Formale Sprachen und Komplexität Theoretische Informatik für Medieninformatiker Sommersemester 2022

$\mathcal{NP} ext{-Vollständigkeit von}$

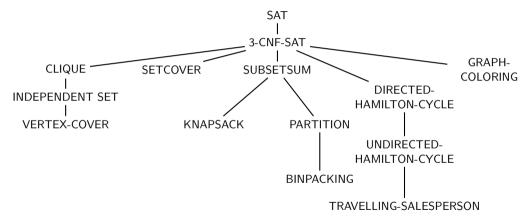
CLIQUE, INDEPENDENT SET und VERTEX COVER

Prof. Dr. David Sabel

LFE Theoretische Informatik

Inhalt der kommenden Vorlesungen

 \mathcal{NP} -Vollständigkeitsbeweise für eine Auswahl an Problemen.



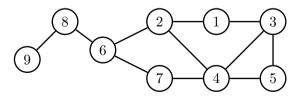
Heute: $\mathcal{NP} ext{-Vollständigkeit}$ von CLIQUE, INDEPENDENT SET, VERTEX COVER

Wiederholung: Graphen

Ein ungerichteter Graph G = (V, E) besteht aus

- ullet einer endlichen Menge V von Knoten (vertices)
- ullet einer endlichen Menge E von Kanten (edges) wobei Kanten aus zwei Knoten bestehen, und für alle $\{u,v\}\in E$ gilt $u\neq v$

$$\begin{split} \text{Z.B.:} \ G &= (V, E) \ \text{mit} \ V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\} \\ E &= \{\{1, 2\}, \{1, 3\}, \{2, 4\}, \{3, 4\}, \{3, 5\}, \{4, 5\}, \\ \{2, 6\}, \{4, 7\}, \{6, 7\}, \{6, 8\}, \{8, 9\}\} \end{split}$$



Beachte: Wir verbieten

- Schlingen $\{u, u\} \in E$,
- $\bullet \ \, \mathsf{Mehrfachkanten} \ \, (= \mathsf{mehrere} \\ \, \mathsf{Kanten} \ \, \mathsf{zwischen} \ \, u \ \, \mathsf{und} \ \, v)$
- Hypergraphen (Kanten mit nicht genau 2 Knoten)

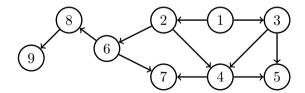
Wiederholung: Gerichtete Graphen

Bei gerichteten Graphen sind die Kanten gerichtet:

$$(u,v) \in E \text{ statt } \{u,v\} \in E.$$

Daher sind Kanten (u, v) und (v, u) verschieden.

Z.B.:
$$G = (V, E)$$
 mit $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $E = \{(1, 2), (1, 3), (2, 4), (3, 4), (3, 5), (4, 5), (2, 6), (4, 7), (6, 7), (6, 8), (8, 9)\}$



Cliquen in Graphen

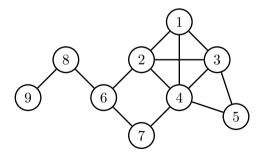
Definition

Für einen ungerichteten Graph G=(V,E) ist eine **Clique der Größe** k eine Menge $V'\subseteq V$, sodass |V'|=k und für alle $u,v\in V'$ mit $u\neq v$ gilt: $\{u,v\}\in E.$

Cliquen in Graphen

Definition

Für einen ungerichteten Graph G=(V,E) ist eine Clique der Größe k eine Menge $V'\subseteq V$, sodass |V'|=k und für alle $u,v\in V'$ mit $u\neq v$ gilt: $\{u,v\}\in E.$

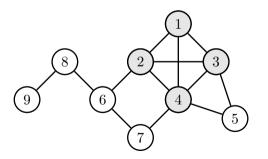


Cliquen in Graphen

Definition

Für einen ungerichteten Graph G=(V,E) ist eine Clique der Größe k eine Menge $V'\subseteq V$, sodass |V'|=k und für alle $u,v\in V'$ mit $u\neq v$ gilt: $\{u,v\}\in E.$

Beispiel:



Clique der Größe 4

CLIQUE-Problem

Definition (CLIQUE-Problem)

Das CLIQUE-Problem lässt sich in der gegeben/gefragt-Notation formulieren durch:

gegeben: Ein ungerichteter Graph G=(V,E) und eine Zahl $k\in\mathbb{N}.$

gefragt: Besitzt G eine Clique der Größe mindestens k?

