

# Einführung in die Methoden der Künstlichen Intelligenz



### Informierte Suche

PD Dr. David Sabel

SoSe 2014

Stand der Folien: 29. Mai 2023

### Heuristische Suche

www.uni-trankfurt.c

Eine Heuristik (Daumenregel) ist eine Schätzfunktion, die in vielen praktischen Fällen, die richtige Richtung zum Ziel angibt.

Suchproblem ist äquivalent zu:

Minimierung (bzw. Maximierung) einer Knotenbewertung (einer Funktion) auf einem (implizit gegebenen) gerichteten Graphen

Variante:

Maximierung in einer Menge oder in einem n-dimensionaler Raum.

### Informierte Suche

Die Suche nennt man **informiert**, wenn (zusätzlich) eine Bewertung aller Knoten des Suchraumes angegeben werden kann.



#### Knotenbewertung

- Schätzfunktion
- Ähnlichkeit zum Zielknoten oder auch
- Schätzung des Abstands zum Zielknoten
- Bewertung des Zielknotens: Sollte Maximum / Minimum der Schätzfunktion sein

D. Sabel · KI · SoSe 2014 · Suchverfahren

2/1

# Beispiel: 8-Puzzle

#### Start:

| 8 |   | 1 |
|---|---|---|
| 6 | 5 | 4 |
| 7 | 2 | 3 |

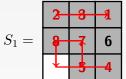
#### Ziel:

| 1 | 2 | 3 |
|---|---|---|
| 4 | 5 | 6 |
| 7 | 8 |   |

### Bewertungsfunktionen (Beispiele):

- $\bullet$   $f_1()$  Anzahl der Plättchen an der falschen Stelle
- **2**  $f_2()$  Anzahl der Züge (ohne Behinderungen zu beachten), die man braucht, um Endzustand zu erreichen.

# Beispiel: 8-Puzzle (2)



$$f_1(S_1) = 7$$
  
 $f_2(S_1) = 2 + 1 + 1 + 3 + 1 + 0 + 2 + 2 = 12$ 



$$\begin{cases}
f_1(S_2) = 7 \\
f_2(S_2) = 2 + 1 + 1 + 3 + 1 + 0 + 2 + 1 = 11
\end{cases}$$

 $\Rightarrow f_2$  ist genauer.

D. Sabel · KI · SoSe 2014 · Suchverfahren

5/1

7/1

# Bergsteigen

#### Algorithmus Bergsteigen

 $\begin{tabular}{ll} \textbf{Datenstrukturen:} $L:$ Liste von Knoten, markiert mit Weg dorthin $h$ sei die Bewertungsfunktion der Knoten \\ \end{tabular}$ 

**Eingabe:** L sei die Liste der initialen Knoten, absteigend sortiert entsprechend h

#### Algorithmus:

- **1** Sei K das erste Element von L und R die Restliste
- $\begin{tabular}{ll} \textbf{@} Wenn $K$ ein Zielknoten, dann stoppe und gebe $K$ markiert mit dem $\operatorname{Weg}$ zurück $ \end{tabular}$
- $oldsymbol{\circ}$  Sortiere die Liste NF(K) absteigend entsprechend h und entferne schon besuchte Knoten aus dem Ergebnis. Sei dies die Liste L'.
- 4 Setze L := L' + +R und gehe zu ??.

### Bergsteigerprozedur (Hill-climbing)

- Auch als Gradientenaufstieg bekannt
- Gradient: Richtung der Vergrößerung einer Funktion (Berechnung durch Differenzieren)



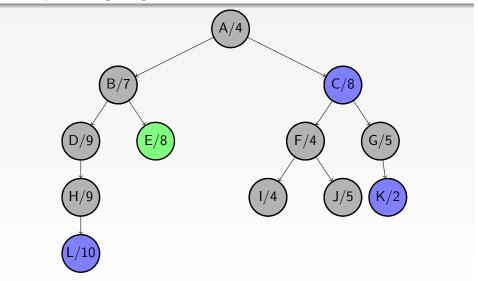
Parameter der Bergsteigerprozedur

- Menge der initialen Knoten
- Nachfolgerfunktion (Nachbarschaftsrelation)
- Bewertungsfunktion der Knoten, wobei wir annehmen, dass Zielknoten maximale Werte haben (Minimierung erfolgt analog)
- Zieltest

