

MAXIMILIANS-UNIVERSITÄT

Formale Sprachen und Komplexität Theoretische Informatik für Medieninformatiker Sommersemester 2022

\mathcal{NP} -Vollständigkeit

Prof. Dr. David Sabel

LEE Theoretische Informatik

Wiederholung: \mathcal{P}

Definition (Klasse TIME(f(n)))

Für eine Funktion $f: \mathbb{N} \to \mathbb{N}$ sei die Klasse TIME(f(n)) genau die Menge der Sprachen L, für die es eine deterministische, stets anhaltende, Mehrband-TM M gibt, mit L(M) = L und $time_M(w) < f(|w|)$ für alle $w \in \Sigma^*$

Definition (Komplexitätsklasse \mathcal{P})

Die Klasse \mathcal{P} ist definiert als

$$\mathcal{P} = \bigcup_{p \; \mathsf{Polynom}} TIME(p(n))$$

Wiederholung: \mathcal{NP}

Definition

Für eine Funktion $f:\mathbb{N}\to\mathbb{N}$ bezeichne NTIME(f(n)) die Klasse aller Sprachen L, für die es eine nichtdeterministische Mehrband-TM M gibt mit L(M)=L und für alle $w\in\Sigma^*$ gilt $ntime_M(w)\leq f(|w|)$.

Definition

Die Klasse \mathcal{NP} ist definiert als

$$\mathcal{NP} = \bigcup_{p \text{ Polynom}} NTIME(p(n))$$

Wiederholung: Die millionenschwere Frage

Gilt
$$\mathcal{P} = \mathcal{NP}$$
 oder $\mathcal{P} \neq \mathcal{NP}$?

- bis heute ungelöst
- \bullet $\mathcal{P} \subseteq \mathcal{NP}$ ist klar
- ullet gute Gründe $\mathcal{P}
 eq \mathcal{N} \mathcal{P}$ zu vermuten

Wiederholung: Die millionenschwere Frage

Gilt
$$\mathcal{P} = \mathcal{NP}$$
 oder $\mathcal{P} \neq \mathcal{NP}$?

- bis heute ungelöst
- \bullet $\mathcal{P} \subseteq \mathcal{NP}$ ist klar
- ullet gute Gründe $\mathcal{P}
 eq \mathcal{N} \mathcal{P}$ zu vermuten

Obwohl man die Frage nicht geklärt hat, will man wissen, wie schwer ein Problem ist:

- ullet Wenn man weiß: Problem liegt in $\mathcal P$, dann: Effizienter Algorithmus existiert
- Wenn man nur weiß: Problem liegt in \mathcal{NP} , dann: Man kennt nur Algorithmen, die in **deterministischer Exponentialzeit laufen**
- Heute: \mathcal{NP} -Vollständigkeit: Zeige, dass ein Problem zu den schwersten Problemen in \mathcal{NP} zählt.

Polynomialzeit-Reduktion

Definition (Polynomialzeit-Reduktion (einer Sprache auf eine andere))

Seien $L_1 \subseteq \Sigma_1^*$ und $L_2 \subseteq \Sigma_2^*$ Sprachen.

Dann sagen wir L_1 ist auf L_2 polynomiell reduzierbar (geschrieben $L_1 \leq_p L_2$), falls es eine totale und in deterministischer Polynomialzeit berechenbare Funktion $f: \Sigma_1^* \to \Sigma_2^*$ gibt, sodass für alle $w \in \Sigma_1^*$ gilt: $w \in L_1 \iff f(w) \in L_2$.

Polynomialzeit-Reduktion

Definition (Polynomialzeit-Reduktion (einer Sprache auf eine andere))

Seien $L_1 \subseteq \Sigma_1^*$ und $L_2 \subseteq \Sigma_2^*$ Sprachen.

Dann sagen wir L_1 ist auf L_2 polynomiell reduzierbar (geschrieben $L_1 \leq_n L_2$), falls es eine totale und in deterministischer Polynomialzeit berechenbare Funktion $f: \Sigma_1^* \to \Sigma_2^*$ gibt, sodass für alle $w \in \Sigma_1^*$ gilt: $w \in L_1 \iff f(w) \in L_2$.

Analogie zu Reduktionen in der Berechenbarkeitstheorie $L_1 \leq L_2$:

Zusatz hier: Polynomialzeit!

