

Formale Sprachen und Komplexität Theoretische Informatik für Medieninformatiker Sommersemester 2022

Konstruktionen von Turingmaschinen und LOOP-Programme

Prof. Dr. David Sabel

LFE Theoretische Informatik

Letzte Änderung der Folien: 28. Juni 2022

Wiederholung: Mehrbandmaschinen

Definition (Mehrband-Turingmaschine)

Eine k-Band-Turingmaschine $(k \in \mathbb{N}_{>0})$ ein 7-Tupel $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ wobei

- Z ist eine endliche Menge von Zuständen,
- \bullet Σ ist das (endliche) Eingabealphabet,
- $\Gamma \supset \Sigma$ ist das (endliche) Bandalphabet,
- $\bullet~\delta$ ist die Zustandsüberführungsfunktion
 - für eine DTM: $\delta: (Z \times \Gamma^{k}) \to (Z \times \Gamma^{k} \times \{L, R, N\}^{k})$
 - für eine NTM: $\delta: (Z \times \Gamma^k) \to \mathcal{P}(Z \times \Gamma^k \times \{L, R, N\}^k)$
- $z_0 \in Z$ ist der Startzustand,
- $\bullet \ \Box \in \Gamma \setminus \Sigma \text{ ist das Blank-Symbol}$
- ullet $E\subseteq Z$ ist die Menge der Endzustände.

Wiederholung: Turingberechenbarkeit

Definition (Turingberechenbarkeit)

Sei bin(n) die Binärdarstellung von $n \in \mathbb{N}$.

Eine Funktion $f: \mathbb{N}^k \to \mathbb{N}$ heißt Turingberechenbar, falls es eine (deterministische) Turingmaschine $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ gibt, so dass für alle $n_1, \ldots, n_k, m \in \mathbb{N}$ gilt:

$$f(n_1,\dots,n_k)=m$$

$$\mathrm{g.d.w.}$$

$$z_0bin(n_1)\#\dots\#bin(n_k)\vdash^*\square\dots\square z_ebin(m)\square\dots\square \ \mathrm{mit} \ z_e\in E.$$

Eine Funktion $f: \Sigma^* \to \Sigma^*$ heißt Turingberechenbar, falls es eine (deterministische) Turingmaschine $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ gibt, so dass für alle $u, v \in \Sigma^*$ gilt

$$f(u) = v$$
 g.d.w. $z_0 u \vdash^* \square \ldots \square z_e v \square \ldots \square$ mit $z_e \in E$.

TCS | 27 Konstruktionen von TMs und LOOP-Programme | SoSe 2022

2/25

Kanataniai an ann TMa 100

Konstruktion von TMs und Notation

- Wenn M eine 1-Band-Turingmaschine ist, dann schreiben wir M(i,k) für die k-Band-Turingmaschine (mit $i \leq k$), die die Operationen von M auf dem i. Band durchführt und alle anderen Bänder unverändert lässt.
- \bullet Wenn k nicht von Bedeutung (und groß genug gewählt werden kann), schreiben wir M(i) statt M(i,k)
- TM die 1 addiert (bereits gesehen) nennen wir

$$\mathsf{,'Band} := \mathsf{Band} + 1\mathsf{''}$$

- ullet mit obiger Notation "Band := Band+1"(i)
- ullet andere Notation "Band i:= Band i+1"

Konstruktion von TMs (2)

Weitere TMs (Konstruktionen sind einfach)

- \bullet "Band $i := \mathsf{Band}\ i 1$ ": k-Band-TM ($k \ge i$), die eine angepasste Subtraktion von 1 auf Band idurchführt. Anpassung: 0 - 1 = 0
- "Band i := 0": k-Band-TM ($k \ge i$), die Band i mit 0 überschreibt.
- "Band $i := \mathsf{Band}\ i$ ": k-Band-TM (k > i und k > j), welche Zahl von Band j auf Band i kopiert

CS | 27 Konstruktionen von TMs und LOOP-Programme | SoSe 2022 5/25

Konstruktion von TMs LOC

Hintereinanderschaltung von TMs (2)

Flussdiagramm für M_1 ; M_2

$$\mathsf{start} \longrightarrow M_1 \longrightarrow M_2 \longrightarrow \mathsf{stop}$$

Hintereinanderschaltung

Seien $M_i = (Z_i, \Sigma, \Gamma_i, \delta_i, z_i, \square, E_i)$, für i = 1, 2, k-Band-TMs.