D. Sabel · KI · SoSe 2014 · Suchverfahren

6/1

# Beispiel Bergsteigen



$$\begin{array}{c} L = [A]L = [C,B] ++ [] = [C,B]L = [G,F] ++ [B] = [G,F,B]L = [K] \\ & ++ [F,R] - [K,F,R]I - [1] ++ [F,R] - [F,R]I - [1]I] ++ [R] - \\ D. Sabel \cdot KI \cdot SoSe 2014 \cdot Suchverfahren \\ [J,I,B]L = [] ++ [I,B] = [I,B]L = [] ++ [B] = [B]L = [D,E] ++ [] = \\ \end{array}$$

# Eigenschaften der Bergsteigerprozedur

- Entspricht einer gesteuerten Tiefensuche mit Sharing
- daher nicht-vollständig
- Platzbedarf ist durch die Speicherung der besuchten Knoten exponentiell in der Tiefe.

#### Varianten

- Optimierung einer Funktion ohne Zieltest:
- Bergsteige ohne Stack, stets zum nächst höheren Knoten
- Wenn nur noch Abstiege möglich sind, stoppe und gebe aktuellen Knoten aus
- Findet lokales Maximum, aber nicht notwendigerweise globales

D. Sabel · KI · SoSe 2014 · Suchverfahren

9/1

### Best-First-Suche

- Ähnlich zum Hillclimbing, aber:
- Wählte stets als nächsten zu expandierenden Knoten, den mit dem besten Wert
- Anderung im Algorithmus: sortiere alle Knoten auf dem Stack

### Hillclimbing in Haskell

```
hillclimbing cmp heuristic goal successor start =
let -- sortiere die Startknoten
  list = map (\k -> (k,[k])) (sortByHeuristic start)
in go list []
 where
  go ((k,path):r) mem
   | goal k
               = Just (k,path) -- Zielknoten erreicht
   | otherwise =
      let -- Berechne die Nachfolger (nur neue Knoten)
          nf = (successor k) \\ mem
          -- Sortiere die Nachfolger entsprechend der Heuristik
          1' = map (\k -> (k,k:path)) (sortByHeuristic nf)
      in go (1' ++ r) (k:mem)
   sortByHeuristic = sortBy (\a b -> cmp (heuristic a) (heuristic b))
```

D. Sabel · KI · SoSe 2014 · Suchverfahren

### Best-First-Suche

#### Algorithmus Best-First Search

#### Datenstrukturen:

Sei L Liste von Knoten, markiert mit dem Weg dorthin.

h sei die Bewertungsfunktion der Knoten

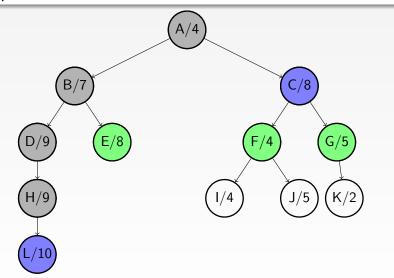
**Eingabe:** L Liste der initialen Knoten, sortiert, so dass die besseren Knoten vorne sind.

#### Algorithmus:

- Wenn L leer ist, dann breche ab
- 2 Sei K der erste Knoten von L und R die Restliste.
- $\bullet$  Wenn K ein Zielknoten ist, dann gebe K und den Weg dahin aus.
- 4 Sei N(K) die Liste der Nachfolger von K. Entferne aus N(K) die bereits im Weg besuchten Knoten mit Ergebnis  ${\mathcal N}$
- **6** Sortiere L, so dass bessere Knoten vorne sind und gehe zu  $\ref{eq:condition}$ .

D. Sabel · KI · SoSe 2014 · Suchverfahren

### Beispiel Best-First-Suche



$$L = [A]L = sort ([C,B] ++ []) = [C,B]L = sort ([G,F] ++ [B]) = [R,C,E]I - sort ([D,F] ++ [C,E]) - [D,F,C,E]I - sort ([H,E] ++ [C,F]) - [D,F,C,E]I - sort ([H,E] ++ [C,F]) = [H,E,G,F]L = sort ([L] ++ [E,G,F] = [L,E,G,F]Zielknoten L gefunden$$

