Formale Sprachen und Komplexität Theoretische Informatik für Medieninformatiker Sommersemester 2022

Entscheidbarkeiten bei kontextfreien Sprachen und

Kuroda-Normalform für kontextsensitive Grammatiken

Prof. Dr. David Sabel

LFE Theoretische Informatik

Ziele

Zunächst:

- Entscheidbare Probleme für Kontextfreie Grammatiken
- Resultate haben wir z.T. schon gesehen, aber Beweise fehlten

Danach:

LBA-Probleme

Leerheitsproblem

Satz

Das Leerheitsproblem für kontextfreie Grammatiken ist entscheidbar.

Beweis:

- ullet Sei L als CFG gegeben
- Prüfe zunächst, ob $\varepsilon \in L$ (wenn ja, dann ist L nicht leer)
- Sei $G = (V, \Sigma, P, S)$ eine CFG in Chomsky-NF mit $L(G) = L \setminus \{\varepsilon\}$.
- Der folgende Algorithmus markiert alle $A \in V$ mit $\{w \in \Sigma^* \mid A \Rightarrow_C^* w\} \neq \emptyset$
- Prüfe, ob S markiert wird (wenn ja, dann ist L nicht-leer)

Algorithmus 9: Markierung der Variablen, die nichtleere Sprachen erzeugen

Sei $G = (\{S, A, B, C\}, \{a, b\}, \{S \to AB, C \to CC \mid a \mid b, A \to CC \mid BB, B \to CB\})$ Ausführung von Algorithmus 9:

• $W := \{A \in V \mid A \to a \in P\} = \{C\}$

Sei $G = (\{S, A, B, C\}, \{a, b\}, \{S \to AB, C \to CC \mid a \mid b, A \to CC \mid BB, B \to CB\})$ Ausführung von Algorithmus 9:

- $W := \{A \in V \mid A \to a \in P\} = \{C\}$
- 1 Durchlauf der wiederhole-Schleife.
 - $W_{alt} := W = \{C\}$

5/17

Sei $G = (\{S, A, B, C\}, \{a, b\}, \{S \rightarrow AB, C \rightarrow CC \mid a \mid b, A \rightarrow CC \mid BB, B \rightarrow CB\})$ Ausführung von Algorithmus 9:

- $W := \{A \in V \mid A \to a \in P\} = \{C\}$
- 1 Durchlauf der wiederhole-Schleife.
 - $W_{alt} := W = \{C\}$
 - $W := W_{alt} \cup \{A \mid A \to BC \in P, B, C \in W_{alt}\} = \{C\} \cup \{A, C\} = \{A, C\}$

5/17

Sei $G = (\{S, A, B, C\}, \{a, b\}, \{S \rightarrow AB, C \rightarrow CC \mid a \mid b, A \rightarrow CC \mid BB, B \rightarrow CB\})$ Ausführung von Algorithmus 9:

- $W := \{A \in V \mid A \to a \in P\} = \{C\}$
- 1 Durchlauf der wiederhole-Schleife.
 - $W_{alt} := W = \{C\}$
 - $W := W_{alt} \cup \{A \mid A \to BC \in P, B, C \in W_{alt}\} = \{C\} \cup \{A, C\} = \{A, C\}$
 - prüfe $W = W_{alt}$ ergibt False

Sei $G = (\{S, A, B, C\}, \{a, b\}, \{S \rightarrow AB, C \rightarrow CC \mid a \mid b, A \rightarrow CC \mid BB, B \rightarrow CB\})$ Ausführung von Algorithmus 9:

- $W := \{A \in V \mid A \to a \in P\} = \{C\}$
- 1 Durchlauf der wiederhole-Schleife.
 - $W_{alt} := W = \{C\}$
 - $W := W_{alt} \cup \{A \mid A \to BC \in P, B, C \in W_{alt}\} = \{C\} \cup \{A, C\} = \{A, C\}$
 - prüfe $W = W_{alt}$ ergibt False
- 2 Durchlauf der wiederhole-Schleife.
 - $W_{alt} := W = \{A, C\}$