Die TM M_1 ; M_2 führt M_1 und M_2 hintereinandergeschaltet aus:

- O.B.d.A. $Z_1 \cap Z_2 = \emptyset$
- $M_1; M_2 = ((Z_1 \cup Z_2), \Sigma, \Gamma_1 \cup \Gamma_2, \delta, z_1, \square, E_2)$ mit

$$\delta(z,(a_1,\dots,a_k)) = \begin{cases} \delta_1(z,(a_1,\dots,a_k)) & \text{falls } z \in Z_1 \backslash E_1, (a_1,\dots,a_k) \in \Gamma_1^k \\ \delta_2(z,(a_1,\dots,a_k)) & \text{falls } z \in Z_2, \ (a_1,\dots,a_k) \in \Gamma_2^k \\ (z_2,(a_1,\dots,a_k),N^k) & \text{falls } z \in E_1, \ (a_1,\dots,a_k) \in \Gamma_1^k \end{cases}$$

Die TM M_1 ; M_2

- führt erst M_1 aus.
- wechselt im Endzustand $z \in E_1$ in Startzustand z_2 von M_2
- ullet führt anschließend M_2 aus.

CS | 27 Konstruktionen von TMs und LOOP-Programme | SoSe 2022

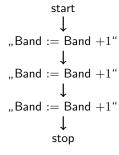
Hintereinanderschaltung von TMs (3)

Beispiel:

"Band := Band+3" wird konstruiert durch

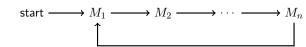
"Band := Band+1": "Band := Band+1": "Band := Band+1"

Flussdiagramm dazu



Hintereinanderschaltung von TMs (4)

Zyklische Verkettung von M_1, \ldots, M_n :



CS | 27 Konstruktionen von TMs und LOOP-Programme | SoSe 2022

TM: Test auf 0

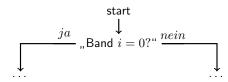
Beispiel: M_0 als TM, die Zustände $\{z_0, z_1, j_0, nein\}$ hat und

$$\begin{array}{lll} \delta(z_0,a) &=& (nein,a,N) & \text{für } a \neq 0 \\ \delta(z_0,0) &=& (z_1,0,R) \\ \delta(z_1,a) &=& (nein,a,L) & \text{für } a \neq \square \\ \delta(z_1,\square) &=& (ja,\square,L) \end{array}$$

mit ja und nein Endzustände und z_0 Startzustand

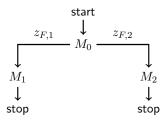
TM M_0 prüft, ob das Band eine 0 enthält oder nicht.

Notation: "Band=0?" und "Band i = 0?" (statt "Band=0?"(i))



Verzweigende Fortsetzung

Seien M_0, M_1, M_2 TMs, $z_{F.1}$ und $z_{F.2}$ die Endzustände von M_0



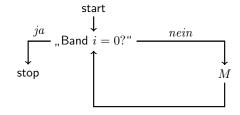
Konstruktion fügt Übergänge

$$\delta(z_{F,1},(a_1,\ldots,a_k)) = (z_{0,M_1},(a_1,\ldots,a_k),N)$$
 und $\delta(z_{F,2},(a_1,\ldots,a_k)) = (z_{0,M_2},(a_1,\ldots,a_k),N)$ ein, wobei z_{0,M_i} Startzustand von M_i (für $i=1,2$).

CS | 27 Konstruktionen von TMs und LOOP-Programme | SoSe 2022 10/25

TM: Schleife

Mit Verzweigung, "Band i=0?", (zyklischer) Hintereinanderschaltung und einer TM Merstellen wir



Die TM M wird solange wieder aufgerufen,

bis das i. Band die Zahl 0 enthält.