### Best-First-Suche in Haskell

```
bestFirstSearchMitSharing cmp heuristic goal successor start =
let -- sortiere die Startknoten
    list = sortByHeuristic (map (\k -> (k,[k])) (start))
in go list []
 where
  go ((k,path):r) mem
   | goal k = Just (k,path) -- Zielknoten erreicht
    | otherwise =
      let -- Berechne die Nachfolger und nehme nur neue Knoten
          nf = (successor k) \\ mem
           -- aktualisiere Pfade
          1' = map (\k \rightarrow (k,k:path)) nf
           -- Sortiere alle Knoten nach der Heuristik
          1'' = sortByHeuristic (1' ++ r)
       in go 1'' (k:mem)
  sortByHeuristic =
   sortBy (\(a,_) (b,_)-> cmp (heuristic a) (heuristic b))
```

### Best-First-Suche: Eigenschaften

- entspricht einer gesteuerten Tiefensuche
- daher unvollständig
- Platzbedarf ist durch die Speicherung der besuchten Knoten exponentiell in der Tiefe.
- Durch Betrachtung aller Knoten auf dem Stack können lokale Maxima schneller verlassen werden, als beim Hill-Climbing

D. Sabel · KI · SoSe 2014 · Suchverfahren

14/1

# Simulated Annealing

- Analogie zum Ausglühen: Am Anfang hohe Energie (Beweglichkeit), mit voranschreitender Zeit Abkühlung
- ullet Suche dazu: Bei der Optimierung von n-dimensionalen Funktionen
- Ähnlich zum Bergsteigen, aber am Anfang große Sprünge (auch absteigend), später nur noch selten
- Erlaubt schnell aus lokalen Maxima rauszuspringen

D. Sabel·KI·SoSe 2014·Suchverfahren 15/1 D. Sabel·KI·SoSe 2014·Suchverfahren 16/1

### Suchproblem

- Startknoten
- Zieltest Z
- Nachfolgerfunktion NF. Annahme: Es gibt nur eine Kante zwischen zwei Knoten. (Graph ist schlicht)
- Kantenkosten  $g(N_1, N_2) \in \mathbb{R}$ .
- Heuristik h schätzt Abstand zum Ziel

**Ziel**: Finde kostenminimalen Weg vom Startknoten zu einem Zielknoten

D. Sabel · KI · SoSe 2014 · Suchverfahren

17/1

### ${\it Algorithmus} \ \ A^*\text{-}\textbf{Algorithmus}$

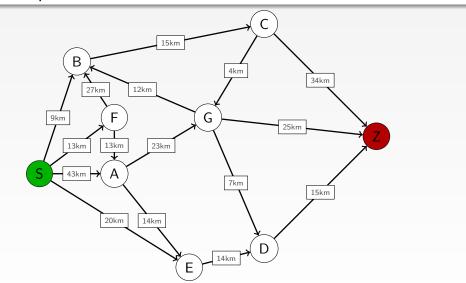
#### Datenstrukturen:

- Menge Open von Knoten
- Menge Closed von Knoten
- Wert g(N) für jeden Knoten (markiert mit Pfad vom Start zu N)
- ullet Heuristik h
- Zieltest Z
- Kantenkostenfunktion c

#### Eingabe:

- Open :=  $\{S\}$ , wenn S der Startknoten ist
- g(S) := 0, ansonsten ist g nicht initialisiert
- ullet Closed :=  $\emptyset$

### Beispiel: Routensuche



18/1

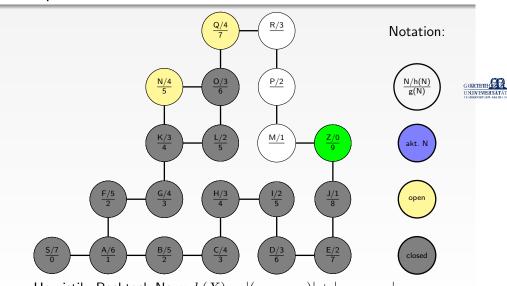
Heuristik z.B. Luftliniendistanz

D. Sabel · KI · SoSe 2014 · Suchverfahren

```
Algorithmus:
repeat
  Wähle N aus Open mit minimalem f(N) = g(N) + h(N)
  if Z(N) then
    break; // Schleife beenden
    Berechne Liste der Nachfolger \mathcal{N} := NF(N)
    Schiebe Knoten N von Open nach Closed
    for N' \in \mathcal{N} do
      if N' \in \mathtt{Open} \cup \mathtt{Closed} und g(N) + c(N, N') > g(N') then
        skip // Knoten nicht verändern
         g(N') := g(N) + c(N,N'); // \text{ neuer Minimalwert für } g(N')
         Füge N' in Open ein und (falls vorhanden) lösche N' aus Closed;
      end-if
     end-for
 end-if
until Open = \emptyset
if Open = ∅ then Fehler, kein Zielknoten gefunden
else N ist der Zielknoten mit g(N) als minimalen Kosten
end-if
```