Sei
$$G=(\{S,A,B,C\},\{a,b\},\{S\to AB,C\to CC\mid a\mid b,A\to CC\mid BB,B\to CB\})$$
 Ausführung von Algorithmus 9:

- $W := \{A \in V \mid A \to a \in P\} = \{C\}$
- 1 Durchlauf der wiederhole-Schleife.
 - $W_{alt} := W = \{C\}$
 - $W := W_{alt} \cup \{A \mid A \to BC \in P, B, C \in W_{alt}\} = \{C\} \cup \{A, C\} = \{A, C\}$
 - prüfe $W = W_{alt}$ ergibt False
- 2 Durchlauf der wiederhole-Schleife.
 - $W_{alt} := W = \{A, C\}$
 - $W := W_{alt} \cup \{A \mid A \rightarrow BC \in P, B, C \in W_{alt}\} = \{A, C\} \cup \{A, C\} = \{A, C\}$

Sei
$$G=(\{S,A,B,C\},\{a,b\},\{S\to AB,C\to CC\mid a\mid b,A\to CC\mid BB,B\to CB\})$$
 Ausführung von Algorithmus 9:

- $W := \{A \in V \mid A \to a \in P\} = \{C\}$
- 1 Durchlauf der wiederhole-Schleife.
 - $W_{alt} := W = \{C\}$
 - $W := W_{alt} \cup \{A \mid A \to BC \in P, B, C \in W_{alt}\} = \{C\} \cup \{A, C\} = \{A, C\}$
 - prüfe $W = W_{alt}$ ergibt False
- 2 Durchlauf der wiederhole-Schleife.
 - $W_{alt} := W = \{A, C\}$
 - $W := W_{alt} \cup \{A \mid A \rightarrow BC \in P, B, C \in W_{alt}\} = \{A, C\} \cup \{A, C\} = \{A, C\}$
 - prüfe $W = W_{alt}$ ergibt True

Sei
$$G=(\{S,A,B,C\},\{a,b\},\{S\to AB,C\to CC\mid a\mid b,A\to CC\mid BB,B\to CB\})$$
 Ausführung von Algorithmus 9:

- $W := \{A \in V \mid A \to a \in P\} = \{C\}$
- 1 Durchlauf der wiederhole-Schleife.
 - $W_{alt} := W = \{C\}$
 - $W := W_{alt} \cup \{A \mid A \to BC \in P, B, C \in W_{alt}\} = \{C\} \cup \{A, C\} = \{A, C\}$
 - prüfe $W = W_{alt}$ ergibt False
- 2 Durchlauf der wiederhole-Schleife.
 - $W_{alt} := W = \{A, C\}$
 - $W := W_{alt} \cup \{A \mid A \rightarrow BC \in P, B, C \in W_{alt}\} = \{A, C\} \cup \{A, C\} = \{A, C\}$
 - prüfe $W = W_{alt}$ ergibt True
- return $W = \{A, C\}$

Sei
$$G=(\{S,A,B,C\},\{a,b\},\{S\to AB,C\to CC\mid a\mid b,A\to CC\mid BB,B\to CB\})$$
 Ausführung von Algorithmus 9:

- $W := \{A \in V \mid A \to a \in P\} = \{C\}$
- 1. Durchlauf der wiederhole-Schleife:
 - $W_{alt} := W = \{C\}$
 - $W := W_{alt} \cup \{A \mid A \to BC \in P, B, C \in W_{alt}\} = \{C\} \cup \{A, C\} = \{A, C\}$
 - ullet prüfe $W=W_{alt}$ ergibt False
- 2. Durchlauf der wiederhole-Schleife:
 - $W_{alt} := W = \{A, C\}$
 - $W := W_{alt} \cup \{A \mid A \to BC \in P, B, C \in W_{alt}\} = \{A, C\} \cup \{A, C\} = \{A, C\}$
 - prüfe $W=W_{alt}$ ergibt True
- return $W = \{A, C\}$

Da $S \notin W$ folgt, dass G die leere Sprache erzeugt.