Die Maschine nennen wir "WHILE Band $i \neq 0$ DO M".

LOOP-, WHILE-, GOTO-Programme

Programme einer einfachen imperativen Programmiersprache mit Zuweisungen, Verzweigungen und Schleifen können durch TMs simuliert werden.

Ziel

- Betrachte drei einfache imperative Programmiersprachen:
 - LOOP-Programme
 - WHILE-Programme
 - GOTO-Programme
- und die dazugehörigen Berechenbarkeitsbegriffe
- Welche Berechenbarkeitsbegriffe sind gleich / verschieden (untereinander aber auch bezüglich Turingberechenbarkeit)?

27 Konstruktionen von TMs und LOOP-Programme | SoSe 2022 13/25

Konstruktion von TMs LOC

CS | 27 Konstruktionen von TMs und LOOP-Programme | SoSe 2022

LOOP-Programme: Syntax

LOOP-Programme werden durch CFG (V, Σ, P, Prq) erzeugt, wobei:

$$\begin{array}{lll} V & = & \{Prg, Var, Id, Const\} \\ \Sigma & = & \{\textbf{LOOP}, \textbf{DO}, \textbf{END}, x, 0, \dots, 9, ;, :=, +, -\} \\ P & = & \{Prg & \rightarrow & \textbf{LOOP} \ Var \ \textbf{DO} \ Prg \ \textbf{END} \\ & & | \ Prg; Prg \\ & | \ Var := \ Var + Const \\ & | \ Var := \ Var - Const \\ \hline Var & \rightarrow & x_{Id} \\ & Const & \rightarrow & Id \\ & Id & \rightarrow & 0 \mid 1 \mid \dots \mid 9 \mid 1 Const \mid 2 Const \mid \dots \mid 9 Const \} \end{array}$$

Beachte:

- Var erzeugt Variablen x_0, x_1, x_2, \dots
- Const erzeugt alle natürlichen Zahlen

LOOP-Programme: Semantik (Modellierung des Speichers)

Definition (Variablenbelegung)

Eine Variablenbelegung ρ ist eine endliche Abbildung mit Einträgen $x_i \mapsto n$ mit x_i ist Variable und $n \in \mathbb{N}$.

Wir definieren
$$\rho(x_i) := \left\{ \begin{array}{ll} n, & \text{wenn } x_i \mapsto n \in \rho \\ 0, & \text{sonst} \end{array} \right.$$

Wir schreiben $\rho\{x_i \mapsto m\}$ für

$$\rho\{x_i\mapsto m\}(x_j)=\left\{\begin{array}{ll}\rho(x_j),&\text{wenn }x_j\neq x_i\\m,&\text{wenn }x_j=x_i\end{array}\right.$$

LOOP-Programme: Semantik (Berechnungsschritte)

Definition (Berechnungsschritt $\xrightarrow{1008}$)

 $\mathsf{Berechnungsschritt}\ (\rho,P) \xrightarrow[\mathsf{LOOP}]{} (\rho',P'),\ \mathsf{wobei}\ \rho,\rho'\ \mathsf{Variablenbelegungen}\ \mathsf{und}\ P,P'$ LOOP-Programme oder ε (leeres Programm)

- $(\rho, x_i := x_j + c) \longrightarrow (\rho', \varepsilon)$ wobei $\rho' = \rho\{x_i \mapsto n\}$ und $n = \rho(x_j) + c$
- $(\rho, x_i := x_j c) \xrightarrow{\cdot} (\rho', \varepsilon)$ wobei $\rho' = \rho\{x_i \mapsto n\}$ und $n = \max(0, \rho(x_j) c)$
- $(\rho, P_1; P_2) \xrightarrow[\text{LOOP}]{} (\rho', P_1'; P_2) \text{ wenn } (\rho, P_1) \xrightarrow[\text{LOOP}]{} (\rho', P_1') \text{ und } P_1' \neq \varepsilon$
- $(\rho, P_1; P_2) \xrightarrow{\text{LOOP}} (\rho', P_2) \text{ wenn } (\rho, P_1) \xrightarrow{\text{LOOP}} (\rho', \varepsilon)$
- $(\rho, \mathsf{LOOP}\ x_i \ \mathsf{DO}\ P \ \mathsf{END}) \xrightarrow[\rho]{\mathsf{LOOP}} (\rho, \underbrace{P; \dots; P}_{\rho(x_i) \cdot \mathsf{mal}})$

