Formale Sprachen und Komplexität Theoretische Informatik für Medieninformatiker Sommersemester 2022

Turingmaschinen und Typ 1- und Typ 0-Sprachen

Prof. Dr. David Sabel

LFE Theoretische Informatik

Erinnerung: Typ 1- und Typ 0-Sprachen

- Typ 1: $|\ell| \leq |r|$ für alle Produktionen $\ell \to r$
- Typ 1-Grammatik = kontextsensitive Grammatik
- aber (im Gegensatz zu Typ 2): $\ell \in (\Sigma \cup V)^+$
- Typ 0: alles erlaubt
- In manchen Büchern werden unsere Typ 1-Grammatik auch monotone Grammatiken genannt
- In manchen Büchern wird für kontextsensitive Grammatiken gefordert: Produktionen von der Form $\alpha_1 A \alpha_2 \to \alpha_1 \alpha_3 \alpha_2$ mit $\alpha_3 \neq \varepsilon$
- Nun: Maschinenmodell, das zu Typ 1 und zu Typ 0 passt: Turingmaschinen (für Typ 1: mit Einschränkungen).

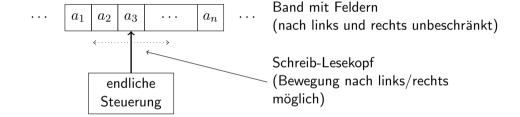
Motivation für Turingmaschinen

Einschränkungen der Kellerautomaten

- PDAs erkennen genau die CFLs. daher müssen Automaten für Typ 1- und Typ 0-Sprachen "mehr können"
- Wesentliche Beschränkung bei PDAs: Zugriff auf Speicher nur von oben möglich
- Z.B. kann man $\{a^ib^ic^i \mid i \in \mathbb{N}_{>0}\}$ nicht mit PDA erkennen, da man die Anzahl i
 - ... beim Lesen der a's im Keller speichert;
 - \bullet ... beim Lesen der b's vergleichen muss und das geht nur durch sukzessives Entnehmen aus dem Keller:
 - beim Lesen der c's nicht mehr hat!

Mit beliebigem Lesen des Speichers wäre es kein Problem. $a^i b^i c^i$ zu erkennen.

Turingmaschine: Illustration



Formale Definition der Turingmaschine

Definition (Turingmaschine)

Eine Turingmaschine (TM) ist ein 7-Tupel $M=(Z,\Sigma,\Gamma,\delta,z_0,\Box,E)$ mit

- Z ist eine endliche Menge von Zuständen,
- \bullet Σ ist das (endliche) Eingabealphabet,
- $\Gamma \supset \Sigma$ ist das (endliche) Bandalphabet,
- ullet δ ist die Zustandsüberführungsfunktion
 - deterministische TM (DTM): $\delta: Z \times \Gamma \to Z \times \Gamma \times \{L, R, N\}$,
 - nichtdeterministische TM (NTM): $\delta: Z \times \Gamma \to \mathcal{P}(Z \times \Gamma \times \{L, R, N\})$
- ullet $z_0 \in Z$ ist der Startzustand,
- ullet $\square \in \Gamma \setminus \Sigma$ ist das Blank-Symbol
- $E \subseteq Z$ ist die Menge der Endzustände.

Zustandswechsel, informell

DTM: Ein Eintrag $\delta(z, a) = (z', b, x)$ bedeutet:

Falls die TM im Zustand z ist und das Zeichen a an der aktuellen Position des Schreib-Lesekopfs ist, dann

- Wechsle in Zustand z'
- ullet Ersetze a durch b auf dem Band
- Falls x = L: Verschiebe den Schreib-Lesekopf ein Position nach links
- Falls x = R: Verschiebe den Schreib-Lesekopf ein Position nach rechts
- Falls x = N: Lasse Schreib-Lesekopf unverändert (Neutral)

Zustandswechsel, informell

DTM: Ein Eintrag $\delta(z,a) = (z',b,x)$ bedeutet:

Falls die TM im Zustand z ist und das Zeichen a an der aktuellen Position des Schreib-Lesekopfs ist, dann

- Wechsle in Zustand 2'
- Ersetze a durch b auf dem Band
- Falls x = L: Verschiebe den Schreib-Lesekopf ein Position nach links
- Falls x = R: Verschiebe den Schreib-Lesekopf ein Position nach rechts
- Falls x = N: Lasse Schreib-Lesekopf unverändert (Neutral)