Polynomialzeit-Reduktion

Definition (Polynomialzeit-Reduktion (einer Sprache auf eine andere))

Seien $L_1 \subseteq \Sigma_1^*$ und $L_2 \subseteq \Sigma_2^*$ Sprachen.

Dann sagen wir L_1 ist auf L_2 polynomiell reduzierbar (geschrieben $L_1 \leq_p L_2$), falls es eine totale und in deterministischer Polynomialzeit berechenbare Funktion $f: \Sigma_1^* \to \Sigma_2^*$ gibt, sodass für alle $w \in \Sigma_1^*$ gilt: $w \in L_1 \iff f(w) \in L_2$.

Analogie zu Reduktionen in der Berechenbarkeitstheorie $L_1 \leq L_2$:

Zusatz hier: Polynomialzeit!

Nächste Analogie:

Berechenbarkeitstheorie:

 $L_1 \le L_2$ und L_2 (semi-) entscheidbar

 $\implies L_1$ (semi-) entscheidbar

Komplexitätstheorie:

 $L_1 \leq_p L_2 \text{ und } L_2 \in (\mathcal{N})\mathcal{P}$

$$\implies L_1 \in (\mathcal{N})\mathcal{P}$$

5/13

Lemma

Falls $L_1 \leq_p L_2$ und $L_2 \in \mathcal{P}$, dann gilt $L_1 \in \mathcal{P}$.

Ebenso gilt: Falls $L_1 \leq_p L_2$ und $L_2 \in \mathcal{NP}$, dann gilt $L_1 \in \mathcal{NP}$.

Lemma

Falls $L_1 \leq_p L_2$ und $L_2 \in \mathcal{P}$, dann gilt $L_1 \in \mathcal{P}$.

Ebenso gilt: Falls $L_1 \leq_p L_2$ und $L_2 \in \mathcal{NP}$, dann gilt $L_1 \in \mathcal{NP}$.

Beweis (für \mathcal{P}):

• Sei $L_1 \leq_p L_2$ und f in Polynomialzeit berechenbar

Lemma

Falls $L_1 \leq_p L_2$ und $L_2 \in \mathcal{P}$, dann gilt $L_1 \in \mathcal{P}$.

Ebenso gilt: Falls $L_1 \leq_p L_2$ und $L_2 \in \mathcal{NP}$, dann gilt $L_1 \in \mathcal{NP}$.

- Sei $L_1 \leq_p L_2$ und f in Polynomialzeit berechenbar
- ullet Sei M_f die DTM, die f in Polynomialzeit durch p beschränkt berechnet.

Lemma

Falls $L_1 \leq_p L_2$ und $L_2 \in \mathcal{P}$, dann gilt $L_1 \in \mathcal{P}$.

Ebenso gilt: Falls $L_1 \leq_p L_2$ und $L_2 \in \mathcal{NP}$, dann gilt $L_1 \in \mathcal{NP}$.

- Sei $L_1 \leq_p L_2$ und f in Polynomialzeit berechenbar
- Sei M_f die DTM, die f in Polynomialzeit durch p beschränkt berechnet.
- ullet Sei $L_2 \in \mathcal{P}$, $L(M_2) = L_2$, wobei Schritte von M_2 auf $w \leq q(|w|)$

Lemma

Falls $L_1 \leq_p L_2$ und $L_2 \in \mathcal{P}$, dann gilt $L_1 \in \mathcal{P}$.

Ebenso gilt: Falls $L_1 \leq_n L_2$ und $L_2 \in \mathcal{NP}$, dann gilt $L_1 \in \mathcal{NP}$.

- Sei $L_1 \leq_n L_2$ und f in Polynomialzeit berechenbar
- Sei M_f die DTM, die f in Polynomialzeit durch p beschränkt berechnet.
- Sei $L_2 \in \mathcal{P}$, $L(M_2) = L_2$, wobei Schritte von M_2 auf $w \leq q(|w|)$
- Sei M_f ; M_2 die Hintereinanderausführung von M_f und M_2 . Dann gilt: $L(M_f; M_2) = L_1$

Lemma

Falls $L_1 \leq_p L_2$ und $L_2 \in \mathcal{P}$, dann gilt $L_1 \in \mathcal{P}$. Ebenso gilt: Falls $L_1 \leq_p L_2$ und $L_2 \in \mathcal{NP}$, dann gilt $L_1 \in \mathcal{NP}$.