D. Sabel · KI · SoSe 2014 · Suchverfahren 19/1 D. Sabel · KI · SoSe 2014 · Suchverfahren 20/1

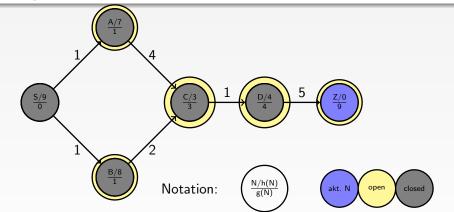
### **Beispiel**



Heuristik: Rechteck-Norm  $h(X) = |(y_X - y_Z)| + |x_X - x_Z|$ 

D. Sabel · KI · SoSe 2014 · Suchverfahren 21/1

# Beispiel



```
\begin{array}{lll} \text{Open} = \{S\} & \text{Closed} = \emptyset & N := S \\ \text{Open} = \{A,B\} & \text{Closed} = \{S\} \\ f(A) = 1 + 7 = 8 & f(B) = 1 + 8 = 9 & N := A \\ \text{Open} = \{B,C\} & \text{Closed} = \{A,S\} \\ f(B) = 1 + 8 = 9 & f(C) = 5 + 3 = 8 & N := C \\ \text{Open} = \{B,D\} & \text{Closed} = \{A,C,S\} \\ \text{D. Sabel} \cdot \text{KI} \cdot \text{SoSe 2014} \cdot \text{Suchverfahren} \\ f(D) = 1 + 9 = 9 & f(D) = 0 + 4 = 10 & IV := D \\ \text{Open} = \{C,D\} & \text{Closed} = \{A,B,S\} \\ \end{array}
```

### $A^*$ in Haskell

```
-- Eintr"age in open / closed: (Knoten, (g(Knoten), Pfad zum Knoten))
aStern heuristic goal successor open closed
 | null open = Nothing -- Kein Ziel gefunden
  | otherwise =
     let n@(node,(g_node,path_node)) = Knoten mit min. f-Wert
                 minimumBy (\(a,(b,_)) (a',(b',_))
                    -> compare ((heuristic a) + b) ((heuristic a') + b')) open
     if goal node then Just n else -- Zielknoten expandiert let nf = (successor node) -- Nachfolger
           -- aktualisiere open und closed:
           (open',closed') = update nf (delete n open) (n:closed)
           update [] o c = (o,c)
           update ((nfnode,c_node_nfnode):xs) o c =
            let (o',c') = update xs o c -- rekursiver Aufruf
                -- m"oglicher neuer Knoten, mit neuem g-Wert und Pfad
                newnode = (nfnode,(g_node + c_node_nfnode,path_node ++ [node]))
            in case lookup nfnode open of -- Knoten in Open?
                 Nothing -> case lookup nfnode closed of -- Knoten in Closed?
                              Nothing -> (newnode:o',c')
                              Just (curr_g,curr_path) ->
                              if curr_g > g_node + c_node_nfnode
                               then (newnode:o',delete (nfnode,(curr_g,curr_path)) c')
                               else (o',c')
                 Just (curr_g,curr_path) ->
                  if curr_g > g_node + c_node_nfnode
                   then (newnode:(delete (nfnode,(curr_g,curr_path)) o'),c')
                   else (o',c')
       in aStern heuristic goal successor open' closed'
```

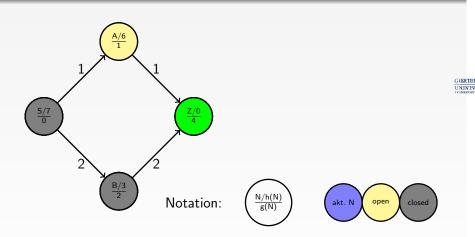
D. Sabel · KI · SoSe 2014 · Suchverfahren 22/1

# Beispiel (2)

- Beispiel zeigt, dass i.A. notwendig: Knoten aus Closed wieder in Open einfügen
- Beispiel extra so gewählt!
- Beachte: Auch Kanten werden mehrfach betrachtet
- Mehr Anforderungen an die Heuristik verhindern das!

