Formale Sprachen und Komplexität Theoretische Informatik für Medieninformatiker Sommersemester 2022

Satz von Kuroda und LBA-Probleme

Prof. Dr. David Sabel

LFE Theoretische Informatik

Satz von Kuroda

Theorem (Satz von Kuroda)

Kontextsensitive Sprachen werden genau von den LBAs erkannt.

Der Beweis erfolgt in zwei Teilen:

- Kontextsensitive Sprachen sind durch LBAs erkennbar
- LBAs erkennen kontextsensitive Sprachen

Dabei auch: Betrachtung von allgemeinen TMs und Typ 0-Sprachen.

Kontextsensitive Sprachen durch LBAs erkennbar

Satz

Jede kontextsensitive Sprache wird von einem LBA erkannt.

Beweis:

- Sprache sei als $G = (V, \Sigma, P, S)$ in Kuroda-Normalform gegeben.
- Konstruiere TM mit Bandalphabet $((\Sigma \cup V) \cup \widehat{\Sigma \cup V} \cup \Box) \subseteq \Gamma$
- Zur einfacheren Illustration unterscheiden wir nicht zwischen a und \widehat{a} und schreiben a auch für den letzten Buchstaben der Eingabe, aber: Wir gehen davon aus, dass der LBA entsprechend programmiert ist, die notwendigen Ersetzungen zu machen.
- Die TM versucht nichtdeterministisch für $w \in \Sigma^*$ das Startsymbol S der Grammatik rückwärts herzuleiten, durch rückwärts Anwenden der Produktionen $\ell \to r \in P$: ersetze Vorkommen von r durch ℓ
- . . .

Kontextsensitive Sprachen durch LBAs erkennbar (2)

- Für Produktionen $A \to a, A \to B, AB \to CD$ kann man direkt ersetzen, für den Fall $A \to BC$ wird BC durch $\Box A$ ersetzt und dann alle Zeichen von links um eins nach rechts verschoben
- Akzeptiere, wenn Startsymbol S alleine auf dem Band steht.
- Nichtdeterminismus: Welche Produktion wird rückwärts angewendet und für welches Vorkommen einer rechten Seite?

Kontextsensitive Sprachen durch LBAs erkennbar (2)

- Für Produktionen $A \to a, A \to B, AB \to CD$ kann man direkt ersetzen, für den Fall $A \to BC$ wird BC durch $\Box A$ ersetzt und dann alle Zeichen von links um eins nach rechts verschoben
- Akzeptiere, wenn Startsymbol S alleine auf dem Band steht.
- Nichtdeterminismus: Welche Produktion wird rückwärts angewendet und für welches Vorkommen einer rechten Seite?

Suche nach einer rechter Seite r:

- Beginne links an der Eingabe und laufe diese durch.
- Speichere im aktuellen Zustand: Symbol links vom Schreib-Lesekopf
- Entscheide mit dem aktuellen Symbol, ob es passende Produktion gibt (da rechte Seiten von Produktionen in Kuroda-Normalform aus maximal 2 Zeichen bestehen. genügt dies).

Kontextsensitive Sprachen durch LBAs erkennbar (3)

Ersetzung r durch ℓ :

- Für $A \to a$ und $A \to B$ wird das aktuelle Symbol durch A ersetzt, anschließend wird der nächste Schritt gestartet (d.h. es gibt einen Zustand, der den Schreib-Lesekopf nach links fährt).
- Für $AB \to CD$, wird B geschrieben und der Kopf nach links wechseln, dann A geschrieben und der nächste Schritt gestartet.
- ullet Für A o BC schreibe A und wechsele nach links, schreibe \Box , fahre ganz nach links und starte Prozedur zum Verschieben der Zeichen nach rechts, solange bis die Lücke geschlossen ist.

Verschieben nach rechts:

- Zustand speichert das linkeste Symbol
- Laufen nach rechts: aktuelles Symbol mit dem gespeicherten vertauschen
- Vertauschen beenden nachdem

 mit einem anderen Symbol vertauscht wird.