- Sei $L_1 \leq_p L_2$ und f in Polynomialzeit berechenbar
- Sei M_f die DTM, die f in Polynomialzeit durch p beschränkt berechnet.
- ullet Sei $L_2\in \mathcal{P}$, $L(M_2)=L_2$, wobei Schritte von M_2 auf $w\leq q(|w|)$
- Sei $M_f; M_2$ die Hintereinanderausführung von M_f und M_2 . Dann gilt: $L(M_f; M_2) = L_1$
- $M_f; M_2$ hält stets in Polynomialzeit: $|f(w)| \leq |w| + p(|w|)$ (da M_f nicht mehr in p(|w|)-Schritten schreiben kann) $M_f; M_2$ macht höchstens r(|w|) := p(|w|) + q(|w| + p(|w|)) Schritte

Lemma

Falls $L_1 \leq_p L_2$ und $L_2 \in \mathcal{P}$, dann gilt $L_1 \in \mathcal{P}$.

Ebenso gilt: Falls $L_1 \leq_p L_2$ und $L_2 \in \mathcal{NP}$, dann gilt $L_1 \in \mathcal{NP}$.

Beweis (für P):

- Sei $L_1 \leq_p L_2$ und f in Polynomialzeit berechenbar
- Sei M_f die DTM, die f in Polynomialzeit durch p beschränkt berechnet.
- ullet Sei $L_2\in \mathcal{P}$, $L(M_2)=L_2$, wobei Schritte von M_2 auf $w\leq q(|w|)$
- Sei $M_f; M_2$ die Hintereinanderausführung von M_f und M_2 . Dann gilt: $L(M_f; M_2) = L_1$
- $M_f; M_2$ hält stets in Polynomialzeit: $|f(w)| \leq |w| + p(|w|)$ (da M_f nicht mehr in p(|w|)-Schritten schreiben kann) $M_f; M_2$ macht höchstens r(|w|) := p(|w|) + q(|w| + p(|w|)) Schritte
- Es gilt $L_1 \in \mathcal{P}$.

Lemma

Falls $L_1 \leq_p L_2$ und $L_2 \in \mathcal{P}$, dann gilt $L_1 \in \mathcal{P}$.

Ebenso gilt: Falls $L_1 \leq_p L_2$ und $L_2 \in \mathcal{NP}$, dann gilt $L_1 \in \mathcal{NP}$.

Lemma

Falls $L_1 \leq_p L_2$ und $L_2 \in \mathcal{P}$, dann gilt $L_1 \in \mathcal{P}$.

Ebenso gilt: Falls $L_1 \leq_p L_2$ und $L_2 \in \mathcal{NP}$, dann gilt $L_1 \in \mathcal{NP}$.

Beweis (für \mathcal{NP}): Analog:

ullet Sei $L_1 \leq_p L_2$ und f in Polynomialzeit berechenbar

Lemma

Falls $L_1 \leq_n L_2$ und $L_2 \in \mathcal{P}$, dann gilt $L_1 \in \mathcal{P}$.

Ebenso gilt: Falls $L_1 \leq_p L_2$ und $L_2 \in \mathcal{NP}$, dann gilt $L_1 \in \mathcal{NP}$.

- Sei $L_1 \leq_p L_2$ und f in Polynomialzeit berechenbar
- Sei M_f die DTM, die f in Polynomialzeit durch p beschränkt berechnet.

Lemma

Falls $L_1 \leq_n L_2$ und $L_2 \in \mathcal{P}$, dann gilt $L_1 \in \mathcal{P}$.

Ebenso gilt: Falls $L_1 \leq_n L_2$ und $L_2 \in \mathcal{NP}$, dann gilt $L_1 \in \mathcal{NP}$.

- Sei $L_1 \leq_p L_2$ und f in Polynomialzeit berechenbar
- Sei M_f die DTM, die f in Polynomialzeit durch p beschränkt berechnet.
- Sei $L_2 \in \mathcal{NP}$, $L(M_2) = L_2$, wobei max. Schritte von M_2 auf w < q(|w|)

Lemma

Falls $L_1 \leq_n L_2$ und $L_2 \in \mathcal{P}$, dann gilt $L_1 \in \mathcal{P}$.