GORTHHILL UNIN EWISK SÄTÄT FRANKOUGETUSE MA MAIN

### Ist $A^*$ immer korrekt?



Nein! Die Heuristik muss unterschätzend sein!

D. Sabel · KI · SoSe 2014 · Suchverfahren

# Nachtrag zum 8-Puzzle (2)

- ullet  $h_1()$  Anzahl der Plättchen an der falschen Stelle
- $h_2()$  Anzahl der Züge (ohne Behinderungen zu beachten), die man braucht, um Endzustand zu erreichen.

Test mit  $\sim$  9500 Zuständen:

|            | h1        | h2       | Slowdown (Zeit h1/Zeit h2) |
|------------|-----------|----------|----------------------------|
| Mittelwert | 54.35 min | 1.46 min | 38                         |
| Median     | 6.02 min  | 15 sec   | 21                         |
| Max        | 35.64 hrs | 1.82 hrs | 1307                       |

### Die Wahl der Heuristik ist wichtig!

### Nachtrag zum 8-Puzzle





- Es gibt 9! = 362.880 verschiedene Zustände
- Davon ist die Hälfte (= 181.440) lösbar

D. Sabel · KI · SoSe 2014 · Suchverfahren 26/1

# Notationen für die Analyse

 $g^*(N,N') = \text{Kosten des optimalen Weges von } N \text{ nach } N'$ 

 $g^*(N)$  = Kosten des optimalen Weges vom Start bis zu N

 $c^*(N)$  = Kosten des optimalen Weges von N bis zum nächsten Zielknoten Z.

 $f^*(N) = g^*(N) + c^*(N)$  (Kosten des optimalen Weges durch N bis zu einem Ziel Z)

# Voraussetzungen für den $A^*$ -Algorithmus

 $\begin{tabular}{l} \bullet \end{tabular} \begin{tabular}{l} \bullet \end{tabular} \begin{tabula$ 

 $d=\inf\{{\sf Kosten\ aller\ Wege\ von\ }S\ {\sf zu\ einem\ Zielknoten\ }Z\}.$ 



 $\odot$  Für jeden Knoten N ist die Anzahl der Nachfolger endlich.

• Alle Kanten kosten etwas: c(N, N') > 0 für alle N, N'.

Der Graph ist schlicht, d.h. zwischen zwei Knoten gibt es höchstens eine Kante



U N.I.N EWISR SÄTÄT FRANKEUREURE AMAINAI

D. Sabel · KI · SoSe 2014 · Suchverfahren

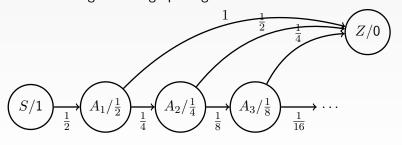
29/1

#### D. Sabel · KI · SoSe 2014 · Suchverfahren

#### 30/1

# Bedingung 1 ist notwendig: Beispiele (2)

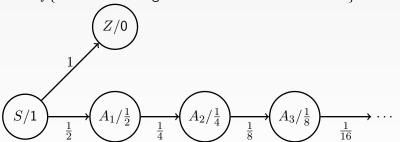
Bedingung 1: es gibt nur endlich viele Knoten N mit  $g^*(N) + h(N) \leq d$ , wobei  $d = \inf\{ \text{Kosten aller Wege von } S \text{ zu einem Zielknoten } Z \}.$  zum Infimum d muss es nicht notwendigerweise auch einen endlichen Weg im Suchgraphen geben:



### Bedingung 1 ist notwendig: Beispiele

Bedingung 1: es gibt nur endlich viele Knoten N mit  $g^*(N) + h(N) \le d$ , wobei  $d = \inf\{ \text{Kosten aller Wege von } S \text{ zu einem Zielknoten } Z \}.$ 





# Bedingung 1: hinreichende Bedingungen

Sei  $\varepsilon > 0$  fest.

Wenn für alle Kosten  $c(N_1,N_2)$  gilt:  $c(N_1,N_2) \geq \varepsilon$  und jeder Knoten hat nur endlich viele Nachfolger und h ist unterschätzend,

dann gilt auch Bedingung 1.