Endlichkeitsproblem

Satz

Das Endlichkeitsproblem für kontextfreie Sprachen ist entscheidbar.

Beweis: Sei $G = (V, \Sigma, P, S)$ eine CFG in Chomsky-NF. Sei n die Zahl aus dem Pumping-Lemma für CFLs (z.B. $n=2^{|V|}$ siehe Beweis des Pumping-Lemma für CFLs).

Wir zeigen zunächst:

Es gilt
$$|L(G)|=\infty$$
 g.d.w. es ein Wort $z\in L(G)$ mit $n\leq |z|<2n$ gibt.

- Sei $z \in L$ mit |z| > n.
- Pumping-Lemma zeigt: $uv^iwx^iy \in L$ für alle $i \in \mathbb{N}$.
- Also $|L(G)| = \infty$

Endlichkeitsproblem (2)

. . .

Wir zeigen zunächst:

Es gilt $|L(G)| = \infty$ g.d.w. es ein Wort $z \in L(G)$ mit n < |z| < 2n gibt.

..⇒":

- Beweis durch Widerspruch
- Annahme: Es gibt kein Wort $z \in L(G)$ für $n \leq |z| < 2n$, aber trotzdem gilt $|L(G)| = \infty$.
- Sei $z \in L(G)$ das kürzeste Wort mit $|z| \geq 2n$.
- Pumping-Lemma: Es gibt u, v, w, x, y gibt mit z = uvwxy, |vx| > 0 und |vwx| < n, sodass insbes. $uv^0wx^0y \in L$ gilt.
- Da $|uv^0wx^0y| = |uwy| < |uvwxy|$ und |uwy| > n gilt, war z nicht minimal gewählt. Widerspruch!

Endlichkeitsproblem (3)

Entscheide Endlichkeitsproblem:

- Teste für alle Worte $w \in \Sigma^*$, der Länge $n \leq |w| < 2n$, ob $w \in L(G)$ gilt (mit CYK-Algorithmus).
- Wenn $w \in L(G)$, dann $|L(G)| = \infty$, sonst $|L(G)| < \infty$.

Weiteres Entscheidbarkeitsproblem

Das Problem, ob eine deterministisch kontextfreie Sprache äquivalent zu einer regulären Sprache ist, ist entscheidbar.

- Sei L_1 durch DPDA gegeben und L_2 durch einen DFA.
- Prüfe $\overline{L_1} \cap L_2 = \emptyset$ und $L_1 \cap \overline{L_2} = \emptyset$
- Beides ist entscheidbar, da DPDAs und DFAs abgeschlossen unter Komplementbildung, Schnittbildung zwischen DPDA und DFA durch DPDA konstruierbar ist und Leerheitsproblem für CFLs entscheidbar ist
- $\overline{L_i} \cap L_i = \emptyset$ impliziert $L_i \subseteq L_i$
- Daher ist $\bigwedge_{(i,j)\in\{(1,2),(2,1)\}}\overline{L_i}\cap L_j=\emptyset$ äquivalent zu $L_1=L_2$.

Kontextsensitive Sprachen

Ziel: Beweis des Satz von Kuroda (nächste Vorlesung): Kontextsensitive Sprachen werden genau von den LBAs erkannt.