$\mathcal{NP} ext{-Vollständigkeit}$ von CLIQUE (1)

Satz

CLIQUE ist \mathcal{NP} -vollständig.

\mathcal{NP} -Vollständigkeit von CLIQUE (1)

Satz

CLIQUE ist \mathcal{NP} -vollständig.

Beweis: CLIQUE $\in \mathcal{NP}$

- \bullet Rate nichtdeterministisch eine Menge $V'\subseteq V$ von k Knoten
- Prüfe (deterministisch), ob für alle $u,v\in V':\{u,v\}\in E$ gilt. Falls ja, akzeptiere, sonst verwerfe.
- Daher kann eine NTM konstruiert werden, die CLIQUE in Polynomialzeit entscheidet.

\mathcal{NP} -Vollständigkeit von CLIQUE (2)

Beweis: CLIQUE ist \mathcal{NP} -schwer:

• Ziel: 3-CNF-SAT \leq_p CLIQUE

\mathcal{NP} -Vollständigkeit von CLIQUE (2)

Beweis: CLIQUE ist \mathcal{NP} -schwer:

- Ziel: 3-CNF-SAT \leq_p CLIQUE
- Sei $F = K_1 \wedge \ldots \wedge K_m$ eine 3-CNF, wobei

$$K_i = (L_{i,1} \vee L_{i,2} \vee L_{i,3})$$
 für $i = 1, \dots, m$ (falls $K_i < 3$ Literale hat, verdopple Literale)

\mathcal{NP} -Vollständigkeit von CLIQUE (2)

Beweis: CLIQUE ist \mathcal{NP} -schwer:

- Ziel: 3-CNF-SAT \leq_p CLIQUE
- Sei $F = K_1 \wedge \ldots \wedge K_m$ eine 3-CNF, wobei

$$K_i = (L_{i,1} \vee L_{i,2} \vee L_{i,3})$$
 für $i = 1, \dots, m$ (falls $K_i < 3$ Literale hat, verdopple Literale)

• Für jedes $L_{i,j}$ erzeuge: Knoten (i,j) im Graphen, d.h.

$$V = \bigcup_{i=1}^{m} \{(i,1), (i,2), (i,3)\}$$

$\mathcal{NP}\text{-Vollst\"{a}ndigkeit}$ von CLIQUE (3)

. . .

• Keine Kante innerhalb der drei Knoten $\{(i,1),(i,2),(i,3)\}$

\mathcal{NP} -Vollständigkeit von CLIQUE (3)

. . .

- Keine Kante innerhalb der drei Knoten $\{(i, 1), (i, 2), (i, 3)\}$
- Kanten zwischen "verschiedenen Klauseln":

$$E \subseteq \{\{(i,j),(i',j')\} \mid i \neq i' \text{ und } i,i' \in \{1,\ldots,m\} \text{ und } j,j' \in \{1,2,3\}\}$$

\mathcal{NP} -Vollständigkeit von CLIQUE (3)

. . .

- Keine Kante innerhalb der drei Knoten $\{(i,1),(i,2),(i,3)\}$
- Kanten zwischen "verschiedenen Klauseln":

$$E \subseteq \{\{(i,j),(i',j')\} \mid i \neq i' \text{ und } i,i' \in \{1,\dots,m\} \text{ und } j,j' \in \{1,2,3\}\}$$

• E maximal, ohne dass sich zwei verbundene Literale $L_{i,j}$ und $L_{i',j'}$ widersprechen (d.h. $L_{i,j} \neq \overline{L_{i',j'}}$, wobei: \overline{L} ist negiertes Literal zu L: $\overline{x} = \neg x$ und $\overline{\neg x} = x$).