NTM: $\delta(z,a)$ ist eine Menge solcher möglichen Schritte und die NTM macht in einem Lauf irgendeinen davon (nichtdeterministisch)

Konfigurationen

Definition (Konfiguration einer Turingmaschine)

Eine Konfiguration einer Turingmaschine ist ein Wort $k \in \Gamma^* Z \Gamma^*$

D.h. eine Konfiguration ist ein Wort wzw', sodass:

- die TM ist im Zustand z,
- auf dem Band steht $\cdots \Box \Box ww' \Box \Box \cdots$ und
- ullet der Schreib-Lesekopf steht auf dem ersten Symbol von w^\prime

Konfigurationen

Definition (Konfiguration einer Turingmaschine)

Eine Konfiguration einer Turingmaschine ist ein Wort $k \in \Gamma^* Z \Gamma^*$

D.h. eine Konfiguration ist ein Wort wzw', sodass:

- die TM ist im Zustand z,
- auf dem Band steht $\cdots \Box \Box ww' \Box \Box \cdots$ und
- ullet der Schreib-Lesekopf steht auf dem ersten Symbol von w^\prime

Definition (Startkonfiguration einer TM)

Für ein Eingabewort w ist die Startkonfiguration einer TM $M=(Z,\Sigma,\Gamma,\delta,z_0,\Box,E)$ das Wort z_0w .

Im Spezialfall $w=\varepsilon$ ist die Startkonfiguration $z_0\Box$

D.h. am Anfang steht der Kopf auf dem ersten Symbol der Eingabe.

Transitionsrelation einer TM

Definition (Transitionsrelation für Konfigurationen einer TM)

Sei $M=(Z,\Sigma,\Gamma,\delta,z_0,\Box,E)$ eine TM. Die Relation \vdash_M ist definiert durch (wobei $\delta(z,a)=(z',c,x)$ für eine NTM $(z',c,x)\in\delta(z,a)$ meint):

- $b_1\cdots b_mza_1\cdots a_n\vdash_M b_1\cdots b_mz'ca_2\cdots a_n$, wenn $\delta(z,a_1)=(z',c,N),\ m\geq 0, n\geq 1, z\not\in E$
- $b_1 \cdots b_m z a_1 \cdots a_n \vdash_M b_1 \cdots b_{m-1} z' b_m c a_2 \cdots a_n$, wenn $\delta(z, a_1) = (z', c, L)$, $m \ge 1, n \ge 1, z \notin E$
- $b_1 \cdots b_m z a_1 \cdots a_n \vdash_M b_1 \cdots b_m c z' a_2 \cdots a_n$, wenn $\delta(z, a_1) = (z', c, R)$, $m \ge 0, n \ge 2, z \notin E$
- $b_1 \cdots b_m z a_1 \vdash_M b_1 \cdots b_m c z' \square$, wenn $\delta(z, a_1) = (z', c, R)$ und $m \ge 0, z \notin E$
- $za_1 \cdots a_n \vdash_M z' \Box ca_2 \cdots a_n$, wenn $\delta(z, a_1) = (z', c, L)$ und $n \ge 1, z \not\in E$

Transitionsrelation einer TM (2)

Weitere Notation dazu:

- ullet \vdash_M^i : die i-fache Anwendung von \vdash_M
- $\bullet \ \vdash_M^*$ die reflexiv-transitive Hülle von \vdash_M
- $\bullet \ \ \text{Wenn} \ M \ \ \text{klar ist, schreiben wir nur} \ \vdash, \vdash^i, \ \text{bzw.} \ \vdash^*.$

Bemerkung:

Wir nehmen an, dass die TM anhält, sobald sie einen Endzustand erreicht.

(Schöning-Buch erlaubt weiterrechnen)

Akzeptierte Sprache einer TM

Definition (Akzeptierte Sprache einer TM)

Sei $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ eine TM.

Die von M akzeptierte Sprache L(M) ist definiert als

$$L(M) := \{ w \in \Sigma^* \mid \exists u, v \in \Gamma^*, z \in E : z_0 w \vdash_M^* uzv \}$$

Akzeptierte Sprache einer TM

Definition (Akzeptierte Sprache einer TM)

Sei $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ eine TM.