Kontextsensitive Sprachen durch LBAs erkennbar (4)

Die TM ist ein LBA:

- Da für alle Produktionen $\ell \to r \in P$ gilt: $|\ell| \le |r|$, werden nur Teilworte r durch gleichlange oder kürzere Teilworte ℓ ersetzt
- TM kommt mit dem Platz der Eingabe aus

Bemerkungen und Typ 0-Grammatiken

Bemerkung 1:

- Konstruktion funktioniert auch für Grammatiken nicht in Kuroda-Normalform, ist aber komplizierter:
- ullet Speichere im Zustand q-1 Zeichen, wobei q die Länge der längsten rechten Seite
- Funktioniert immer noch mit endlich vielen Zuständen und als LBA

Bemerkung 2:

 Konstruktion funktioniert auch für Typ 0-Grammatiken: Platz allerdings dann unbeschränkt (kein LBA!)

Satz

Jede Typ i-Sprache (für i=0,1,2,3) wird von einer nichtdeterministischen Turing-Maschine akzeptiert.

LBAs erkennen kontextsensitive Sprachen

Satz

Sei M ein LBA. Dann ist L(M) eine kontextsensitive Sprache.

Beweis:

- Sei $M = (Z, \Sigma \cup \widehat{\Sigma}, \Gamma, \delta, z_0, \square, E)$
- Wir konstruieren eine Typ 1-Grammatik G mit L(G) = L(M)
- Idee für die Grammatik:
 - $\blacksquare \ \, \text{Erzeuge beliebiges} \,\, w \in \Sigma^* \,\, \text{und Startkonfiguration von} \,\, M \,\, \text{für} \,\, w \\$
 - ② Simuliere LBA zum Prüfen, ob $w \in L(M)$
 - lacktriangle Wenn LBA akzeptiert erzeuge w endgültig
- Variablen der Grammatik:
 - ullet Neue Variablen S und A
 - Variablen der Form $\left\langle \begin{matrix} u \\ v \end{matrix} \right\rangle$ wobei $u \in \Sigma$ und $v \in \Gamma \cup (Z\Gamma)$ Obere Komponenten ergeben Wort w, untere Komponenten ergeben TM-Konfiguration.

LBAs erkennen kontextsensitive Sprachen (2)

• Regeln zur Erzeugung von $w \in \Sigma^*$ Startkonfiguration zw:

$$P_1 := \left\{S \to A \left\langle \begin{matrix} a \\ \widehat{a} \end{matrix} \middle\rangle \mid a \in \Sigma \right\} \cup \left\{A \to A \left\langle \begin{matrix} a \\ a \end{matrix} \middle\rangle \mid a \in \Sigma \right\} \cup \left\{A \to \left\langle \begin{matrix} a \\ z_0 a \end{matrix} \middle\rangle \mid a \in \Sigma \right\}$$

• Worte $w \in L(M)$ mit |w| < 2 können dadurch nicht erzeugt werden, daher direkt alle Worte aus L(M) der Länge < 2 erzeugen:

$$P_0 = \{S \to w \mid |w| < 2, w \in L(M)\}$$

- Für $a_1 \cdots a_n \in \Sigma^*$ mit n > 1 gilt: $S \Rightarrow_{P_1} A \left\langle \begin{matrix} a_n \\ \widehat{a}_n \end{matrix} \right\rangle \Rightarrow_{P_1}^* \left\langle \begin{matrix} a_1 \\ z_0 a_1 \end{matrix} \right\rangle \left\langle \begin{matrix} a_2 \\ a_2 \end{matrix} \right\rangle \cdots \left\langle \begin{matrix} a_n \\ \widehat{a}_n \end{matrix} \right\rangle$
- Regelsatz P_2 simuliert M auf **den unteren** Komponenten. Wir bilden:

$$\begin{split} P_2 := & \left\{ \left\langle \begin{matrix} a \\ u \end{matrix} \right\rangle \left\langle \begin{matrix} b \\ v \end{matrix} \right\rangle \rightarrow \left\langle \begin{matrix} a \\ u' \end{matrix} \right\rangle \left\langle \begin{matrix} b \\ v' \end{matrix} \right\rangle \mid a,b \in \Sigma \text{ und } uv \rightarrow u'v' \in P_2^{\mathsf{unten}} \right\} \\ \cup & \left\{ \left\langle \begin{matrix} a \\ u \end{matrix} \right\rangle \rightarrow \left\langle \begin{matrix} a \\ u' \end{matrix} \right\rangle \mid a \in \Sigma \text{ und } u \rightarrow u' \in P_2^{\mathsf{unten}}(\mathsf{mit } u,u' \in \Gamma \cup (Z\Gamma)) \right\} \end{split}$$

wobei wir P_2^{unten} noch definieren.