$\mathcal{NP} ext{-Vollständigkeit}$ von CLIQUE (3)

. . .

- Keine Kante innerhalb der drei Knoten $\{(i,1),(i,2),(i,3)\}$
- Kanten zwischen "verschiedenen Klauseln":

$$E \subseteq \{\{(i,j),(i',j')\} \mid i \neq i' \text{ und } i,i' \in \{1,\dots,m\} \text{ und } j,j' \in \{1,2,3\}\}$$

• E maximal, ohne dass sich zwei verbundene Literale $L_{i,j}$ und $L_{i',j'}$ widersprechen (d.h. $L_{i,j} \neq \overline{L_{i',j'}}$, wobei: \overline{L} ist negiertes Literal zu L: $\overline{x} = \neg x$ und $\overline{\neg x} = x$).

$$E := \left\{ \{(i,j), (i',j')\} \left| \begin{array}{l} i \neq i' \text{ und } i, i' \in \{1,\ldots,m\} \text{ und } j, j' \in \{1,2,3\} \\ \text{ und } L_{i,j} \neq \overline{L_{i',j'}} \end{array} \right. \right\}$$

$\mathcal{NP} ext{-Vollständigkeit}$ von CLIQUE (3)

. . .

- Keine Kante innerhalb der drei Knoten $\{(i,1),(i,2),(i,3)\}$
- Kanten zwischen "verschiedenen Klauseln":

$$E \subseteq \{\{(i,j),(i',j')\} \mid i \neq i' \text{ und } i,i' \in \{1,\dots,m\} \text{ und } j,j' \in \{1,2,3\}\}$$

• E maximal, ohne dass sich zwei verbundene Literale $L_{i,j}$ und $L_{i',j'}$ widersprechen (d.h. $L_{i,j} \neq \overline{L_{i',j'}}$, wobei: \overline{L} ist negiertes Literal zu L: $\overline{x} = \neg x$ und $\overline{\neg x} = x$).

$$E := \left\{ \{(i,j), (i',j')\} \left| \begin{array}{l} i \neq i' \text{ und } i, \underline{i'} \in \{1,\ldots,m\} \text{ und } j, \underline{j'} \in \{1,2,3\} \\ \text{ und } L_{i,j} \neq \overline{L_{i',j'}} \end{array} \right. \right\}$$

• f(F) = ((V, E), m) ist in Polynomialzeit berechenbar.

\mathcal{NP} -Vollständigkeit von CLIQUE (4)

Zu Zeigen: F erfüllbar, g.d.w. (V,E) eine Clique der Größe mindestens m hat.

\mathcal{NP} -Vollständigkeit von CLIQUE (4)

Zu Zeigen: F erfüllbar, g.d.w. (V, E) eine Clique der Größe mindestens m hat.

- Wenn F erfüllbar ist: $\exists I$, sodass in jeder Klausel $I(K_i)$ mind 1 Literal wahr.
- D.h.: $L_{1,j_1}, \ldots, L_{m,j_m}$ mit $I(L_{1,j_1}) = 1, \ldots, I(L_{m,j_m}) = 1$.
- Diese können sich paarweise nicht widersprechen
 sind im Graphen paarweise miteinander verbunden
- ullet Sie formen eine Clique der Größe m.

\mathcal{NP} -Vollständigkeit von CLIQUE (5)

Zu Zeigen: F erfüllbar, g.d.w. (V,E) eine Clique der Größe mindestens m hat.

