Formale Sprachen und Komplexität Theoretische Informatik für Medieninformatiker Sommersemester 2022

Das Pumping-Lemma für Kontextfreie Sprachen

Prof. Dr. David Sabel

LFE Theoretische Informatik

Widerlegen der Kontextfreiheit

Wir lernen eine Methode kennen zum Widerlegen der Kontextfreiheit:

• Pumping-Lemma für kontextfreie Sprachen

Es gibt weitere (allgemeinere) Formulierungen, z.B.

- Ogdens-Lemma (benannt nach William F. Ogden) (ist im Skript, aber kein Prüfungsstoff)
- Interchange-Lemma

Einschub: Binärbäume

Binärbaum: Baum, wobei jeder Knoten 0 oder 2 Kinder hat

Lemma

Sei B ein Binärbaum mit $\geq 2^k$ Blättern. Dann hat B einen Pfad der Länge $\geq k$.

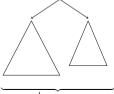
Beweis durch Induktion über *k*:

$$k = 0$$
:

 \bullet Ein Baum mit $2^k=2^0=1$ Blättern besteht genau aus diesem Blatt und hat einen Pfad der Länge $\geq 0.$

k > 0:

- ullet Einer der beiden Teilbäume unter der Wurzel hat $\geq 2^{k-1}$ Blätter.
- Per Induktionsannahme hat dieser einen Pfad der Länge $\geq k-1$.
- ullet Daher hat der gesamte Baum einen Pfad der Länge $\geq k.$



• **Erinnerung:** Pumping-Lemma für reguläre Sprachen: Jede reguläre Sprache erfüllt die Pumping-Eigenschaft.

- Erinnerung: Pumping-Lemma für reguläre Sprachen:
 Jede reguläre Sprache erfüllt die Pumping-Eigenschaft.
- Analog: Pumping-Lemma für kontextfreie Sprachen:
 Jede kontextfreie Sprache erfüllt die Pumping-Eigenschaft für kontextfreie Sprachen

- Erinnerung: Pumping-Lemma für reguläre Sprachen:
 Jede reguläre Sprache erfüllt die Pumping-Eigenschaft.
- Analog: Pumping-Lemma für kontextfreie Sprachen:
 Jede kontextfreie Sprache erfüllt die Pumping-Eigenschaft für kontextfreie Sprachen
- Kann vorallem zum Widerlegen benutzt werden:
 Sprache verletzt die Pumping-Eigenschaft für CFLs
 - ⇒ Sprache ist nicht kontextfrei

- Erinnerung: Pumping-Lemma für reguläre Sprachen:
 Jede reguläre Sprache erfüllt die Pumping-Eigenschaft.
- Analog: Pumping-Lemma für kontextfreie Sprachen:
 Jede kontextfreie Sprache erfüllt die Pumping-Eigenschaft für kontextfreie Sprachen
- Kann vorallem zum Widerlegen benutzt werden:
 Sprache verletzt die Pumping-Eigenschaft für CFLs

⇒ Sprache ist nicht kontextfrei

• Pumping-Eigenschaft bei regulären Sprachen, informell: Man kann Worte an einer Stelle aufpumpen und verbleibt in der Sprache $(uv^iw \in L \text{ für alle } i \in \mathbb{N})$

- Erinnerung: Pumping-Lemma für reguläre Sprachen:
 Jede reguläre Sprache erfüllt die Pumping-Eigenschaft.
- Analog: Pumping-Lemma für kontextfreie Sprachen:
 Jede kontextfreie Sprache erfüllt die Pumping-Eigenschaft für kontextfreie Sprachen
- Kann vorallem zum Widerlegen benutzt werden:
 Sprache verletzt die Pumping-Eigenschaft für CFLs
 - ⇒ Sprache ist nicht kontextfrei
- Pumping-Eigenschaft bei regulären Sprachen, informell: Man kann Worte an einer Stelle aufpumpen und verbleibt in der Sprache $(uv^iw \in L \text{ für alle } i \in \mathbb{N})$
- Pumping-Eigenschaft bei kontextfreien Sprachen, informell: Man kann Worte an **zwei** Stellen gleichzeitig aufpumpen und verbleibt in der Sprache $(uv^iwx^iy \in L \text{ für alle } i \in \mathbb{N})$

Das Pumping-Lemma für CFLs

Lemma (Pumping-Lemma für CFLs)

Sei L eine kontextfreie Sprache. Dann gibt es eine Zahl $n \in \mathbb{N}_{>0}$, sodass jedes Wort $z \in L$, das Mindestlänge n hat (d. h. $|z| \ge n$), als z = uvwxy geschrieben werden kann, so dass gilt:

- $|vx| \ge 1$
- $|vwx| \le n$
- für alle $i \ge 0$: $uv^i w x^i y \in L$.

