varepsilon$ für alle n > N'.
- Für alle $n > \max(N, N')$ gelten beide Ungleichungen.
- Daher durch Addition: $|a_n a'| + |a_n a| < 2\varepsilon$.

- D.h. |a-a'| < |a-a'|. Widerspruch wegen (O1)

Satz

Jede Folge hat höchstens einen Grenzwert.

Beweis. Durch Widerspruch

- Annahme: a und a' sind verschiedene Grenzwerte von $(a_n)_{n\in\mathbb{N}}$.
- Setze $\varepsilon := \frac{|a-a'|}{2}$.
- $\bullet \ \ \mathsf{Da} \ a = \lim_{n \to \infty} a_n \text{, gibt es } N \in \mathbb{N} \ \mathsf{mit} \ |a_n a| < \varepsilon \ \mathsf{für alle} \ n > N.$
- Da $a' = \lim_{n \to \infty} a_n$, gibt es $N' \in \mathbb{N}$ mit $|a_n a'| < \varepsilon$ für alle n > N'.
- Für alle $n > \max(N, N')$ gelten beide Ungleichungen.
- Daher durch Addition: $|a_n a'| + |a_n a| < 2\varepsilon$.
- Mit der Dreiecksungleichung:

$$|a - a| = |(a_n - a') + (a - a_n)|$$

$$\leq |a_n - a'| + |a - a_n| = |a_n - a'| + |a_n - a| < 2\varepsilon = |a - a'|$$

Satz

Jede Folge hat höchstens einen Grenzwert.

Beweis. Durch Widerspruch

- Annahme: a und a' sind verschiedene Grenzwerte von $(a_n)_{n\in\mathbb{N}}$.
- Setze $\varepsilon := \frac{|a-a'|}{2}$.
- $\bullet \ \ \mathsf{Da} \ a = \lim_{n \to \infty} a_n \text{, gibt es } N \in \mathbb{N} \ \mathsf{mit} \ |a_n a| < \varepsilon \ \mathsf{für alle} \ n > N.$
- Da $a' = \lim_{n \to \infty} a_n$, gibt es $N' \in \mathbb{N}$ mit $|a_n a'| < \varepsilon$ für alle n > N'.
- Für alle $n > \max(N, N')$ gelten beide Ungleichungen.
- Daher durch Addition: $|a_n a'| + |a_n a| < 2\varepsilon$.
- Mit der Dreiecksungleichung:

$$|a - a'| = |(a_n - a') + (a - a_n)|$$

 $\leq |a_n - a'| + |a - a_n| = |a_n - a'| + |a_n - a| < 2\varepsilon = |a - a'|$

Satz

Jede Folge hat höchstens einen Grenzwert.

Beweis. Durch Widerspruch

- Annahme: a und a' sind verschiedene Grenzwerte von $(a_n)_{n\in\mathbb{N}}$.
- Setze $\varepsilon := \frac{|a-a'|}{2}$.
- $\bullet \ \ \mathsf{Da} \ a = \lim_{n \to \infty} a_n \text{, gibt es } N \in \mathbb{N} \ \mathsf{mit} \ |a_n a| < \varepsilon \ \mathsf{für alle} \ n > N.$
- Da $a' = \lim_{n \to \infty} a_n$, gibt es $N' \in \mathbb{N}$ mit $|a_n a'| < \varepsilon$ für alle n > N'.
- Für alle $n > \max(N, N')$ gelten beide Ungleichungen.
- Daher durch Addition: $|a_n a'| + |a_n a| < 2\varepsilon$.
- Mit der Dreiecksungleichung:

$$|a-a'| = |(a_n - a') + (a - a_n)|$$

 $\leq |a_n - a'| + |a - a_n| = |a_n - a'| + |a_n - a| < 2\varepsilon = |a - a'|$

Satz

Jede Folge hat höchstens einen Grenzwert.