Wiederholung: Kontextsensitive Grammatik (V, Σ, P, S) erfordert wobei für alle $\ell \to r \in P$: $|\ell| < |r|$

Wie bei CFGs, gibt es auch Normalformen für kontextsensitive Sprachen: die Kuroda-Normalform

Kuroda-Normalform für Typ 1-Sprachen

(benannt nach dem japanischen Linguisten Sige-Yuki Kuroda)

Definition

Eine Typ 1-Grammatik $G = (V, \Sigma, P, S)$ ist in Kuroda-Normalform, falls alle Produktionen in P einer der folgenden vier Formen entsprechen:

$$A \rightarrow a$$
 $A \rightarrow B$ $A \rightarrow BC$ $AB \rightarrow CD$

wobei $a \in \Sigma$ und $A, B, C, D \in V$.

Bemerkung: Die Kuroda-Normalform "erweitert" kontextfreie Grammatiken um Regeln der Form $AB \rightarrow CD$.

Herstellen der Kuroda-Normalform

Satz

Sei L eine kontextsensitive Sprache mit $\varepsilon \not\in L$.

Dann gibt es eine Grammatik in Kuroda-Normalform, die L erzeugt.

Beweis: Algorithmus 10 (nächste Folie) bewerkstelligt dies.

Algorithmus 10: Herstellung der Kuroda-Normalform

```
Eingabe: Eine Typ 1-Grammatik G = (V, \Sigma, P, S) mit \varepsilon \notin L(G)
Ausgabe: Eine Typ 1-Grammatik in Kuroda-Normalform die L(C) orzonat
                                                                    Entfernt alle a \in \Sigma aus den Regeln bis auf neue A \to a-Regeln
Beginn
   für alle a \in \Sigma tue
         /* Führe neue Variable A., für a ein, und ersetze Vorkommen von a durch das Nichtterminal
                                                                                                                                                                          * /
        G := (V \cup \{A_a\}, \Sigma, \{\ell[A_a/a] \rightarrow r[A_a/a] \mid \ell \rightarrow r \in P\}, S);
    /* Nun sind alle Regeln von der Form A \to a oder A_1 \cdots A_m \to B_1 \cdots B_n mit A_i, B_i \in V
   für alle A \rightarrow B_1 \cdots B_n \in P mit n > 2
                                                                                           /* Ersetze in P die Produktion A \to B_1 \cdots B_n durch neue Regeln */ tue
        Seien C_1, \ldots, C_{n-2} neue Variablen:
        V := V \cup \{C_1, \dots, C_{n-2}\};
        P := (P \setminus \{A \rightarrow B_1 \cdots B_n\})
              \cup \{A \to B_1C_1\} \cup \{C_i \to B_{i+1}C_{i+1} \mid i = 1, \dots, n-3\} \cup \{C_{n-2} \to B_{n-1}B_n\}
   für alle A_1 \cdots A_m \to B_1 \cdots B_n \in P mit (m > 2 \text{ oder } n > 2) und n > m + 2 /* Ersetze A_1 \cdots A_m \to B_1 \cdots B_n durch neue Regeln */ tue
        Seien D_2, \ldots, D_{n-1} neue Variablen:
        V := V \cup \{D_2, \dots, D_{n-1}\};
        P := (P \setminus \{A_1 \cdots A_m \to B_1 \cdots B_n\}) \cup \{A_1 A_2 \to B_1 D_2\} \cup \{D_i A_{i+1} \to B_i D_{i+1} \mid i = 2, \dots, m-1\}
              \bigcup \{D_i \to B_i D_{i+1} \mid i = m, \dots, n-2\} \cup \{D_{n-1} \to B_{n-1} B_n\}
   für alle A_1 \cdots A_n \to B_1 \cdots B_{n+1} \in P mit n > 2
                                                                        /* Ersetze in P die Produktion A_1 \cdots A_n \to B_1 \cdots B_{n-1}, durch neue Regeln */ tue
        Seien Do. D. neue Variablen:
        V := V \cup \{D_2, \dots, D_{n-1}\};
      P := (P \setminus \{A_1 \cdots A_n \to B_1 \cdots B_n\}) \cup \{A_1 A_2 \to B_1 D_2\} \cup \{D_i A_{i+1} \to B_i D_{i+1} \mid i = 2, \dots, n-1\} \cup \{D_n \to B_n B_{n+1}\}
   für alle A_1 \cdots A_n \to B_1 \cdots B_n \in P mit n > 2
                                                                                  /* Ersetze in P die Produktion A_1 \cdots A_n \to B_1 \cdots B_n durch neue Regeln */ tue
        Seien D_2, \ldots, D_{n-1} neue Variablen:
        V := V \cup \{D_2, \dots, D_{n-1}\};
      P := (P \setminus \{A_1 \cdots A_n \to B_1 \cdots B_n\}) \cup \{A_1 A_2 \to B_1 D_2\} \cup \{D_i A_{i+1} \to B_i D_{i+1} \mid i = 2, \dots, n-2\} \cup \{D_{n-1} A_n \to B_{n-1} B_n\}
    Gebe die so entstandene Grammatik aus:
```