Behauptung: Für jede CFL L gibt es $n \in \mathbb{N}_{>0}$, sodass jedes Wort $z \in L$

$$\operatorname{mit} |z| \geq n$$
 als $z = uvwxy$ geschrieben werden kann mit

$$|vx| \ge 1$$
 $|vwx| \le n$

$$ullet |vx| \geq 1$$
 $ullet |vwx| \leq n$ $ullet ext{für alle } i \geq 0$: $uv^i wx^i y \in L$

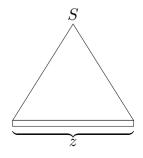
Beweis:

• Sei $G = (V, \Sigma, P, S)$ eine CFG in Chomsky-Normalform mit $L(G) = L \setminus \{\varepsilon\}$

Behauptung: Für jede CFL L gibt es $n \in \mathbb{N}_{>0}$, sodass jedes Wort $z \in L$ mit $|z| \ge n$ als z = uvwxy geschrieben werden kann mit

- |vx| > 1 |vwx| < n für alle i > 0: $uv^i wx^i y \in L$

- Sei $G = (V, \Sigma, P, S)$ eine CFG in Chomsky-Normalform mit $L(G) = L \setminus \{\varepsilon\}$
- ullet Betrachte Ableitung und Syntaxbaum eines Wortes z mit $|z| \geq 2^{|V|} = n$



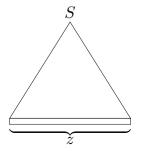
Behauptung: Für jede CFL L gibt es $n \in \mathbb{N}_{>0}$, sodass jedes Wort $z \in L$ mit $|z| \geq n$ als z = uvwxy geschrieben werden kann mit

- |vx| > 1 |vwx| < n für alle i > 0: $uv^i wx^i y \in L$

Beweis:

- Sei $G = (V, \Sigma, P, S)$ eine CFG in Chomsky-Normalform mit $L(G) = L \setminus \{\varepsilon\}$
- ullet Betrachte Ableitung und Syntaxbaum eines Wortes z mit $|z|>2^{|V|}=n$ (wenn es keine solche Ableitung gibt, gilt das Pumping-Lemma:

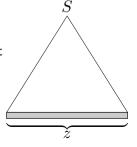
es gibt dann keine Worte $z \in L$ mit Mindestlänge n)



Behauptung: Für jede CFL L gibt es $n \in \mathbb{N}_{>0}$, sodass jedes Wort $z \in L$ mit $|z| \geq n$ als z = uvwxy geschrieben werden kann mit

- |vx| > 1 |vwx| < n für alle i > 0: $uv^i wx^i y \in L$

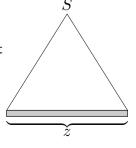
- Sei $G = (V, \Sigma, P, S)$ eine CFG in Chomsky-Normalform mit $L(G) = L \setminus \{\varepsilon\}$
- ullet Betrachte Ableitung und Syntaxbaum eines Wortes z mit $|z|>2^{|V|}=n$ (wenn es keine solche Ableitung gibt, gilt das Pumping-Lemma:
 - es gibt dann keine Worte $z \in L$ mit Mindestlänge n)
- Da G in Chomsky-Normalform, ist der Syntaxbaum ein binärer Baum, bis auf die letzte Schicht, die Produktionen $A \rightarrow a$ anwendet



Behauptung: Für jede CFL L gibt es $n \in \mathbb{N}_{>0}$, sodass jedes Wort $z \in L$ mit $|z| \geq n$ als z = uvwxy geschrieben werden kann mit

- |vx| > 1 |vwx| < n für alle i > 0: $uv^i wx^i y \in L$

- Sei $G = (V, \Sigma, P, S)$ eine CFG in Chomsky-Normalform mit $L(G) = L \setminus \{\varepsilon\}$
- ullet Betrachte Ableitung und Syntaxbaum eines Wortes z mit $|z|>2^{|V|}=n$ (wenn es keine solche Ableitung gibt, gilt das Pumping-Lemma:
 - es gibt dann keine Worte $z \in L$ mit Mindestlänge n)
- Da G in Chomsky-Normalform, ist der Syntaxbaum ein binärer Baum, bis auf die letzte Schicht, die Produktionen $A \rightarrow a$ anwendet
- Baum ohne letzte Schicht hat $|z| \ge 2^{|V|}$ Blätter.