Beweis. Durch Widerspruch

- Annahme: a und a' sind verschiedene Grenzwerte von $(a_n)_{n\in\mathbb{N}}$.
- Setze $\varepsilon := \frac{|a-a'|}{2}$.
- $\bullet \ \ \mathsf{Da} \ a = \lim_{n \to \infty} a_n \text{, gibt es } N \in \mathbb{N} \ \mathsf{mit} \ |a_n a| < \varepsilon \ \mathsf{für alle} \ n > N.$
- Da $a' = \lim_{n \to \infty} a_n$, gibt es $N' \in \mathbb{N}$ mit $|a_n a'| < \varepsilon$ für alle n > N'.
- Für alle $n > \max(N, N')$ gelten beide Ungleichungen.
- Daher durch Addition: $|a_n a'| + |a_n a| < 2\varepsilon$.
- Mit der Dreiecksungleichung:

$$|a - a'| = |(a_n - a') + (a - a_n)|$$

$$\leq |a_n - a'| + |a - a_n| = |a_n - a'| + |a_n - a| < 2\varepsilon = |a - a'|$$

Satz

Jede Folge hat höchstens einen Grenzwert.

Beweis. Durch Widerspruch

- Annahme: a und a' sind verschiedene Grenzwerte von $(a_n)_{n\in\mathbb{N}}$.
- Setze $\varepsilon := \frac{|a-a'|}{2}$.
- $\bullet \ \ \mathsf{Da} \ a = \lim_{n \to \infty} a_n \text{, gibt es } N \in \mathbb{N} \ \mathsf{mit} \ |a_n a| < \varepsilon \ \mathsf{für alle} \ n > N.$
- Da $a' = \lim_{n \to \infty} a_n$, gibt es $N' \in \mathbb{N}$ mit $|a_n a'| < \varepsilon$ für alle n > N'.
- Für alle $n > \max(N, N')$ gelten beide Ungleichungen.
- Daher durch Addition: $|a_n a'| + |a_n a| < 2\varepsilon$.
- Mit der Dreiecksungleichung:

$$|a - a'| = |(a_n - a') + (a - a_n)|$$

$$\leq |a_n - a'| + |a - a_n| = |a_n - a'| + |a_n - a| < 2\varepsilon = |a - a'|$$

Satz 4.5

Für alle konvergenten Folgen $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ gilt:

•
$$\lim_{n \to \infty} (a_n + b_n) = (\lim_{n \to \infty} a_n) + (\lim_{n \to \infty} b_n)$$

$$\bullet \lim_{n \to \infty} (a_n \cdot b_n) = (\lim_{n \to \infty} a_n) \cdot (\lim_{n \to \infty} b_n)$$

- Sei $\lim_{n\to\infty} a_n = a$ und $\lim_{n\to\infty} b_n = b$.
- Zu zeigen ist $\lim (a_n + b_n) = a + b$.
- Sei $\varepsilon > 0$. Nach Annahme existieren $N \in \mathbb{N}$ und $M \in \mathbb{N}$
- Wir haben dann $|a_n + b_n (a+b)| = |a_n a + b_n b| \le |a_n a + b_n| \le |a_n a + b_n| \le |a_n a + b_n|$

Satz 4.5

Für alle konvergenten Folgen $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ gilt:

•
$$\lim_{n \to \infty} (a_n + b_n) = (\lim_{n \to \infty} a_n) + (\lim_{n \to \infty} b_n)$$

$$\bullet \lim_{n \to \infty} (a_n \cdot b_n) = (\lim_{n \to \infty} a_n) \cdot (\lim_{n \to \infty} b_n)$$

- Sei $\lim_{n\to\infty} a_n = a$ und $\lim_{n\to\infty} b_n = b$.
- Zu zeigen ist $\lim (a_n + b_n) = a + b$.
- Sei $\varepsilon > 0$. Nach Annahme existieren $N \in \mathbb{N}$ und $M \in \mathbb{N}$
- Wir haben dann $|a_n + b_n (a+b)| = |a_n a + b_n b| \le 1$

Satz 4.5

Für alle konvergenten Folgen $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ gilt:

•
$$\lim_{n \to \infty} (a_n + b_n) = (\lim_{n \to \infty} a_n) + (\lim_{n \to \infty} b_n)$$

$$\bullet \lim_{n \to \infty} (a_n \cdot b_n) = (\lim_{n \to \infty} a_n) \cdot (\lim_{n \to \infty} b_n)$$

- Sei $\lim_{n\to\infty} a_n = a$ und $\lim_{n\to\infty} b_n = b$.
- Zu zeigen ist $\lim_{n \to \infty} (a_n + b_n) = a + b$.
- Sei $\varepsilon > 0$. Nach Annahme existieren $N \in \mathbb{N}$ und $M \in \mathbb{N}$
- Wir haben dann $|a_n + b_n (a+b)| = |a_n a + b_n b| \le 1$