LBAs erkennen kontextsensitive Sprachen (3)

$$\begin{array}{l} P_2^{\mathrm{unten}} := \{c\,za \to z'c\,b \mid \text{ für alle } c \in \Gamma \text{ und } (z',b,L) \in \delta(z,a)\} \\ \quad \cup \ \{za\,c \to b\,z'c \mid \text{ für alle } c \in \Gamma \text{ und } (z',b,R) \in \delta(z,a)\} \\ \quad \cup \ \{za \to zb \mid \text{ für alle } c \in \Gamma \text{ und } (z',b,N) \in \delta(z,a)\} \end{array}$$

Es gilt:

- $wzw' \vdash_M^* uz'u'$ g.d.w. $wzw' \Rightarrow_{Punten}^* uz'u'$
- ullet Dabei: Darstellung von z, z' in der Ableitung immer verbunden mit einem Zeichen aus Γ

 P_3 : Nach Akzeptieren des LBA, erstelle aus Tupelfolgen das Wort $a_1 \cdots a_n$

$$P_3 := \left\{ \left\langle \begin{matrix} b \\ za \end{matrix} \right\rangle \to b \mid z \in E, a \in \Gamma, b \in \Sigma \right\} \cup \left\{ \left\langle \begin{matrix} b \\ a \end{matrix} \right\rangle \to b \mid a \in \Gamma, b \in \Sigma \right\}$$

Es gilt
$$\left\langle a_1 \atop b_1 \right\rangle \cdots \left\langle a_m \atop b_m \right\rangle \left\langle a_{m+1} \atop zb_{m+1} \right\rangle \left\langle a_{m+2} \atop b_{m+2} \right\rangle \cdots \left\langle a_n \atop b_n \right\rangle \Rightarrow_{P_3}^* a_1 \cdots a_n.$$

LBAs erkennen kontextsensitive Sprachen (4)

$$\bullet \ \, \mathsf{Sei} \,\, G = \left(\{S,A\} \cup \left\{ \left\langle \begin{matrix} u \\ v \end{matrix} \right\rangle \mid u \in \Sigma, v \in \Gamma \cup (Z\Gamma) \right\}, \Sigma, P_0 \cup P_1 \cup P_2 \cup P_3, S \right).$$

- $\bullet \ \, {\rm Dann \ gilt \ f\"ur \ alle} \ w \in \Sigma^* \colon S \Rightarrow_G^* w \ {\rm genau \ dann, \ wenn} \ w \in L(M).$
- ullet Des weiteren gilt, dass G eine kontextsensitive Grammatik ist, da es keine verkürzenden Regeln gibt.

Typ 0-Sprachen

Die Konstruktion der Typ 1-Grammatik aus einem LBA kann für beliebige NTMs angepasst werden:

- $\bullet \ \, \hbox{Zus\"{a}tzliche Tupel} \, \left\langle \begin{smallmatrix} \$ \\ c \end{smallmatrix} \right\rangle \, \hbox{f\"{u}r} \, \, c \in \Gamma \cup Z\Gamma \, \, \hbox{und} \, \, \$ \, \, \hbox{ein neues Symbol}.$
- Darstellung von Konfiguration, die länger als das Eingabewort sind:

$$\left\langle \begin{matrix} a_1 \\ c_1 \end{matrix} \right\rangle \cdots \left\langle \begin{matrix} a_n \\ c_n \end{matrix} \right\rangle \left\langle \begin{matrix} \$ \\ c_{n+1} \end{matrix} \right\rangle \cdots \left\langle \begin{matrix} \$ \\ z_i c_m \end{matrix} \right\rangle \left\langle \begin{matrix} \$ \\ c_r \end{matrix} \right\rangle$$

• Regelsatz P_3 enthält Regeln $\left\langle \begin{smallmatrix}\$\\c_i\end{smallmatrix}\right\rangle o \varepsilon$ (nicht kontextsensitiv!)