Algorithmus 10: Herstellung der Kuroda-Normalform

```
Eingabe: Eine Typ 1-Grammatik G = (V, \Sigma, P, S) mit \varepsilon \notin L(G)
Ausgabe: Eine Typ 1-Grammatik in Kuroda-Normalform die L(C) orzonat
                                                                                                          Entfernt alle a \in \Sigma aus den Regeln bis auf neue A \to a-Regeln
Beginn
     für alle a \in \Sigma tue
              /* Führe neue Variable A., für a ein, und ersetze Vorkommen von a durch das Nichtterminal
                                                                                                                                                                                                                                                                      * /
           f' Führe neue Variable A_a in G consists G and G in G consists G in G
      /* Nun sind alle Regeln von der Form A \to a oder A_1 \cdots A_m \to B_1
     für alle A \to B_1 \cdots B_n \in P mit n > 2
                                                                                                                                              /* Ersetze in P die Produktion A \to B_1 \cdots B_n durch neue Regeln */ tue
             Seien C_1, \ldots, C_{n-2} neue Variablen:
             V := V \cup \{C_1, \dots, C_{n-2}\};
            P := (P \setminus \{A \rightarrow B_1 \cdots B_n\})
                      \cup \{A \to B_1C_1\} \cup \{C_i \to B_{i+1}C_{i+1} \mid i = 1, \dots, n-3\} \cup \{C_{n-2} \to B_{n-1}B_n\}
     für alle A_1 \cdots A_m \to B_1 \cdots B_n \in P mit (m > 2 \text{ oder } n > 2) und n > m + 2 /* Ersetze A_1 \cdots A_m \to B_1 \cdots B_n durch neue Regeln */ tue
             Seien D_2, \ldots, D_{n-1} neue Variablen:
             V := V \cup \{D_2, \dots, D_{n-1}\};
             P := (P \setminus \{A_1 \cdots A_m \to B_1 \cdots B_n\}) \cup \{A_1 A_2 \to B_1 D_2\} \cup \{D_i A_{i+1} \to B_i D_{i+1} \mid i = 2, \dots, m-1\}
                      \bigcup \{D_i \to B_i D_{i+1} \mid i = m, \dots, n-2\} \cup \{D_{n-1} \to B_{n-1} B_n\}
     für alle A_1 \cdots A_n \to B_1 \cdots B_{n+1} \in P mit n > 2
                                                                                                               /* Ersetze in P die Produktion A_1 \cdots A_n \to B_1 \cdots B_{n-1}, durch neue Regeln */ tue
             Seien Do. D. neue Variablen:
             V := V \cup \{D_2, \dots, D_{n-1}\};
          P := (P \setminus \{A_1 \cdots A_n \to B_1 \cdots B_n\}) \cup \{A_1 A_2 \to B_1 D_2\} \cup \{D_i A_{i+1} \to B_i D_{i+1} \mid i = 2, \dots, n-1\} \cup \{D_n \to B_n B_{n+1}\}
     für alle A_1 \cdots A_n \to B_1 \cdots B_n \in P mit n > 2
                                                                                                                               /* Ersetze in P die Produktion A_1 \cdots A_n \to B_1 \cdots B_n durch neue Regeln */ tue
             Seien D_2, \ldots, D_{n-1} neue Variablen:
            V := V \cup \{D_2, \dots, D_{n-1}\};
         P := (P \setminus \{A_1 \cdots A_n \to B_1 \cdots B_n\}) \cup \{A_1 A_2 \to B_1 D_2\} \cup \{D_i A_{i+1} \to B_i D_{i+1} \mid i = 2, \dots, n-2\} \cup \{D_{n-1} A_n \to B_{n-1} B_n\}
      Gebe die so entstandene Grammatik aus:
```