D. Sabel·KI·SoSe 2014·Suchverfahren 31/1 D. Sabel·KI·SoSe 2014·Suchverfahren 32/1

# Korrektheit und Vollständigkeit der A\*-Suche

Wenn Voraussetzungen für den  $A^*$ -Algorithmus erfüllt, dann existiert zum Infimum d stets ein endlicher Weg mit Kosten



33/1

#### Notation:

 $infWeg(N) := inf\{ \text{Kosten aller Wege von } N \text{ zu einem Ziel} \}$ 

#### Satz

Es existiere ein Weg vom Start S bis zu einem Zielknoten. Sei  $d=\inf Weg(S)$ . Die Voraussetzungen für den  $A^*$ -Algorithmus seien erfüllt. Dann existiert ein optimaler Weg von S zum Ziel mit Kosten d.

#### D. Sabel · KI · SoSe 2014 · Suchverfahren

# Korrektheit und Vollständigkeit der $A^*$ -Suche (3)

Expandierte Zielknoten sind optimal:

#### Lemma

Wenn die Voraussetzung für den  $A^*$ -Algorithmus erfüllt sind, gilt: Wenn  $A^*$  einen Zielknoten expandiert, dann ist dieser optimal.

Ein Zielknoten wird nach endlicher Zeit expandiert:

#### Lemma

Die Voraussetzungen zum  $A^*$ -Algorithmus seien erfüllt. Wenn ein Weg vom Start zum Zielknoten existiert gilt: Der  $A^*$ -Algorithmus expandiert einen Zielknoten nach endlich vielen Schritten.

### Korrektheit und Vollständigkeit der $A^*$ -Suche (2)

Ein optimaler Knoten ist stets in Open:

#### Lemma

Die Voraussetzungen zum  $A^*$ -Algorithmus seien erfüllt. Es existiere ein optimaler Weg  $S=K_0 \to K_1 \to K_2 \to \ldots \to K_n=Z$  vom Startknoten S bis zu einem Zielknoten Z. Dann ist während der Ausführung des  $A^*$ -Algorithmus stets ein Knoten  $K_i$  in Open, markiert mit  $g(K_i)=g^*(K_i)$ , d.h. mit einem optimalen Weg von S zu  $K_i$ .

#### D. Sabel · KI · SoSe 2014 · Suchverfahren 34/1

# Korrektheit und Vollständigkeit der $A^*$ -Suche (4)

Zusammenfassend ergibt sich:

#### Theorem

Es existiere ein Weg vom Start bis zu einem Zielknoten. Die Voraussetzungen zum  $A^*$ -Algorithmus seien erfüllt. Dann findet der  $A^*$ -Algorithmus einen optimalen Weg zu einem Zielknoten.

D. Sabel · KI · SoSe 2014 · Suchverfahren 35/1 D. Sabel · KI · SoSe 2014 · Suchverfahren 36/1



# Spezialfälle



- Wenn h(N)=0 für alle Knoten N, dann ist  $A^*$ -Algorithmus dasselbe wie die sogenannte Gleiche-Kosten-Suche
- Wenn  $c(N_1,N_2)=k$  für alle Knoten  $N_1,N_2$  und h(N)=0 für alle Knoten N, dann ist  $A^*$ -Algorithmus gerade die Breitensuche.

D. Sabel · KI · SoSe 2014 · Suchverfahren

37/1

### Schätzfunktionen

#### Definition

Wenn man zwei Schätzfunktionen  $h_1$  und  $h_2$  hat mit:

- $\bullet$   $h_1$  und  $h_2$  unterschätzen den Aufwand zum Ziel
- ② für alle Knoten N gilt:  $h_1(N) \leq h_2(N) \leq c^*(N)$

Dann nennt man  $h_2$  besser informiert als  $h_1$ .

Hieraus alleine kann man noch nicht folgern, dass der  $A^*$ -Algorithmus zu  $h_2$  sich besser verhält als zu  $h_1$ . Notwendig ist:

Die Abweichung bei Sortierung der Knoten mittels f muss klein sein. D.h. optimal wäre  $f(k) \leq f(k') \Leftrightarrow f^*(k) \leq f^*(k')$ .