Ebenso gilt: Falls $L_1 \leq_n L_2$ und $L_2 \in \mathcal{NP}$, dann gilt $L_1 \in \mathcal{NP}$.

- Sei $L_1 \leq_p L_2$ und f in Polynomialzeit berechenbar
- Sei M_f die DTM, die f in Polynomialzeit durch p beschränkt berechnet.
- Sei $L_2 \in \mathcal{NP}$, $L(M_2) = L_2$, wobei max. Schritte von M_2 auf $w \leq q(|w|)$
- Sei M_f ; M_2 die Hintereinanderausführung von M_f (deterministisch) und M_2 (nichtdeterministisch). Dann gilt: $L(M_f; M_2) = L_1$

Lemma

Falls $L_1 \leq_p L_2$ und $L_2 \in \mathcal{P}$, dann gilt $L_1 \in \mathcal{P}$. Ebenso gilt: Falls $L_1 \leq_p L_2$ und $L_2 \in \mathcal{NP}$, dann gilt $L_1 \in \mathcal{NP}$.

- Sei $L_1 \leq_p L_2$ und f in Polynomialzeit berechenbar
- ullet Sei M_f die DTM, die f in Polynomialzeit durch p beschränkt berechnet.
- Sei $L_2 \in \mathcal{NP}$, $L(M_2) = L_2$, wobei max. Schritte von M_2 auf $w \leq q(|w|)$
- Sei $M_f; M_2$ die Hintereinanderausführung von M_f (deterministisch) und M_2 (nichtdeterministisch). Dann gilt: $L(M_f; M_2) = L_1$
- $M_f; M_2$ hält stets in nichtdeterministischer Polynomialzeit: $|f(w)| \leq |w| + p(|w|)$ (da M_f pro nicht mehr in p(|w|)-Schritten schreiben kann) $M_f; M_2$ macht auf maximalen Pfad höchstens r(|w|) := p(|w|) + q(|w| + p(|w|)) Schritte

Lemma

Falls $L_1 \leq_p L_2$ und $L_2 \in \mathcal{P}$, dann gilt $L_1 \in \mathcal{P}$. Ebenso gilt: Falls $L_1 \leq_p L_2$ und $L_2 \in \mathcal{NP}$, dann gilt $L_1 \in \mathcal{NP}$.

- Sei $L_1 \leq_p L_2$ und f in Polynomialzeit berechenbar
- ullet Sei M_f die DTM, die f in Polynomialzeit durch p beschränkt berechnet.
- Sei $L_2 \in \mathcal{NP}$, $L(M_2) = L_2$, wobei max. Schritte von M_2 auf $w \leq q(|w|)$
- Sei $M_f; M_2$ die Hintereinanderausführung von M_f (deterministisch) und M_2 (nichtdeterministisch). Dann gilt: $L(M_f; M_2) = L_1$
- $M_f; M_2$ hält stets in nichtdeterministischer Polynomialzeit: $|f(w)| \leq |w| + p(|w|)$ (da M_f pro nicht mehr in p(|w|)-Schritten schreiben kann) $M_f; M_2$ macht auf maximalen Pfad höchstens r(|w|) := p(|w|) + q(|w| + p(|w|)) Schritte
- Es gilt $L_1 \in \mathcal{NP}$.

Lemma

Die Relation \leq_p ist transitiv, d.h. wenn $L_1 \leq_p L_2$ und $L_2 \leq_p L_3$, dann gilt auch $L_1 \leq_p L_3$

Analog zum vorherigen Beweis:

Komposition von zwei Polynomen bleibt Polynom.

\mathcal{NP} -Vollständigkeit

Definition (\mathcal{NP} -Vollständigkeit)

Eine Sprache L heißt \mathcal{NP} -vollständig, wenn gilt

- \bullet $L \in \mathcal{NP}$ und
- L ist \mathcal{NP} -schwer (manchmal auch \mathcal{NP} -hart genannt): Für alle $L' \in \mathcal{NP}$ gilt $L' \leq_n L$

 \mathcal{NP} -vollständige Probleme sind die schwierigsten Probleme in \mathcal{NP} :

 \mathcal{NP} -Schwere besagt, dass man mit dem \mathcal{NP} -vollständigen Problem alle anderen Probleme aus \mathcal{NP} (in zusätzlicher deterministischer Polynomialzeit) lösen kann