"←"

- (V, E) hat Clique der Größe mindestens m.
- ullet Dann gibt es Clique $V'=\{(i_1,j_1),\ldots (i_m,j_m)\}$,
- Da (i,x) und (i,y) nie miteinander verbunden sind, müssen alle i_1,\ldots,i_m paarweise verschieden sein, also $\{i_1,\ldots,i_m\}=\{1,\ldots,m\}$.
- Daher: Die Literale $L_{i_1,j_1}, \dots L_{i_m}, j_m$ widersprechen sich paarweise nicht
- Daher Belegung I mit I(x)=1 wenn $L_{i_k,j_k}=x$ und I(x)=0 wenn $L_{i_k,j_k}=\neg x$ und I(y)=1 für alle anderen Variablen
- I macht F wahr

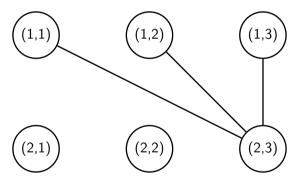
Beispiel

Sei
$$F = (x_1 \lor x_1 \lor x_1) \land (\neg x_1 \lor \neg x_1 \lor \neg x_1)$$

Es gibt keine Kanten, da sich (1,i) und (2,j) stets widersprechen.

Beispiel (2)

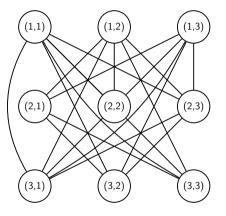
Sei
$$F = (x_1 \lor x_1 \lor x_1) \land (\neg x_1 \lor \neg x_1 \lor x_1)$$



Jede der Cliquen der Größe 2 führt zu erfüllender Belegung, die x_1 wahr macht.

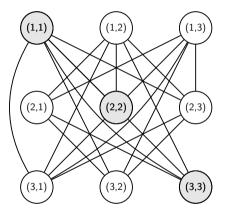
Beispiel (3)

Sei
$$F = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor \neg x_3)$$



Beispiel (3)

Sei
$$F = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor \neg x_3)$$



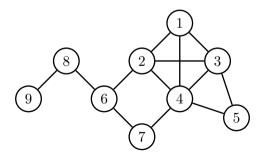
Z.B. ist $\{(1,1),(2,2),(3,3)\}$ eine Clique der Größe 3. Die zugehörige Belegung ist $I(x_1)=1,I(x_2)=1,I(x_3)=0$

Definition

Für einen Graphen G=(V,E) ist $V'\subseteq V$ eine unabhängige Knotenmenge (independent set), wenn keine zwei Knoten aus V' über eine Kante verbunden sind, d.h. $u,v\in V'\implies \{u,v\}\not\in E.$

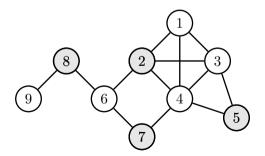
Definition

Für einen Graphen G=(V,E) ist $V'\subseteq V$ eine unabhängige Knotenmenge (independent set), wenn keine zwei Knoten aus V' über eine Kante verbunden sind, d.h. $u,v\in V'\implies \{u,v\}\not\in E.$



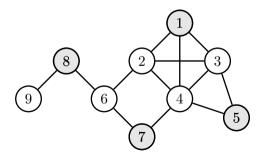
Definition

Für einen Graphen G=(V,E) ist $V'\subseteq V$ eine unabhängige Knotenmenge (independent set), wenn keine zwei Knoten aus V' über eine Kante verbunden sind, d.h. $u,v\in V'\implies \{u,v\}\not\in E.$



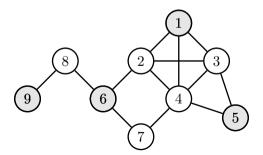
Definition

Für einen Graphen G=(V,E) ist $V'\subseteq V$ eine unabhängige Knotenmenge (independent set), wenn keine zwei Knoten aus V' über eine Kante verbunden sind, d.h. $u,v\in V'\implies \{u,v\}\not\in E.$



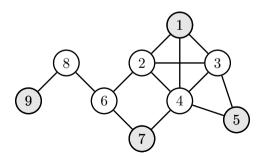
Definition

Für einen Graphen G=(V,E) ist $V'\subseteq V$ eine unabhängige Knotenmenge (independent set), wenn keine zwei Knoten aus V' über eine Kante verbunden sind, d.h. $u,v\in V'\implies \{u,v\}\not\in E.$