Die von M akzeptierte Sprache L(M) ist definiert als

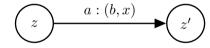
$$L(M) := \{ w \in \Sigma^* \mid \exists u, v \in \Gamma^*, z \in E : z_0 w \vdash_M^* uzv \}$$

Triviale Beispiele:

- Für Turingmaschinen der Form $M=(Z,\Sigma,\Gamma,\delta,z_0,\Box,E)$ mit $z_0\in E$ gilt $L(M)=\Sigma^*$, denn diese Turingmaschinen akzeptieren jede Eingabe sofort.
- Für Turingmaschinen der Form $M=(Z,\Sigma,\Gamma,\delta,z_0,\Box,\emptyset)$ gilt $L(M)=\emptyset$, denn sie akzeptieren nie.

Notation als Zustandsgraph

- Darstellung analog zu DFA / NFA / PDA
- Für $(z', b, x) \in \delta(z, a)$ zeichnen wir

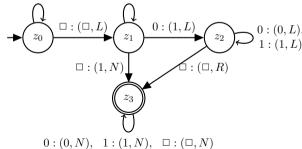


SoSe 2022

Beispiel (aus Schöning-Buch)

$$\begin{split} \mathsf{TM} \ M &= (\{z_0, z_1, z_2, z_3\}, \{0, 1\}, \{0, 1, \square\}, \delta, z_0, \square, \{z_3\}) \ \mathsf{mit} \\ \delta(z_0, 0) &= (z_0, 0, R) \quad \delta(z_0, 1) = (z_0, 1, R) \quad \delta(z_0, \square) = (z_1, \square, L) \\ \delta(z_1, 0) &= (z_2, 1, L) \quad \delta(z_1, 1) = (z_1, 0, L) \quad \delta(z_1, \square) = (z_3, 1, N) \\ \delta(z_2, 0) &= (z_2, 0, L) \quad \delta(z_2, 1) = (z_2, 1, L) \quad \delta(z_2, \square) = (z_3, \square, R) \\ \delta(z_3, 0) &= (z_3, 0, N) \quad \delta(z_3, 1) = (z_3, 1, N) \quad \delta(z_3, \square) = (z_3, \square, N) \end{split}$$

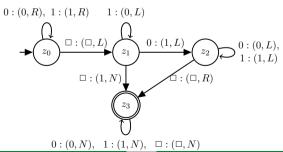
Zustandsgraph: 0:(0,R), 1:(1,R) 1:(0,L)



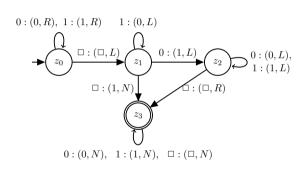
Beispiel (Forts.)

TM interpretiert Eingabe $w \in \{0,1\}^*$ als Binärzahl und addiert 1:

- ullet In z_0 wird das rechte Ende gesucht, dann in z_1 gewechselt
- In z_1 wird versucht 1 zur aktuellen Ziffer hinzu zu addieren: Gelingt das ohne Übertrag, dann in z_2 Bei Übertrag: Weitermachen in z_1 und +1 zur nächsten Ziffer links
- In z_2 : bis zum Anfang links laufen, dann in z_3 .
- In z_3 wird akzeptiert.



Beispiellauf



```
z_00011
0z_0011
00z_011
001z_{0}1
0011z_0\square
001z_11\Box
00z_110\Box
0z_1000\Box
z_20100\Box
z_2\square 0100\square
\Box z_3 0100 \Box
```

LBAs: Spezielle Turingmaschinen

Ideen und Notationen:

- Linear beschränkte Turingmaschinen:
 Schreib-Lesekopf darf den Bereich der Eingabe auf dem Band nicht verlassen
- Zum Erkennen des Endes:
 Letztes Symbol der Eingabe wird markiert
- Kopie des Alphabets: Für Alphabet $\Sigma = \{a_1, \dots, a_n\}$ bezeichne $\widehat{\Sigma} = \{\widehat{a}_1, \dots, \widehat{a}_n\}$.
- ullet Eingabe bei LBAs: Statt $a_1 \cdots a_m$ nun $a_1 \cdots a_{m-1} \widehat{a}_m$
- \bullet TM arbeitet auf $\Sigma' = \Sigma \cup \widehat{\Sigma}$
- Linkes Ende muss die Maschine selbst markieren!

LBAs: Definition

Definition (LBA)

Eine NTM $M=(Z,\Sigma\cup\widehat{\Sigma},\Gamma,\delta,z_0,\Box,E)$ heißt linear beschränkt (LBA, linear bounded automaton), wenn für alle $a_1\cdots a_m\in\Sigma^+$ und alle Konfigurationen uzv mit $z_0a_1\cdots a_{m-1}\widehat{a}_m\vdash_M^* uzv$ gilt: $|uv|\leq m$.