Satz

Die durch (allgemeine) nichtdeterministischen Turingmaschinen akzeptierten Sprachen sind genau die Typ 0-Sprachen.

LBA-Probleme

1. LBA-Problem

Erkennen deterministische LBAs die selben Sprachen wie nichtdeterministische LBAs?

Bis heute ungeklärt!

2. LBA-Problem

Sind die kontextsensitiven Sprachen abgeschlossen unter Komplementbildung?

Formuliert 1964 von Kuroda, 1987 gelöst von Neil Immerman als auch Róbert Szelepcsényi

Überraschenderweise positiv:

Theorem (Satz von Immerman und Szelepcsényi)

Die kontextsensitiven Sprachen sind abgeschlossen unter Komplementbildung.

Satz von Immerman und Szelepcsényi

Beweisskizze:

- Sei $G = (V, \Sigma, P, S)$ eine Typ 1-Grammatik mit L(G) = L.
- Konstruiere LBA M für $\overline{L} = \Sigma^* \setminus L$
- Sei $w \in \Sigma^*$. M berechnet die exakte Anzahl $A \in N$ der von S aus erzeugbaren Satzformen der Länge $n \leq |w|$
- $A \leq (|V| + |\Sigma| + 1)^n$ und kann daher in $(k+1) \cdot n$ -Bits dargestellt werden: Die passen auf das Band von M, wenn man Symbole für je k+1-Bitblöcke hat
- Anschließend: Zähle alle Satzformen u der Länge $\leq |n|$ aus $(V \cup \Sigma^*)$ auf (außer w selbst) und prüfe ob $S \Rightarrow_G^* u$ gilt
- Dabei wird ein Zähler mitgeführt, der hochgezählt wird, wenn Ableitung möglich ist
- Wenn der Zähler die Zahl A erreicht, dann akzeptiert M: Es wurden alle ableitbaren Worte der Länge $\leq n$ aufgezählt, w war nicht dabei. Also $w \not\in L$ und damit $w \in \overline{L}$.

Satz von Immerman und Szelepcsényi (2)

Berechnung der Zahl A:

- Sei A(m,n) die Zahl der Satzformen, die in höchstens m Schritten aus S erzeugbar sind und deren Länge n nicht überschreitet: $A(m,n) = |\{w \in (V \cup \Sigma)^* \mid |w| < n, S \Rightarrow^{\leq m} w\}|).$
- Wenn wir A(i,n) für $i=0,1,2,\ldots$ berechnen, muss irgendwann A(i,n)=A(i+1,n) gelten, dann haben wir A gefunden.

Berechnung von A(m, n)

- Starte mit $A(0,n) = |\{S\}| = 1$
- Berechne result = A(m+1,n) durch Eingabe von A(m,n)
- Initial: result = 0.
- ullet Äußere Schleife zählt alle Satzformen u bis zur Länge n auf
- ullet Innere Schleife zählt nochmal alle Satzformen v bis zur Länge n auf.
- Vor Beginn der inneren Schleife: count = 0
- In der inneren Schleife: prüfe nichtdeterministisch, ob $S \Rightarrow^{\leq m} v$ Wenn ja count = count + 1; Wenn v = u oder $v \Rightarrow u$ gilt, result = result + 1
- Nach Ablauf der inneren Schleife, prüfe ob count = A(m,n) gilt. Wenn nein, dann verwerfe diese nichtdeterministische Berechnung Wenn ja, dann war dies die richtige nichtdeterministische Berechnung und es wurde für alle in $\leq m$ -Schritten aus S herleitbaren Satzformen v geprüft, ob durch Verlängern mit v oder v eine der Satzformen v herleitbar ist d. h. v enthält den Wert v enthält den W