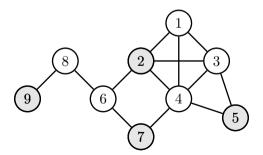
Definition

Für einen Graphen G=(V,E) ist $V'\subseteq V$ eine unabhängige Knotenmenge (independent set), wenn keine zwei Knoten aus V' über eine Kante verbunden sind, d.h. $u,v\in V'\implies \{u,v\}\not\in E.$



Definition

Für einen Graphen G=(V,E) ist $V'\subseteq V$ eine unabhängige Knotenmenge (independent set), wenn keine zwei Knoten aus V' über eine Kante verbunden sind, d.h. $u,v\in V'\implies \{u,v\}\not\in E.$



Für Graph G = (V, E) ist der Komplementgraph zu G der Graph

$$\overline{G} = (V, \overline{E}) \text{ mit } \overline{E} = \{\{u,v\} \mid u,v \in V, u \neq v, \{u,v\} \not \in E\}$$

Für Graph G = (V, E) ist der Komplementgraph zu G der Graph

$$\overline{G} = (V, \overline{E}) \text{ mit } \overline{E} = \{\{u,v\} \mid u,v \in V, u \neq v, \{u,v\} \not \in E\}$$

Lemma

Für jeden ungerichteten Graph G gilt: G hat eine unabhängige Knotenmenge der Größe k genau dann, wenn \overline{G} eine Clique der Größe k hat.

Für Graph G = (V, E) ist der Komplementgraph zu G der Graph

$$\overline{G} = (V, \overline{E}) \text{ mit } \overline{E} = \{\{u,v\} \mid u,v \in V, u \neq v, \{u,v\} \not \in E\}$$

Lemma

Für jeden ungerichteten Graph G gilt: G hat eine unabhängige Knotenmenge der Größe k genau dann, wenn \overline{G} eine Clique der Größe k hat.

Beweis:

 V^\prime ist unabhängige Knotenmenge der Größe k

Für Graph G = (V, E) ist der Komplementgraph zu G der Graph

$$\overline{G} = (V, \overline{E}) \text{ mit } \overline{E} = \{\{u,v\} \mid u,v \in V, u \neq v, \{u,v\} \not \in E\}$$

Lemma

Für jeden ungerichteten Graph G gilt: G hat eine unabhängige Knotenmenge der Größe k genau dann, wenn \overline{G} eine Clique der Größe k hat.

Beweis:

 V^\prime ist unabhängige Knotenmenge der Größe k

 $\text{g.d.w.} \quad V' \subseteq V \text{ mit } u,v \in V' \implies \{u,v\} \not \in E \text{ und } |V'| = k$

Komplementgraph

Für Graph G = (V, E) ist der Komplementgraph zu G der Graph

$$\overline{G} = (V, \overline{E}) \text{ mit } \overline{E} = \{\{u,v\} \mid u,v \in V, u \neq v, \{u,v\} \not \in E\}$$

Lemma

Für jeden ungerichteten Graph G gilt: G hat eine unabhängige Knotenmenge der Größe k genau dann, wenn \overline{G} eine Clique der Größe k hat.

Beweis:

 V^\prime ist unabhängige Knotenmenge der Größe k

$$\text{g.d.w.} \quad V' \subseteq V \text{ mit } u,v \in V' \implies \{u,v\} \not \in E \text{ und } |V'| = k$$

$$\text{g.d.w.} \quad V' \subseteq V \text{ mit } u,v \in V' \implies \{u,v\} \in \overline{E} \text{ und } |V'| = k$$

Komplementgraph

Für Graph G = (V, E) ist der Komplementgraph zu G der Graph

$$\overline{G} = (V, \overline{E}) \text{ mit } \overline{E} = \{\{u,v\} \mid u,v \in V, u \neq v, \{u,v\} \not \in E\}$$

Lemma

Für jeden ungerichteten Graph G gilt: G hat eine unabhängige Knotenmenge der Größe k genau dann, wenn \overline{G} eine Clique der Größe k hat.