Wir schreiben \xrightarrow{i} für i Schritte und \xrightarrow{i} für 0 oder beliebig viele Schritte

27 Konstruktionen von TMs und LOOP-Programme | SoSe 2022 17/25

LOOP-Berechenbarkeit

Definition (LOOP-berechenbare Funktion)

Eine Funktion $f: \mathbb{N}^k \to \mathbb{N}$ heißt LOOP-berechenbar, wenn es ein LOOP-Programm Pgibt, sodass für alle $n_1, \ldots, n_k \in \mathbb{N}$ und Variablenbelegungen $\rho = \{x_1 \mapsto n_1, \dots, x_k \mapsto n_k\}$ gilt:

$$(\rho, P) \xrightarrow[\text{LOOP}]{}^* (\rho', \varepsilon) \text{ und } \rho'(x_0) = f(n_1, \dots, n_k)$$

D.h. das LOOP-Programm

- empfängt Eingaben über die Variablen x_1, \ldots, x_k
- liefert Ergebnis in Variable x_0

LOOP-Programme: Beispiel für die Semantik

Programm: $x_2 := x_1 + 1$; Variablenbelegung: $\{x_1 \mapsto 2\}$ **LOOP** x_2 **DO** $x_3 := x_3 + 1$ **END**

Ausführung:

$$\begin{array}{c} (\{x_1 \mapsto 2\}, x_2 := x_1 + 1; \mathbf{LOOP} \ x_2 \ \mathbf{DO} \ x_3 := x_3 + 1) \\ \xrightarrow[\text{LOOP}]{} (\{x_1 \mapsto 2, x_2 \mapsto 3\}, \mathbf{LOOP} \ x_2 \ \mathbf{DO} \ x_3 := x_3 + 1) \\ \xrightarrow[\text{da}]{} (\{x_1 \mapsto 2\}, x_2 := x_1 + 1) \xrightarrow[\text{LOOP}]{} (\{x_1 \mapsto 2, x_2 \mapsto 3\}, \varepsilon) \\ \xrightarrow[\text{LOOP}]{} (\{x_1 \mapsto 2, x_2 \mapsto 3\}, x_3 := x_3 + 1; x_3 := x_3 + 1; x_3 := x_3 + 1) \\ \xrightarrow[\text{LOOP}]{} (\{x_1 \mapsto 2, x_2 \mapsto 3, x_3 \mapsto 1\}, x_3 := x_3 + 1; x_3 := x_3 + 1) \\ \xrightarrow[\text{da}]{} (\{x_1 \mapsto 2, x_2 \mapsto 3\}, x_3 := x_3 + 1) \xrightarrow[\text{LOOP}]{} (\{x_1 \mapsto 2, x_2 \mapsto 3, x_3 \mapsto 1\}, \varepsilon) \\ \xrightarrow[\text{LOOP}]{} (\{x_1 \mapsto 2, x_2 \mapsto 3, x_3 \mapsto 1\}, x_3 := x_3 + 1) \xrightarrow[\text{LOOP}]{} (\{x_1 \mapsto 2, x_2 \mapsto 3, x_3 \mapsto 2\}, \varepsilon) \\ \xrightarrow[\text{LOOP}]{} (\{x_1 \mapsto 2, x_2 \mapsto 3, x_3 \mapsto 3\}, \varepsilon) \end{array}$$

TCS | 27 Konstruktionen von TMs und LOOP-Programme | SoSe 2022

LOOP-Berechenbarkeit: Beispiel

Die Funktion $f(n_1) = n_1 + c$ ist LOOP-berechenbar.