Satz 4.5

Für alle konvergenten Folgen $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ gilt:

•
$$\lim_{n \to \infty} (a_n + b_n) = (\lim_{n \to \infty} a_n) + (\lim_{n \to \infty} b_n)$$

$$\bullet \lim_{n \to \infty} (a_n \cdot b_n) = (\lim_{n \to \infty} a_n) \cdot (\lim_{n \to \infty} b_n)$$

- Sei $\lim_{n\to\infty} a_n = a$ und $\lim_{n\to\infty} b_n = b$.
- Zu zeigen ist $\lim_{n \to \infty} (a_n + b_n) = a + b$.
- Sei $\varepsilon > 0$. Nach Annahme existieren $N \in \mathbb{N}$ und $M \in \mathbb{N}$ sodass $|a_n - a| < \frac{\varepsilon}{2}$ und $|b_m - b| < \frac{\varepsilon}{2}$ für alle n > N, m > M
- Wir haben dann $|a_n + b_n (a+b)| = |a_n a + b_n b| \le 1$

Satz 4.5

Für alle konvergenten Folgen $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ gilt:

- $\bullet \lim_{n \to \infty} (a_n + b_n) = (\lim_{n \to \infty} a_n) + (\lim_{n \to \infty} b_n)$
- $\lim_{n \to \infty} (a_n \cdot b_n) = (\lim_{n \to \infty} a_n) \cdot (\lim_{n \to \infty} b_n)$

- Sei $\lim_{n\to\infty} a_n = a$ und $\lim_{n\to\infty} b_n = b$.
- Zu zeigen ist $\lim_{n \to \infty} (a_n + b_n) = a + b$.
- Sei $\varepsilon > 0$. Nach Annahme existieren $N \in \mathbb{N}$ und $M \in \mathbb{N}$ sodass $|a_n - a| < \frac{\varepsilon}{2}$ und $|b_m - b| < \frac{\varepsilon}{2}$ für alle n > N, m > M
- Wir haben dann $|a_n + b_n (a+b)| = |a_n a + b_n b| \le a$ $|a_n-a|+|b_n-b|<rac{arepsilon}{2}+rac{arepsilon}{2}=arepsilon$ für alle $n>\max(N,M)$, womit $\lim_{n\to\infty}(a_n+b_n)=a+b$ gezeigt ist.

Anmerkungen

Satz 4.5

Für alle konvergenten Folgen $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ gilt:

- $\bullet \lim_{n \to \infty} (a_n + b_n) = (\lim_{n \to \infty} a_n) + (\lim_{n \to \infty} b_n)$
- $\bullet \lim_{n \to \infty} (a_n \cdot b_n) = (\lim_{n \to \infty} a_n) \cdot (\lim_{n \to \infty} b_n)$

Für divergente Folgen $(a_n)_{n\in\mathbb{N}}$ und/oder $(b_n)_{n\in\mathbb{N}}$ kann trotzdem ein Grenzwert für $(a_n + b_n)_{n \in \mathbb{N}}$ oder $(a_n \cdot b_n)_{n \in \mathbb{N}}$ existieren.

- ullet Z.B. ist für $a_n:=n$, $b_n:=-n$ ist $\lim_{n o \infty} (a_n+b_n)=0$
- ullet Z.B. ist für $a_n:=n$, $b_n:=rac{1}{n}$ ist $\lim_{n o\infty}(a_n\cdot b_n)=1$

Satz 4.5 ist für solche Fälle nutzlos.

Für
$$a_n:=\frac{n+1}{n}$$
 kann man $\lim_{n\to\infty}a_n$ berechnen durch $(\lim_{n\to\infty}\frac{1}{n})+(\lim_{n\to\infty}1)=0+1=1$

Satz

Für alle konvergenten Folgen $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ gilt:

$$\text{Wenn } (\lim_{n \to \infty} b_n) \neq 0 \text{, dann } \lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}.$$

Beachte: Wenn $(\lim_{n \to \infty} b_n) \neq 0$, dann muss es ein $N \in \mathbb{N}$ geben, sodass $b_n \neq 0$ für alle n > N.