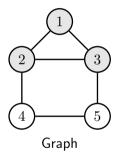
Beweis:

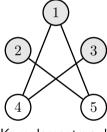
V' ist unabhängige Knotenmenge der Größe k

g.d.w. $V' \subseteq V \text{ mit } u, v \in V' \implies \{u, v\} \not\in E \text{ und } |V'| = k$

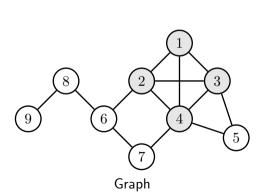
 $\text{g.d.w.} \quad V' \subseteq V \text{ mit } u, v \in V' \implies \{u, v\} \in \overline{E} \text{ und } |V'| = k$

g.d.w. V' ist eine Clique der Größe k in \overline{G}





Beispiel (2)



SoSe 2022

Komplementgraph

INDEPENDENT-SET Problem

Definition (INDEPENDENT-SET-Problem)

Das INDEPENDENT-SET-Problem lässt sich in der gegeben/gefragt-Notation formulieren durch:

gegeben: Ein ungerichteter Graph G=(V,E) und eine Zahl $k\in\mathbb{N}.$

gefragt: Besitzt G eine unabhängige Knotenmenge der Größe mindestens k?

$\mathcal{NP} ext{-Vollständigkeit}$ von INDEPENDENT-SET

Satz

INDEPENDENT-SET ist \mathcal{NP} -vollständig.

Beweis, Teil 1: INDEPENDENT-SET $\in \mathcal{NP}$:

- ullet Rate nichtdeterministisch Menge V' von k Knoten.
- Verifiziere deterministisch, ob für jedes Paar $\{u,v\} \in V'$ gilt: $\{u,v\} \notin E$. Dies geht in Polynomialzeit.
- Daher kann INDEPENDENT-SET in Polynomialzeit auf einer NTM entschieden werden.

\mathcal{NP} -Vollständigkeit von INDEPENDENT-SET (2)

INDEPENDENT-SET ist \mathcal{NP} -schwer.

- $\bullet \ \, \mathsf{Sei} \,\, f((V,E,m)) = (V,\overline{E},m) \,\, \mathsf{mit} \,\, \overline{E} = \{\{u,v\} \mid u,v \in V, \{u,v\} \not \in E\}.$
- Dann gilt:

$$(V,E)$$
 hat eine Clique der Größe mindestens m g.d.w.

 (V,\overline{E}) hat unabhängige Knotenmenge (independent set) der Größe mindestens m.

- ullet Funktion f kann in Polynomialzeit berechnet werden.
- Daher: CLIQUE \leq_p INDEPENDENT-SET
- ullet Da CLIQUE \mathcal{NP} -schwer, folgt: INDEPENDENT-SET ist \mathcal{NP} -schwer.

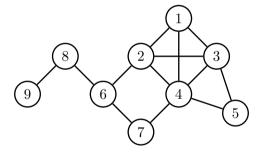
Überdeckende Knotenmenge

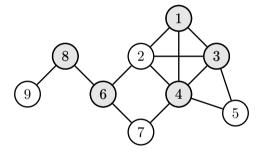
Definition

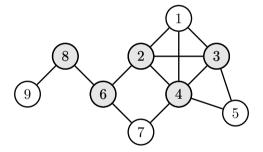
Für einen Graph G=(V,E) ist $V'\subseteq V$ eine überdeckende Knotenmenge (vertex cover), wenn jede Kante aus E mindestens 1 Knoten in V' hat, d.h. für alle Knoten $u,v\in V:\{u,v\}\in E\implies u\in V'\vee v\in V'.$

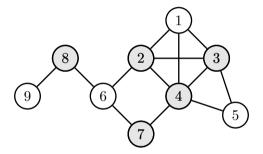
Beachte:

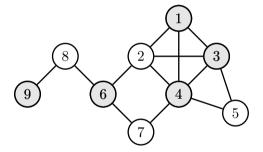
- V ist immer eine überdeckende Knotenmenge
- ullet Man möchte ein möglichst kleine Menge V^\prime finden.