Behauptung: Für jede CFL L gibt es $n \in \mathbb{N}_{>0}$, sodass jedes Wort $z \in L$ mit $|z| \geq n$ als z = uvwxy geschrieben werden kann mit

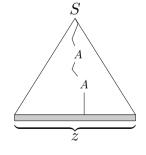
- |vx| > 1 |vwx| < n für alle i > 0: $uv^i wx^i y \in L$

- Sei $G = (V, \Sigma, P, S)$ eine CFG in Chomsky-Normalform mit $L(G) = L \setminus \{\varepsilon\}$
- ullet Betrachte Ableitung und Syntaxbaum eines Wortes z mit $|z|>2^{|V|}=n$ (wenn es keine solche Ableitung gibt, gilt das Pumping-Lemma:
 - es gibt dann keine Worte $z \in L$ mit Mindestlänge n)
- Da G in Chomsky-Normalform, ist der Syntaxbaum ein binärer Baum, bis auf die letzte Schicht, die Produktionen $A \rightarrow a$ anwendet
- Baum ohne letzte Schicht hat $|z| \ge 2^{|V|}$ Blätter.
- Daher gibt es einen Pfad von der Wurzel zum Blatt, der Länge $\geq |V|$, der aus $\geq |V| + 1$ Knoten besteht und jeder Knoten ist mit einer Variablen markiert



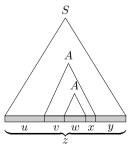
Beh.: Für jede CFL L gibt es $n \in \mathbb{N}_{>0}$, sodass jedes Wort $z \in L$ mit $|z| \geq n$ als z = uvwxy geschrieben werden kann mit $\bullet |vx| \geq 1$ $\bullet |vwx| \leq n$ \bullet für alle $i \geq 0$: $uv^iwx^iy \in L$

- . . .
- ullet Da es nur |V| Variablen gibt, kommt mindestens eine Variable mehrfach auf diesem Pfad vor.
- Wähle die Vorkommen der Variablen so, dass das zweite Vorkommen von unten gesehen am tiefsten ist. Sei A die Variable.



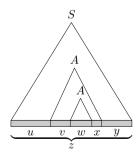
Beh.: Für jede CFL L gibt es $n \in \mathbb{N}_{>0}$, sodass jedes Wort $z \in L$ mit $|z| \geq n$ als z = uvwxy geschrieben werden kann mit $\bullet |vx| \geq 1$ $\bullet |vwx| \leq n$ \bullet für alle $i \geq 0$: $uv^iwx^iy \in L$

- ...
- ullet Betrachte die Teilbäume, die jeweils A als Wurzel haben.
- Sie entsprechen Ableitungen von Teilworten von z
- Der Teilbaum mit dem unteren A als Wurzel erzeugt ein Teilwort des Teilbaums mit dem oberen A als Wurzel. D.h. z=uvwxy, wobei vwx vom oberen A und w vom unteren A erzeugt wird.
- ullet Es gilt $|w|\geq 1$, da Variablen einer Grammatik in Chomsky-Normalform nur Wörter mit Länge ≥ 1 herleiten
- Das Wort vwx muss echt länger sein als w, da das obere A über dem unteren A steht. Daher folgt $|v| \ge 1$ und/oder $|x| \ge 1$ und $|vx| \ge 1$.



Beh.: Für jede CFL L gibt es $n \in \mathbb{N}_{>0}$, sodass jedes Wort $z \in L$ mit $|z| \geq n$ als z = uvwxy geschrieben werden kann mit $\bullet |vx| \geq 1$ $\bullet |vwx| \leq n$ \bullet für alle $i \geq 0$: $uv^iwx^iy \in L$

- ...
- Da wir das tiefste Vorkommen der wiederholten Variable gewählt haben, kann der Pfad vom oberen A bis zur Blattebene nur aus $\leq |V|+1$ Knoten bestehen und Länge $\leq |V|$ haben
- Daraus folgt: $|vwx| \le 2^{|V|} = n$
- Aus dem Baum folgt: $A\Rightarrow^* w$ und $A\Rightarrow^* vAx$ und daher kann man auch $A\Rightarrow^* v^iwx^i$ für alle $i\in\mathbb{N}$ ableiten
- Schließlich folgt daraus $S \Rightarrow^* uv^iwx^iy$ für alle $i \in \mathbb{N}$.