Satz

Seien $(a_n)_{n \in \mathbb{N}}$ und $(b_n)_{n \in \mathbb{N}}$ zwei konvergente Folgen mit $a_n < b_n$. Dann gilt $(\lim_{n\to\infty} a_n) < (\lim_{n\to\infty} b_n)$.

Beachte: Unter den Annahmen des Satzes gilt nicht immer $(\lim_{n\to\infty} a_n) < (\lim_{n\to\infty} b_n).$

Satz

Seien $(a_n)_{n \in \mathbb{N}}$ und $(b_n)_{n \in \mathbb{N}}$ zwei konvergente Folgen mit $a_n < b_n$. Dann gilt $(\lim_{n\to\infty} a_n) < (\lim_{n\to\infty} b_n)$.

Beachte: Unter den Annahmen des Satzes gilt nicht immer $(\lim_{n\to\infty} a_n) < (\lim_{n\to\infty} b_n).$

Beispiel?

Satz

Seien $(a_n)_{n \in \mathbb{N}}$ und $(b_n)_{n \in \mathbb{N}}$ zwei konvergente Folgen mit $a_n < b_n$. Dann gilt $(\lim_{n\to\infty} a_n) < (\lim_{n\to\infty} b_n)$.

Beachte: Unter den Annahmen des Satzes gilt nicht immer $(\lim_{n\to\infty}a_n)<(\lim_{n\to\infty}b_n).$

Beispiel?

$$a_n := \frac{1}{n+1} \qquad b_n := \frac{1}{n}$$

Satz

Seien $(a_n)_{n \in \mathbb{N}}$ und $(b_n)_{n \in \mathbb{N}}$ zwei konvergente Folgen mit $a_n < b_n$. Dann gilt $(\lim_{n\to\infty} a_n) < (\lim_{n\to\infty} b_n)$.

Beachte: Unter den Annahmen des Satzes gilt nicht immer $(\lim_{n\to\infty} a_n) < (\lim_{n\to\infty} b_n).$

Beispiel?

TCS |

$$a_n := \frac{1}{n+1} \qquad b_n := \frac{1}{n}$$

Dann gilt: $a_n < b_n$ und $\lim_{n \to \infty} a_n = 0 \le 0 = \lim_{n \to \infty} b_n$

Beispiele

Sei
$$a_n := \frac{2n^2 + 2n + 10}{3n^2 + n + 1}$$

Berechnung des Grenzwerts. Trick: Kürze mit n^2 :

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{2n^2 + 2n + 10}{3n^2 + n + 1} = \lim_{n \to \infty} \frac{\frac{2n^2 + 2n + 10}{n^2}}{\frac{3n^2 + n + 1}{n^2}}$$

$$= \lim_{n \to \infty} \frac{\frac{2n^2}{n^2} + \frac{2n}{n^2} + \frac{10}{n^2}}{\frac{3n^2}{n^2} + \frac{n}{n^2} + \frac{1}{n^2}}$$

$$= \lim_{n \to \infty} \frac{2 + \frac{2}{n} + \frac{10}{n^2}}{3 + \frac{1}{n} + \frac{1}{n^2}} = \frac{2}{3}$$

$$\dim \lim_{n \to \infty} 2 + \frac{2}{n} + \frac{10}{n^2} = (\lim_{n \to \infty} 2) + (\lim_{n \to \infty} \frac{2}{n}) + (\lim_{n \to \infty} \frac{10}{n^2}) = 2 + 0 + 0 = 2$$

$$\text{und } \lim_{n \to \infty} 3 + \frac{1}{n} + \frac{1}{n^2} = (\lim_{n \to \infty} 3) + (\lim_{n \to \infty} \frac{1}{n}) + (\lim_{n \to \infty} \frac{1}{n^2}) = 3 + 0 + 0 = 3$$

Definition (Monotonie für Folgen)

- Eine Folge $(a_n)_{n\in\mathbb{N}}$ heißt monoton wachsend, falls $a_n \leq a_{n+1}$ für alle $n \in \mathbb{N}$ gilt.
- Eine Folge $(a_n)_{n\in\mathbb{N}}$ heißt streng monoton wachsend, falls $a_n < a_{n+1}$ für alle $n \in \mathbb{N}$ gilt.