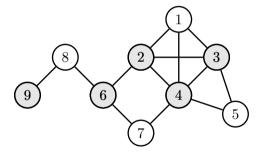












Überdeckende Knotenmengen vs. unabhängige Knotenmengen

Lemma

G=(V,E) hat eine unabhängige Knotenmenge der Größe k g.d.w.

G hat eine überdeckende Knotenmenge der Größe |V|-k.

Beweis:

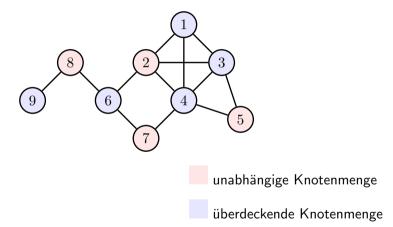
$$V' \subseteq V$$
 ist unabhängige Knotenmenge

g.d.w.
$$u, v \in V' \implies \{u, v\} \not\in E$$

$$\mathsf{g.d.w.} \quad \{u,v\} \in E \implies u \not\in V' \lor v \not\in V'$$

$$\mathsf{g.d.w.} \quad \{u,v\} \in E \implies (u \in V \setminus V') \lor (v \in V \setminus V')$$

g.d.w. $V \setminus V'$ ist überdeckende Knotenmenge



Das VERTEX-COVER-Problem

Definition (VERTEX-COVER-Problem)

Das VERTEX-COVER-Problem lässt sich in der gegeben/gefragt-Notation formulieren durch:

gegeben: Ein ungerichteter Graph G=(V,E) und eine Zahl $k\in\mathbb{N}.$

gefragt: Besitzt G eine überdeckende Knotenmenge der Größe höchstens k?

$\mathcal{NP} ext{-Vollständigkeit}$ von VERTEX-COVER

Satz

VERTEX-COVER- ist \mathcal{NP} -vollständig.

$\mathcal{NP} ext{-Vollständigkeit}$ von VERTEX-COVER

Satz

VERTEX-COVER- ist \mathcal{NP} -vollständig.

\mathcal{NP} -Vollständigkeit von VERTEX-COVER

Satz

VERTEX-COVER- ist \mathcal{NP} -vollständig.

Beweis: Sei G = (V, E). VERTEX-COVER $\in \mathcal{NP}$:

- \bullet Rate nichtdeterministisch eine Menge $V' \subseteq V$ von k Knoten
- Prüfe deterministisch (in Polynomialzeit), ob für alle $\{u,v\} \in E : u \in V' \lor v \in V'$.
- D.h. VERTEX-COVER wird in Polynomialzeit von NTM entschieden.

\mathcal{NP} -Vollständigkeit von VERTEX-COVER

Satz

VERTEX-COVER- ist \mathcal{NP} -vollständig.

Beweis: Sei G = (V, E). VERTEX-COVER $\in \mathcal{NP}$:

- ullet Rate nichtdeterministisch eine Menge $V'\subseteq V$ von k Knoten
- Prüfe deterministisch (in Polynomialzeit), ob für alle $\{u,v\} \in E : u \in V' \lor v \in V'$.
- D.h. VERTEX-COVER wird in Polynomialzeit von NTM entschieden.

VERTEX-COVER ist \mathcal{NP} -schwer:

- Sei f((V,E,m))=(V,E,|V|-m). Dann gilt: $(V,E) \mbox{ hat unabhängige Knotenmenge (independent set) der Größe mindestens } m \mbox{ g.d.w.}$
 - (V,E) hat überdeckende Knotenmenge (vertex cover) der Größe höchstens |V|-m.
- Da f in Polynomialzeit berechnet werden kann, gilt INDEPENDENT-SET $<_n$ VERTEX-COVER.