Algorithmus 10: Herstellung der Kuroda-Normalform

```
Eingabe: Eine Typ 1-Grammatik G = (V, \Sigma, P, S) mit \varepsilon \notin L(G)
Ausgabe: Eine Typ 1-Grammatik in Kuroda-Normalform die L(C) erzougt
                                                                   Entfernt alle a \in \Sigma aus den Regeln bis auf neue A \to a-Regeln
Beginn
   für alle a \in \Sigma tue
        /* Führe neue Variable A., für a ein, und ersetze Vorkommen von a durch das Nichtterminal
                                                                                                                                                                     * /
       G := (V \cup \{A_a\}, \Sigma, \{\ell[A_a/a] \rightarrow r[A_a/a] \mid \ell \rightarrow r \in P\}, \subseteq
                                                                               "Zerhacken" von rechten Seiten wie bei Chomsky-NF
    /* Nun sind alle Regeln von der Form A \rightarrow a oder A_1 \cdots A_m \rightarrow B_1
   für alle A \to B_1 \cdots B_n \in P mit n > 2
                                                                                         /* Ersetze in P die Produktion A \to B_1 \cdots B_n durch neue Regeln */ tue
        Seien C_1, \ldots, C_{n-2} neue Variablen:
                                                                                                                      Effekt:
        V := V \cup \{C_1, \dots, C_{n-2}\};
                                                                                                                      Ableitung vorher:
        P := (P \setminus \{A \rightarrow B_1 \cdots B_n\})
                                                                                                                       xA_1 \cdots A_m y
              \cup \{A \to B_1C_1\} \cup \{C_i \to B_{i+1}C_{i+1} \mid i = 1, \dots, n-3\} \cup \{C_{n-2} \to B_{n-1}B_n\}:
                                                                                                                       \Rightarrow xB_1 \cdots B_n y
   für alle A_1 \cdots A_m \to B_1 \cdots B_n \in P mit (m > 2 \text{ oder } n > 2) und n \ge m + 2 /* Ersetze A_n = 1
        Seien D_2, \ldots, D_{n-1} neue Variablen:
                                                                                                                      Ableitung nachher:
        V := V \cup \{D_0, \dots, D_{n-1}\}:
                                                                                                                       xA_1A_2\cdots A_my
        P := (P \setminus \{A_1 \cdots A_m \to B_1 \cdots B_n\}) \cup \{A_1 A_2 \to B_1 D_2\} \cup \{D_i A_{i+1} \to B_i D_{i+1} \mid i = 2\}
                                                                                                                       \Rightarrow xB_1D_2A_3\cdots A_m y
              \bigcup \{D_i \to B_i D_{i+1} \mid i = m, \dots, n-2\} \cup \{D_{n-1} \to B_{n-1} B_n\}
                                                                                                                       \Rightarrow xB_1B_2D_3A_4\cdots A_my
   für alle A_1 \cdots A_n \to B_1 \cdots B_{n+1} \in P mit n > 2
                                                                            /* Ersetze in P die Produktion at
        Seien Do. D. neue Variablen:
                                                                                                                       \Rightarrow xB_1 \cdots B_{m-2}D_{m-1}A_m u
        V := V \cup \{D_2, \dots, D_{n-1}\};
      P := (P \setminus \{A_1 \cdots A_n \to B_1 \cdots B_n\}) \cup \{A_1 A_2 \to B_1 D_2\} \cup \{D_i A_{i+1} \to B_i D_{i+1} \mid i = 2\}
                                                                                                                       \Rightarrow xB_1 \cdots B_{m-1} D_m u
                                                                                                                       \Rightarrow xB_1 \cdots B_{m-1}B_m D_{m+1}y µe
   für alle A_1 \cdots A_n \to B_1 \cdots B_n \in P mit n > 2
                                                                                /* Ersetze in P die Produktion A
        Seien D_2, \ldots, D_{n-1} neue Variablen:
                                                                                                                       \Rightarrow \dots
        V := V \cup \{D_2, \dots, D_{n-1}\}:
                                                                                                                       \Rightarrow xB_1 \cdots B_{n-2} D_{n-1} u
      P := (P \setminus \{A_1 \cdots A_n \to B_1 \cdots B_n\}) \cup \{A_1 A_2 \to B_1 D_2\} \cup \{D_i A_{i+1} \to B_i D_{i+1} \mid i=2\}
                                                                                                                       \Rightarrow xB_1 \cdots B_{n-2}B_{n-1}B_n u
    Gebe die so entstandene Grammatik aus:
```