Definition (Monotonie für Folgen)

- Eine Folge $(a_n)_{n\in\mathbb{N}}$ heißt monoton wachsend, falls $a_n \leq a_{n+1}$ für alle $n \in \mathbb{N}$ gilt.
- Eine Folge $(a_n)_{n\in\mathbb{N}}$ heißt streng monoton wachsend, falls $a_n < a_{n+1}$ für alle $n \in \mathbb{N}$ gilt.

$$\bullet \ a_n = \frac{1}{n}$$

Definition (Monotonie für Folgen)

- Eine Folge $(a_n)_{n\in\mathbb{N}}$ heißt monoton wachsend, falls $a_n \leq a_{n+1}$ für alle $n \in \mathbb{N}$ gilt.
- Eine Folge $(a_n)_{n\in\mathbb{N}}$ heißt streng monoton wachsend, falls $a_n < a_{n+1}$ für alle $n \in \mathbb{N}$ gilt.

Beispiele:

• $a_n = \frac{1}{m}$ ist nicht monoton wachsend.

Definition (Monotonie für Folgen)

- Eine Folge $(a_n)_{n\in\mathbb{N}}$ heißt monoton wachsend, falls $a_n \leq a_{n+1}$ für alle $n \in \mathbb{N}$ gilt.
- Eine Folge $(a_n)_{n\in\mathbb{N}}$ heißt streng monoton wachsend, falls $a_n < a_{n+1}$ für alle $n \in \mathbb{N}$ gilt.

- $a_n = \frac{1}{n}$ ist nicht monoton wachsend.
- $a_n = (-1)^n$

Definition (Monotonie für Folgen)

- Eine Folge $(a_n)_{n\in\mathbb{N}}$ heißt monoton wachsend, falls $a_n \leq a_{n+1}$ für alle $n \in \mathbb{N}$ gilt.
- Eine Folge $(a_n)_{n\in\mathbb{N}}$ heißt streng monoton wachsend, falls $a_n < a_{n+1}$ für alle $n \in \mathbb{N}$ gilt.

- $a_n = \frac{1}{n}$ ist nicht monoton wachsend.
- $a_n = (-1)^n$ ist nicht monoton wachsend.

Definition (Monotonie für Folgen)

- Eine Folge $(a_n)_{n\in\mathbb{N}}$ heißt monoton wachsend, falls $a_n \leq a_{n+1}$ für alle $n \in \mathbb{N}$ gilt.
- Eine Folge $(a_n)_{n\in\mathbb{N}}$ heißt streng monoton wachsend, falls $a_n < a_{n+1}$ für alle $n \in \mathbb{N}$ gilt.

- $a_n = \frac{1}{n}$ ist nicht monoton wachsend.
- $a_n = (-1)^n$ ist nicht monoton wachsend.
- $\bullet \ a_n = \frac{n}{n+1}$

Definition (Monotonie für Folgen)

- Eine Folge $(a_n)_{n\in\mathbb{N}}$ heißt monoton wachsend, falls $a_n \leq a_{n+1}$ für alle $n \in \mathbb{N}$ gilt.
- Eine Folge $(a_n)_{n\in\mathbb{N}}$ heißt streng monoton wachsend, falls $a_n < a_{n+1}$ für alle $n \in \mathbb{N}$ gilt.

- $a_n = \frac{1}{n}$ ist nicht monoton wachsend.
- $a_n = (-1)^n$ ist nicht monoton wachsend.
- $a_n = \frac{n}{n+1}$ ist streng monoton wachsend (und daher auch monoton wachsend)

Definition (Monotonie für Folgen)

- Eine Folge $(a_n)_{n\in\mathbb{N}}$ heißt monoton wachsend, falls $a_n \leq a_{n+1}$ für alle $n \in \mathbb{N}$ gilt.
- Eine Folge $(a_n)_{n\in\mathbb{N}}$ heißt streng monoton wachsend, falls $a_n < a_{n+1}$ für alle $n \in \mathbb{N}$ gilt.

- $a_n = \frac{1}{n}$ ist nicht monoton wachsend.
- $a_n = (-1)^n$ ist nicht monoton wachsend.
- $a_n = \frac{n}{n+1}$ ist streng monoton wachsend (und daher auch monoton wachsend)
- $a_n = n + \frac{1 + (-1)^n}{2}$

Definition (Monotonie für Folgen)

- Eine Folge $(a_n)_{n\in\mathbb{N}}$ heißt monoton wachsend, falls $a_n \leq a_{n+1}$ für alle $n \in \mathbb{N}$ gilt.
- Eine Folge $(a_n)_{n\in\mathbb{N}}$ heißt streng monoton wachsend, falls $a_n < a_{n+1}$ für alle $n \in \mathbb{N}$ gilt.