Pumping-Lemma: Illustrationen

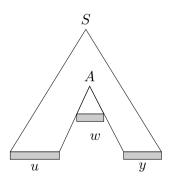


Illustration für uv^0wx^0y

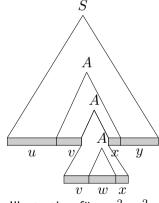


Illustration für uv^2wx^2y

Verwendung des Pumping-Lemma

- Die Pumping-Eigenschaft ist eine notwendige aber keine hinreichende Bedingung für CFLs.
- Daher kann das Pumping-Lemma nicht verwendet werden, um Kontextfreiheit zu zeigen.
- Aber: Es kann verwendet werden, um Kontextfreiheit zu widerlegen

Pumping-Lemma zum Widerlegen der Kontextfreiheit

Formulierung des Pumping-Lemmas für CFGs zum Widerlegen der Kontextfreiheit

Sei L eine formale Sprache für die gilt:

Für jede Zahl $n\in\mathbb{N}_{>0}$ gibt es ein Wort $z\in L$, das Mindestlänge n hat (d. h. $|z|\geq n$), und für jede Zerlegung z=uvwxy mit $|vwx|\leq n$ und $|vx|\geq 1$, gibt es ein $i\geq 0$, sodass $uv^iwx^iy\not\in L$.

Dann ist L nicht kontextfrei.

Beweis:

Umformung der negierten prädikatenlogischen Formel (siehe Skript), die sich aus dem Pumping-Lemma ergibt.

Pumping-Lemma als Spiel

Sei L die formale Sprache.

- **1** Der **Gegner** wählt die Zahl $n \in \mathbb{N}_{>0}$.
- **②** Wir wählen das Wort $z \in L$ mit $|z| \ge n$.
- ① Der Gegner wählt die Zerlegung z = uvwxy mit $|vx| \ge 1$ und $|vwx| \le n$
- **1** Wir gewinnen das Spiel, wenn wir ein $i \geq 0$ angeben können, sodass $uv^iwx^iy \notin L$.

Wenn wir **für jede Wahl des Gegners** das Spiel gewinnen können, dann haben wir gezeigt, dass L nicht kontextfrei ist.

Satz

Die Sprache $L=\{a^lb^lc^l\mid l\in\mathbb{N}\}$ ist nicht kontextfrei.

Beweis:

ullet Gegner wählt $n\in\mathbb{N}_{>0}$

Satz

Die Sprache $L=\{a^lb^lc^l\mid l\in\mathbb{N}\}$ ist nicht kontextfrei.

- ullet Gegner wählt $n\in\mathbb{N}_{>0}$
- Wir wählen $z = a^n b^n c^n$.

Satz

Die Sprache $L=\{a^lb^lc^l\mid l\in\mathbb{N}\}$ ist nicht kontextfrei.

- Gegner wählt $n \in \mathbb{N}_{>0}$
- Wir wählen $z = a^n b^n c^n$.
- \bullet Gegner wählt Zerlegung z=uvwxy mit $|vx|\geq 1$ und $|vwx|\leq n$

Satz

Die Sprache $L = \{a^l b^l c^l \mid l \in \mathbb{N}\}$ ist nicht kontextfrei.

- Gegner wählt $n \in \mathbb{N}_{>0}$
- Wir wählen $z = a^n b^n c^n$.
- ullet Gegner wählt Zerlegung z=uvwxy mit $|vx|\geq 1$ und $|vwx|\leq n$
- Fall 1: vwx ist von der Form a^ib^j , $i+j\leq n$ Da $|vx|\geq 1$, gilt $\#_a(vx)\geq 1$ oder $\#_b(vx)\geq 1$, aber $\#_c(vx)=0$ Damit folgt $uv^0wx^0y\not\in L$

Satz

Die Sprache $L = \{a^l b^l c^l \mid l \in \mathbb{N}\}$ ist nicht kontextfrei.