Das Programm $x_0 := x_1 + c$ belegt dies, denn für alle $n_1 \in \mathbb{N}$:

$$(\{x_1 \mapsto n_1\}, x_0 := x_1 + c) \xrightarrow[\text{LOOP}]{} (\{x_0 \mapsto n_1 + c, x_1 \mapsto n_1\}, \varepsilon)$$

LOOP-Programme terminieren stets

Satz

Alle LOOP-Programme terminieren. Daher sind alle LOOP-berechenbaren Funktionen total.

Beweis: Zeige für alle (ρ, P) : $\exists j_{P,\rho} \in \mathbb{N}, \rho' : (\rho, P) \xrightarrow{\mathsf{IOOR}} j_{P,\rho} (\rho', \varepsilon).$

Beweis mit Induktion über die Struktur von P.

- Basis: Für $(\rho, x_i := x_i \pm c)$ wird genau 1 Schritt benötigt.
- Für Sequenzen P_1 ; P_2 und ρ liefert die Induktionshypothese $j_{P_1,\rho}$ und $j_{P_2,\rho'}$ mit $(\rho, P_1; P_2) \xrightarrow{J_{P_1,\rho}} (\rho', P_2) \xrightarrow{J_{P_2,\rho'}} (\rho'', \varepsilon).$
- Für LOOP x_i DO P END liefert die Induktionshypothese j_{P,o_i} und ρ_i mit $(\rho_1, \mathbf{LOOP}\ x_i\ \mathbf{DO}\ P\ \mathbf{END}) \xrightarrow[\mathsf{LOOP}]{} (\rho_1, P; \dots; P) \xrightarrow[\mathsf{LOOP}]{} j_{P,\rho_1}$ $(\rho_2, P; \dots; P) \xrightarrow[\mathsf{LOOP}]{} j_{P,\rho_2} \dots \xrightarrow[\mathsf{LOOP}]{} i_{P,\rho_n} (\rho_{n+1}, \varepsilon) \ \mathsf{mit}\ n = \rho_1(x_i)$

27 Konstruktionen von TMs und LOOP-Programme | SoSe 2022 21/25

LOOP-Berechenbarkeit

• Da es partielle Turingberechenbare Funktionen gilt:

Es gibt Turingberechenbare Funktionen, die nicht LOOP-berechenbar sind.

Z.B. die überall undefinierte Funktion.

• Es gilt sogar:

Es gibt intuitiv berechenbare Funktionen, die total sind. aber trotzdem nicht LOOP-berechenbar sind

(ein Beispiel ist die Ackermannfunktion, siehe später).

CS | 27 Konstruktionen von TMs und LOOP-Programme | SoSe 2022

Kodierung weiterer Befehle mit LOOP-Programmen

Befehl: $x_i := c$

Kodierung: $x_i := x_n + c$

wobei x_n keine der Eingabevariablen ist

(dann gilt $\rho(x_n) = 0$)

Befehl: $x_i := x_i$

Kodierung: $x_i := x_i + 0$

Befehl: **IF** $x_i = 0$ **THEN** P **END**

Kodierung: $x_n := 1$;

LOOP x_i **DO** $x_n := 0$ **END**:

LOOP x_n DO P END

wobei x_n eine Variable ist, die nicht in P und

nicht in der Eingabe vorkommt.

Kodierung weiterer Befehle mit LOOP-Programmen (2)

Befehl: IF $x_i = 0$ THEN P_1 ELSE P_2 END

Kodierung: $x_n := 1$;

 $x_m := 1;$

LOOP x_i **DO** $x_n := 0$ **END**:

LOOP x_n **DO** $x_m := 0; P_1$ **END**;

LOOP x_m DO P_2 END

wobei x_n, x_m nicht in der Eingabe

und nicht sonst irgendwo im Programm vorkommen

Kompliziertere if-Bedingungen gehen analog.

Kodierung weiterer Befehle mit LOOP-Programmen (3)

```
Befehl: x_i := x_j + x_l
Kodierung: x_i := x_j;
            LOOP x_l DO x_i := x_i + 1 END
```

- ullet zeigt auch, dass die Additionsfunktion $f(x_1,x_2)=x_1+x_2$ LOOP-berechenbar ist.
- andere Rechenoperationen (wie *, mod div) gehen analog