Beispiel (2)

Schritt 1: *a*, *b* durch neue Nichtterminale sharen ergibt:

$$V = \{S, A, B, A_a, A_b\}$$

$$P = \{S \rightarrow AS \mid BS \mid A_a, ABAA \rightarrow AAAB, ABAB \rightarrow AABB, BAA \rightarrow AAB, BAB \rightarrow ABB, BBA \rightarrow ABB, AA \rightarrow A_aA_a, BB \rightarrow A_bA_b.$$

$$A_a \rightarrow a, A_b \rightarrow b\}$$

Beispiel (3)

Regeln $A \to B_1, \ldots, B_m$ mit m > 2 gibt es nicht.

Regeln $A_1 \dots A_m \to B_1, \dots, B_n$ mit m > 2 oder n > 2, werden ersetzt:

- $ABAA \rightarrow AAAB$ wird ersetzt durch $AB \rightarrow AD_2$, $D_2A \rightarrow AD_3$, $D_3A \rightarrow AB$
- $ABAB \rightarrow AABB$ wird ersetzt durch $AB \rightarrow AD_4, D_4A \rightarrow AD_5, D_5B \rightarrow BB$
- $BAA \rightarrow AAB$ wird ersetzt durch $BA \rightarrow AD_6, D_6A \rightarrow AB$
- $BAB \rightarrow ABB$ wird ersetzt durch $BA \rightarrow AD_7, D_7B \rightarrow BB$
- $BBA \rightarrow ABB$ wird ersetzt durch $BB \rightarrow AD_8, D_8A \rightarrow BB$

Grammatik in Kuroda-Normalform $G = (V, \{a, b\}, P, S)$ mit

$$V = \{S, A, B, A_a, A_b, D_1, D_2, D_3, D_4, D_5, D_6, D_7, D_8\}$$

$$P = \{S \to AS \mid BS \mid A_a, \\ AA \to A_a A_a, BB \to A_b A_b.$$

$$A_a \to a, A_b \to b, \\ AB \to AD_2, D_2 A \to AD_3$$

$$D_3 A \to AB, AB \to AD_4, \\ D_4 A \to AD_5, D_5 B \to BB, \\ BA \to AD_6, D_6 A \to AB, \\ BA \to AD_7, D_7 B \to BB, \\ BB \to AD_8, D_8 A \to BB\}$$