- ullet Gegner wählt $n\in\mathbb{N}_{>0}$
- Wir wählen $z = a^n b^n c^n$.
- \bullet Gegner wählt Zerlegung z=uvwxy mit $|vx|\geq 1$ und $|vwx|\leq n$
- Fall 1: vwx ist von der Form a^ib^j , $i+j\leq n$ Da $|vx|\geq 1$, gilt $\#_a(vx)\geq 1$ oder $\#_b(vx)\geq 1$, aber $\#_c(vx)=0$ Damit folgt $uv^0wx^0y\not\in L$
- Fall 2: vwx ist von der Form b^ic^j , $i+j\leq n$ Da $|vx|\geq 1$, gilt $\#_b(vx)\geq 1$ oder $\#_c(vx)\geq 1$, aber $\#_a(vx)=0$ Damit folgt $uv^0wx^0y\not\in L$

Satz

Die Sprache $L = \{a^l b^l c^l \mid l \in \mathbb{N}\}$ ist nicht kontextfrei.

- ullet Gegner wählt $n\in\mathbb{N}_{>0}$
- Wir wählen $z = a^n b^n c^n$.
- ullet Gegner wählt Zerlegung z=uvwxy mit $|vx|\geq 1$ und $|vwx|\leq n$
- Fall 1: vwx ist von der Form a^ib^j , $i+j\leq n$ Da $|vx|\geq 1$, gilt $\#_a(vx)\geq 1$ oder $\#_b(vx)\geq 1$, aber $\#_c(vx)=0$ Damit folgt $uv^0wx^0y\not\in L$
- Fall 2: vwx ist von der Form b^ic^j , $i+j\leq n$ Da $|vx|\geq 1$, gilt $\#_b(vx)\geq 1$ oder $\#_c(vx)\geq 1$, aber $\#_a(vx)=0$ Damit folgt $uv^0wx^0y\not\in L$
- Andere Fälle sind nicht möglich!

Beispiele (2)

Satz

Die Sprache $L=\{a^ib^jc^id^j\mid i,j\in\mathbb{N}_{>0}\}$ ist nicht kontextfrei.

- Gegner wählt $n \in \mathbb{N}_{>0}$.
- Wir wählen $z = a^n b^n c^n d^n$.
- ullet Gegner wählt Zerlegung z=uvwxy mit $|vx|\geq 1$ und $|vwx|\leq n$
- 1.Fall: $vwx = a^ib^j$ mit $i+j \le n$. Da $|vx| \ge 1$, gilt $\#_a(vx) + \#_b(vx) \ge 1$ und $uv^0wx^0y = uwy = a^{i'}b^{j'}c^nd^n$ und i' < n und/oder j' < n, d.h. $uwy \not\in L$.
- 2.Fall: $vwx = b^i c^j$ mit $i+j \le n$. Da $|vx| \ge 1$, gilt $\#_b(vx) + \#_c(vx) \ge 1$ und $uv^0wx^0y = uwy = a^nb^{i'}c^{j'}d^n$ und i' < n und/oder j' < n, d.h. $uwy \not\in L$
- 3.Fall: $vwx = c^i d^j$ mit $i + j \le n$. Da $|vx| \ge 1$, gilt $\#_c(vx) + \#_d(vx) \ge 1$ und $uv^0wx^0y = uwy = a^nb^nc^{i'}d^{j'}$ und i' < n und/oder j' < n, d.h. $uwy \notin L$.

Unäres Alphabet

Satz

Sei L eine formale Sprache über einem unären Alphabet (d.h. $|\Sigma|=1$). Dann ist L genau dann regulär, wenn L kontextfrei ist.

- Wenn L regulär ist, dann ist L auch kontextfrei.
- Rückrichtung: Siehe Skript (Beweis verwendet die Pumping-Eigenschaft für CFLs und konstruiert daraus eine Vereinigung von regulären Sprachen)

Satz

Die Sprachen

$$\begin{array}{ll} L_1 &= \{a^p \mid p \text{ ist eine Primzahl}\}\\ L_2 &= \{a^n \mid n \text{ ist keine Primzahl}\}\\ L_3 &= \{a^n \mid n \text{ ist Quadratzahl}\}\\ L_4 &= \{a^{2^n} \mid n \in \mathbb{N}\} \end{array}$$

sind allesamt nicht kontextfrei.

Beweis: Wir haben für alle 4 Sprachen gezeigt, dass sie nicht regulär sind. Da sie alle über einem unären Alphabet definiert sind, sind sie auch nicht kontextfrei.