Die akzeptierte Sprache eines LBA M ist

$$L(M) := \left\{ a_1 \cdots a_m \in \Sigma^* \middle| \begin{array}{l} z_0 a_1 \cdots a_{m-1} \widehat{a}_m \vdash_M^* uzv, \\ \text{wobei } u, v \in \Gamma^* \text{ und } z \in E \end{array} \right\}$$

Beachte: LBAs sind NTMs

Satz von Kuroda

Theorem (Satz von Kuroda)

Kontextsensitive Sprachen werden genau von den LBAs erkannt.

Satz

Die durch (allgemeine) nichtdeterministischen Turingmaschinen akzeptierten Sprachen sind genau die Typ 0-Sprachen.

Beweise: Nächste Vorlesung (nur FSK)

TM vs. NTM

- Nichtdeterministische Turingmaschinen können durch deterministische Turingmaschinen simuliert werden: Probiere alle Berechnungsmöglichkeiten der NTM nacheinander durch
- Daher gilt der letzte Satz auch für DTM
- Unterschied zwischen NTMs und DTMs kommt erst zum Tragen, wenn wir das Laufzeitverhalten betrachten (s. Kapitel zur Komplexitätstheorie)

Überblick: Grammatiken und Automaten für die Chomsky-Hierarchie

Sprache	Grammatik	Automat	sonstiges
Typ 3	reguläre Grammatik	endlicher Automat (DFA und	regulärer
		NFA)	Ausdruck
deterministisch	LR(k)-Grammatik	Deterministischer Kellerau-	
kontextfrei		tomat (DPDA)	
Typ 2	kontextfreie Grammatik	Kellerautomat (PDA) (nicht-	
		deterministisch)	
Typ 1	kontextsensitive Grammatik	linear beschränkte Turingma-	
		schine (LBA) (nichtdetermi-	
		nistisch)	
Typ 0	Typ 0-Grammatik	Turingmaschine (determinis-	
		tisch und nichtdeterminis-	
		tisch)	

Beachte: LR(k)-Grammatiken wurden nicht behandelt.

Trennende Beispiele

- Die Sprache $\{a^nb^n\mid n\in\mathbb{N}\}$ ist Typ 2 aber nicht vom Typ 3.
- Die Sprache $\{w \in \{a,b\}^* \mid w \text{ ist Palindrom}\}$ ist Typ 2 aber nicht deterministisch-kontextfrei.
- Die Sprache $\{a^nb^nc^n\mid n\in\mathbb{N}\}$ ist Typ 1 aber nicht vom Typ 2.
- Die Sprache

$$H = \{ M \# w \mid \text{die durch } M \text{ beschriebene} \\ \text{Turingmaschine hält bei Eingabe } w \}$$

ist Typ 0 aber nicht vom Typ 1.

(Die Sprache H ist das Halteproblem, welches wir später noch genauer betrachten und erläutern).

• Das Komplement von H ist nicht vom Typ 0.

Deterministisch vs. nichtdeterministisch

Deterministischer Automat	nichtdeterministischer Au-	äquivalent?
	tomat	
DFA	NFA	ja
DPDA	PDA	nein
DLBA	LBA	unbekannt
DTM	NTM	ja

Abschlusseigenschaften

Sprachklasse	Schnitt	Vereinigung	Komplement	Produkt	Kleenescher Abschluss
Тур 3	√	✓	✓	✓	✓
det.kontextfrei	×	×	✓	×	×
Typ 2	×	✓	×	✓	✓
Typ 1 Typ 0	✓	✓	✓	✓	✓
Typ 0	√	✓	×	✓	✓

Entscheidbarkeiten

Sprachklasse	Wortproblem	Leerheits- problem	Äquivalenz- problem	Schnittproblem
Тур 3	ja	ja	ja	ja
det.kontextfrei	ja	ja	ja	nein
Typ 2	ja	ja	nein	nein
Typ 1	ja	nein	nein	nein
Typ 0	nein	nein	nein	nein

Komplexität des Wortproblems

Sprachklasse		
Typ 3, DFA gegeben	lineare Komplexität	
deterministisch kontextfrei	lineare Komplexität	
Typ 2, Chomsky-Normalform gegeben	$O(n^3)$	
Typ 1	exponentiell	
Typ 0	unlösbar	