- $a_n = \frac{1}{n}$ ist nicht monoton wachsend.
- $a_n = (-1)^n$ ist nicht monoton wachsend.
- $a_n = \frac{n}{n+1}$ ist streng monoton wachsend (und daher auch monoton wachsend)
- $a_n = n + \frac{1 + (-1)^n}{2}$ ist monoton wachsend, aber nicht streng monoton wachsend

Definition (Beschränktheit)

Eine Folge $(a_n)_{n\in\mathbb{N}}$ heißt nach oben beschränkt falls die Menge $\{a_n \mid n \in \mathbb{N}\}$ eine obere Schranke hat.

Definition (Beschränktheit)

Eine Folge $(a_n)_{n\in\mathbb{N}}$ heißt nach oben beschränkt falls die Menge $\{a_n \mid n \in \mathbb{N}\}$ eine obere Schranke hat.

$$\bullet \ a_n = \frac{1}{n+1}$$

Definition (Beschränktheit)

Eine Folge $(a_n)_{n\in\mathbb{N}}$ heißt nach oben beschränkt falls die Menge $\{a_n \mid n \in \mathbb{N}\}$ eine obere Schranke hat.

Beispiele:

• $a_n = \frac{1}{n+1}$ ist beschränkt, da z.B. 1 eine obere Schranke von $\{a_n \mid n \in \mathbb{N}\}$ ist.

Definition (Beschränktheit)

Eine Folge $(a_n)_{n\in\mathbb{N}}$ heißt nach oben beschränkt falls die Menge $\{a_n \mid n \in \mathbb{N}\}$ eine obere Schranke hat.

- $a_n = \frac{1}{n+1}$ ist beschränkt, da z.B. 1 eine obere Schranke von $\{a_n \mid n \in \mathbb{N}\}$ ist.
- $a_n = (-1)^n$

Definition (Beschränktheit)

Eine Folge $(a_n)_{n\in\mathbb{N}}$ heißt nach oben beschränkt falls die Menge $\{a_n \mid n \in \mathbb{N}\}$ eine obere Schranke hat.

Beispiele:

- $a_n = \frac{1}{n+1}$ ist beschränkt, da z.B. 1 eine obere Schranke von $\{a_n \mid n \in \mathbb{N}\}$ ist.
- $a_n = (-1)^n$ ist beschränkt, da z.B. 1 eine obere Schranke von $\{a_n \mid n \in \mathbb{N}\}$ ist.

Definition (Beschränktheit)

Eine Folge $(a_n)_{n\in\mathbb{N}}$ heißt nach oben beschränkt falls die Menge $\{a_n \mid n \in \mathbb{N}\}$ eine obere Schranke hat.

Beispiele:

- $a_n = \frac{1}{n+1}$ ist beschränkt, da z.B. 1 eine obere Schranke von $\{a_n \mid n \in \mathbb{N}\}$ ist.
- $a_n = (-1)^n$ ist beschränkt, da z.B. 1 eine obere Schranke von $\{a_n \mid n \in \mathbb{N}\}$ ist.
- $a_n = (-2)^n$

Definition (Beschränktheit)

Eine Folge $(a_n)_{n\in\mathbb{N}}$ heißt nach oben beschränkt falls die Menge $\{a_n \mid n \in \mathbb{N}\}$ eine obere Schranke hat.

Beispiele:

- $a_n = \frac{1}{n+1}$ ist beschränkt, da z.B. 1 eine obere Schranke von $\{a_n \mid n \in \mathbb{N}\}$ ist.
- $a_n = (-1)^n$ ist beschränkt, da z.B. 1 eine obere Schranke von $\{a_n \mid n \in \mathbb{N}\}$ ist.
- $a_n = (-2)^n$ ist nicht beschränkt, da keine obere Schranke für $\{a_n \mid n \in \mathbb{N}\}$ existiert.

Satz

Jede konvergente Folge $(a_n)_{n\in\mathbb{N}}$ ist nach oben beschränkt.