\mathcal{NP} -Vollständigkeit beweisen

Nachweis der \mathcal{NP} -Vollständigkeit von L

- Zugehörigkeit zu \mathcal{NP} : Gebe polynomiell Laufzeit-beschränkte NTM an, die Lentscheidet (alternativ: Polynomialzeit reduktion von $L \leq_p L_1$ mit $L_1 \in \mathcal{NP}$)
- \mathcal{NP} -Schwere: Statt jedes mal neu zu beweisen, dass alle Probleme aus \mathcal{NP} auf Lpolynomiell reduzierbar, wähle ein \mathcal{NP} -schweres Problem L_0 und zeige $L_0 \leq_p L$. Dann folgt L ist \mathcal{NP} -schwer:

Da L_0 \mathcal{NP} -schwer, gilt $L' \leq_n L_0$ für alle $L \in \mathcal{NP}$ und damit $L' \leq_n L_0 \leq_n L$ und mit Transitivität von \leq_p : $L' \leq_p L$ für alle $L' \in \mathcal{NP}$.

Komplett analog zum Vorgehen wie bei der Unentscheidbarkeit, wesentlicher Unterschied: Polynomialzeit-Reduktion:

> Berechenbarkeitstheorie: Komplexitätstheorie: $L_0 \leq_n L$ und $L_0 \mathcal{NP}$ -schwer $L_0 \leq L$ und L_0 unentscheidbar $\implies L \mathcal{NP}$ -schwer $\implies L$ unentscheidbar

Satz

Sei L ein \mathcal{NP} -vollständiges Problem. Dann gilt $L \in \mathcal{P} \iff \mathcal{P} = \mathcal{NP}$.

Satz

Sei L ein \mathcal{NP} -vollständiges Problem. Dann gilt $L \in \mathcal{P} \iff \mathcal{P} = \mathcal{NP}$.

Beweis:

- ullet Sei L \mathcal{NP} -vollständig und $L \in \mathcal{P}$
- Aus \mathcal{NP} -Schwere von L folgt: Für alle $L' \in \mathcal{NP}$: $L' \leq_p L$ und damit $L' \in \mathcal{P}$.
- Da dies für alle $L' \in \mathcal{NP}$ gilt, folgt $\mathcal{P} = \mathcal{NP}$.

Satz

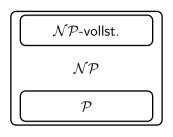
Sei L ein \mathcal{NP} -vollständiges Problem. Dann gilt $L \in \mathcal{P} \iff \mathcal{P} = \mathcal{NP}$.

Beweis:

- Sei L \mathcal{NP} -vollständig und $L \in \mathcal{P}$
- Aus \mathcal{NP} -Schwere von L folgt: Für alle $L' \in \mathcal{NP}$: $L' \leq_n L$ und damit $L' \in \mathcal{P}$.
- Da dies für alle $L' \in \mathcal{NP}$ gilt, folgt $\mathcal{P} = \mathcal{NP}$.

Also: Es reicht aus für ein \mathcal{NP} -vollständiges Problem nachzuweisen, dass es in \mathcal{P} bzw. nicht in \mathcal{P} liegt, um die \mathcal{P} -vs- $\mathcal{N}\mathcal{P}$ -Frage ein für allemal beantworten.

Vermutete Lage der Probleme



Es ist bekannt (Ladner 1975):

Unter der Annahme $\mathcal{P} \neq \mathcal{NP}$ gibt es Probleme in \mathcal{NP} gibt, die nicht in \mathcal{P} liegen und nicht \mathcal{NP} -vollständig sind.

Möglicher Kandidat:

Graph-Isomorphismus-Problem. Weder ein polynomieller Algorithmus noch dessen \mathcal{NP} -Vollständigkeit bekannt.

Ausblick

Was fehlt noch?

Ein erstes Problem L_0 , dass man direkt als \mathcal{NP} -vollständig beweist.

(ein solches L_0 und den \mathcal{NP} -Vollständigkeitsbeweis sehen wir beim nächsten Mal)

Danach kann man \mathcal{NP} -Vollständigkeit von L zeigen durch:

- $L \in \mathcal{NP}$
- $L_0 \leq_p L$

Danach: Lerne einen Satz an \mathcal{NP} -vollständigen Problemen kennen.