Satz

Jede konvergente Folge $(a_n)_{n\in\mathbb{N}}$ ist nach oben beschränkt.

- Sei $a := \lim_{n \to \infty} a_n$ (der Grenzwert existiert nach Annahme).
- Nach Definition der Konvergenz gibt es ein $N \in \mathbb{N}$, sodass
- Dann gilt aber $a_k \leq \max\{a_0, a_1, \dots, a_N, a+1\}$ für alle

Satz

Jede konvergente Folge $(a_n)_{n\in\mathbb{N}}$ ist nach oben beschränkt.

- Sei $a := \lim_{n \to \infty} a_n$ (der Grenzwert existiert nach Annahme).
- Nach Definition der Konvergenz gibt es ein $N \in \mathbb{N}$, sodass
- Dann gilt aber $a_k < \max\{a_0, a_1, \dots, a_N, a+1\}$ für alle

Satz

Jede konvergente Folge $(a_n)_{n\in\mathbb{N}}$ ist nach oben beschränkt.

- Sei $a := \lim_{n \to \infty} a_n$ (der Grenzwert existiert nach Annahme).
- Nach Definition der Konvergenz gibt es ein $N \in \mathbb{N}$, sodass $|a_n - a| < 1$ für alle n > N gilt.
- Dann gilt aber $a_k < \max\{a_0, a_1, \dots, a_N, a+1\}$ für alle

Satz

Jede konvergente Folge $(a_n)_{n\in\mathbb{N}}$ ist nach oben beschränkt.

- Sei $a := \lim_{n \to \infty} a_n$ (der Grenzwert existiert nach Annahme).
- Nach Definition der Konvergenz gibt es ein $N \in \mathbb{N}$, sodass $|a_n - a| < 1$ für alle n > N gilt.
- Dann gilt aber $a_k \leq \max\{a_0, a_1, \dots, a_N, a+1\}$ für alle $k \in \mathbb{N}$.

Satz 4.11

Eine monoton wachsende, nach oben beschränkte Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert gegen $a := \sup\{a_n \mid n \in \mathbb{N}\}.$

- Für jedes $\varepsilon > 0$ gibt es $N \in \mathbb{N}$, sodass $0 < a a_N < \varepsilon$:
- Wegen der Monotonie der Folge gilt dann $a_N < a_n$ für alle
- Damit haben wir gezeigt, dass für jedes $\varepsilon > 0$ ein $N \in \mathbb{N}$

Satz 4.11

Eine monoton wachsende, nach oben beschränkte Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert gegen $a := \sup\{a_n \mid n \in \mathbb{N}\}.$

- Für jedes $\varepsilon > 0$ gibt es $N \in \mathbb{N}$, sodass $0 < a a_N < \varepsilon$: Da a Supremum ist, folgt $a_N \le a$ und somit $0 \le a - a_N$. Für den Rest: Gäbe es kein N mit $a - a_N < \varepsilon$, dann hätten wir $a-a_n \geq \varepsilon$ für alle n. D.h. $a-\varepsilon \geq a_n$ für alle n und damit wäre $a - \varepsilon$ eine obere Schranke für $\{a_n \mid n \in \mathbb{N}\}$, die kleiner als a ist. Widerspruch, da a kleinste obere Schranke ist.
- Wegen der Monotonie der Folge gilt dann $a_N < a_n$ für alle
- Damit haben wir gezeigt, dass für jedes $\varepsilon > 0$ ein $N \in \mathbb{N}$

Satz 4.11

Eine monoton wachsende, nach oben beschränkte Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert gegen $a := \sup\{a_n \mid n \in \mathbb{N}\}.$

- Für jedes $\varepsilon > 0$ gibt es $N \in \mathbb{N}$, sodass $0 < a a_N < \varepsilon$: Da a Supremum ist, folgt $a_N \le a$ und somit $0 \le a - a_N$. Für den Rest: Gäbe es kein N mit $a - a_N < \varepsilon$, dann hätten wir $a-a_n \geq \varepsilon$ für alle n. D.h. $a-\varepsilon \geq a_n$ für alle n und damit wäre $a - \varepsilon$ eine obere Schranke für $\{a_n \mid n \in \mathbb{N}\}$, die kleiner als a ist. Widerspruch, da a **kleinste** obere Schranke ist.
- Wegen der Monotonie der Folge gilt dann $a_N < a_n$ für alle
- Damit haben wir gezeigt, dass für jedes $\varepsilon > 0$ ein $N \in \mathbb{N}$

Satz 4.11

Eine monoton wachsende, nach oben beschränkte Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert gegen $a := \sup\{a_n \mid n \in \mathbb{N}\}.$

- Für jedes $\varepsilon > 0$ gibt es $N \in \mathbb{N}$, sodass $0 < a a_N < \varepsilon$: Da a Supremum ist, folgt $a_N \le a$ und somit $0 \le a - a_N$. Für den Rest: Gäbe es kein N mit $a - a_N < \varepsilon$, dann hätten wir $a-a_n \geq \varepsilon$ für alle n. D.h. $a-\varepsilon \geq a_n$ für alle n und damit wäre $a - \varepsilon$ eine obere Schranke für $\{a_n \mid n \in \mathbb{N}\}$, die kleiner als a ist. Widerspruch, da a **kleinste** obere Schranke ist.
- Wegen der Monotonie der Folge gilt dann $a_N < a_n$ für alle n > N. Daraus folgt dann $0 \le a - a_n \le a - a_N < \varepsilon$.
- Damit haben wir gezeigt, dass für jedes $\varepsilon > 0$ ein $N \in \mathbb{N}$

Satz 4.11

Eine monoton wachsende, nach oben beschränkte Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert gegen $a := \sup\{a_n \mid n \in \mathbb{N}\}.$

- Für jedes $\varepsilon > 0$ gibt es $N \in \mathbb{N}$, sodass $0 < a a_N < \varepsilon$: Da a Supremum ist, folgt $a_N \le a$ und somit $0 \le a - a_N$. Für den Rest: Gäbe es kein N mit $a - a_N < \varepsilon$, dann hätten wir $a-a_n \geq \varepsilon$ für alle n. D.h. $a-\varepsilon \geq a_n$ für alle n und damit wäre $a - \varepsilon$ eine obere Schranke für $\{a_n \mid n \in \mathbb{N}\}$, die kleiner als a ist. Widerspruch, da a kleinste obere Schranke ist.
- Wegen der Monotonie der Folge gilt dann $a_N < a_n$ für alle n > N. Daraus folgt dann $0 \le a - a_n \le a - a_N < \varepsilon$.
- Damit haben wir gezeigt, dass für jedes $\varepsilon > 0$ ein $N \in \mathbb{N}$ existiert, sodass $|a-a_n| \leq \varepsilon$ für alle n > N. Das heißt, $\lim a_n = a$.

Bestimmte Divergenz

Definition (Bestimmte Divergenz gegen ∞)

Eine Folge $(a_n)_{n\in\mathbb{N}}$ divergiert bestimmt gegen ∞ falls für jedes $K \in \mathbb{R}$ ein $N \in \mathbb{N}$ existiert, sodass $a_n > K$ für alle n > N. Wir schreiben dann $\lim_{n\to\infty} a_n = \infty$.

Bestimmte Divergenz

Definition (Bestimmte Divergenz gegen ∞)

Eine Folge $(a_n)_{n\in\mathbb{N}}$ divergiert bestimmt gegen ∞ falls für jedes $K \in \mathbb{R}$ ein $N \in \mathbb{N}$ existiert, sodass $a_n > K$ für alle n > N. Wir schreiben dann $\lim_{n\to\infty} a_n = \infty$.

Definition (Bestimmte Divergenz gegen $-\infty$)

Eine Folge $(a_n)_{n\in\mathbb{N}}$ divergiert bestimmt gegen $-\infty$ falls für jedes $K \in \mathbb{R}$ ein $N \in \mathbb{N}$ existiert, sodass $a_n < K$ für alle n > N. Wir schreiben dann $\lim_{n\to\infty} a_n = -\infty$.

Beispiele

- $\lim_{n \to \infty} -n = -\infty$ $n \rightarrow \infty$
- $\lim \frac{2^n}{-} = \infty$ $n \rightarrow \infty$ η
- $a_n := n(-1)^n$ konvergiert nicht und divergiert weder bestimmt gegen ∞ noch gegen $-\infty$.

Wenn eine Folge weder konvergiert noch bestimmt divergiert, sprechen wir von unbestimmter Divergenz.