### Variante: $A^{*o}$ -Algorithmus

### $A^{*o}$ -Algorithmus

- findet alle optimalen Wege
- Abänderung am  $A^*$ -Algorithmus: sobald erster Zielknoten mit Wert d expandiert wurde:
  - Füge in Open nur noch Knoten mit  $g(N) + h(N) \le d$  ein
  - Andere Knoten kommen in Closed
- Stoppe erst, wenn Open leer ist

#### Theorem

D. Sabel · KI · SoSe 2014 · Suchverfahren

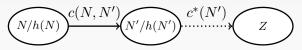
Wenn die Voraussetzungen für den  $A^*$ -Algorithmus gelten, dann findet der Algorithmus  $A^{*o}$  alle optimalen Wege von S zum Ziel.

### Monotone Schätzfunktionen

### Definition

Eine Schätzfunktion h(.) ist **monoton**, gdw.

- $h(N) \le c(N, N') + h(N')$  für alle Knoten N und Nachfolger N'
- h(Z) = 0 für alle Zielknoten Z.



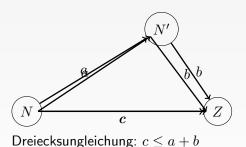
Satz: Eine monotone Schätzfunktion ist auch unterschätzend.

Beweis: Induktion über die Entfernung jedes Knotens N vom Ziel

- Wenn von N aus kein Weg zum Ziel, dann h(N) immer untersch.
- Wenn N ein Zielknoten ist, dann gilt h(N) = 0
- Induktionsschritt: Sei  $N \to N'$  der optimale Präfix des Weges von N zum Ziel, Dann gilt:  $c^*(N) = c(N,N') + c^*(N)$ . Induktionsannahme:  $h(N') < c^*(N')$  (da h(N') unterschätzend),

UNINEWSRSÄTÄT FRANKRUSSUSSE AMA ISIAIN

# Montonie (2)





D. Sabel  $\cdot$  KI  $\cdot$  SoSe 2014  $\cdot$  Suchverfahren

### Variante: $A^*$ als Baumsuche

- Aktualisiere nie die g(N) Werte
- Verwende keine Closed-Liste
- Gleiche Knoten kommen evtl. mehrfach in Open vor, aber mit anderen Wegen
- Platzersparnis
- Optimalität: Nur wenn h monoton ist

# Monotonie (3)

### Satz

Ist die Schätzfunktion h monoton, so expandiert der  $A^*$ -Algorithmus jeden untersuchten Knoten beim ersten mal bereits mit dem optimalen Wert. D.h.  $g(N)=g^*(N)$  für alle expandierten Knoten.

GONDHIH CONTROL OF THE PROPERTY OF THE PROPERT

D. Sabel · KI · SoSe 2014 · Suchverfahren 42/1

# Weitere Folgerungen aus der Monotonie

### Satz

Wenn h(.) monton ist gilt:

- Wenn N später als M expandiert wurde, dann gilt  $f(N) \geq f(M)$ .
- $\text{ Wenn } N \text{ expandiert wurde, dann gilt } g^*(N) + h(N) \leq d \\ \text{ wobei } d \text{ der optimale Wert ist.}$
- $\textbf{ 3} \ \, \mathsf{Jeder} \,\, \mathsf{Knoten} \,\, \mathsf{mit} \,\, g^*(N) + h(N) \leq d \,\, \mathsf{wird} \,\, \mathsf{von} \,\, A^{*o} \,\, \mathsf{expandiert}.$

# Weitere Folgerungen aus der Monotonie (2)

#### Theorem

Wenn eine monotone Schätzfunktion gegeben ist, die Schätzfunktion in konstanter Zeit berechnet werden kann, dann läuft der  $A^*$ -Algorithmus in Zeit O(|D|), wenn  $D = \{N \mid g^*(N) + h(N) \leq d\}.$ 

Bei konstanter Verzweigungsrate c, und d als Wert des optimalen Weges und  $\delta$  als der kleinste Abstand zweier Knoten, dann ist die Komplexität  $O(c^{\frac{d}{\delta}})$ .



### Weitere Folgerungen aus der Monotonie (3)

### Satz

- ullet Voraussetzungen für  $A^*$ -Algorithmus erfüllt
- d die Kosten des optimalen Weges
- ullet  $h_2$  besser informiert als  $h_1$
- $h_1, h_2$  monoton
- ullet für i=1,2:  $A_i$  der  $A^{*o}$ -Algorithmus zu  $h_i$

Dann: Alle Knoten N mit  $g^*(N) + h_2(N) \le d$  die von  $A_2$  expandiert werden, werden auch von  $A_1$  expandiert.

D. Sabel · KI · SoSe 2014 · Suchverfahren

45/1

D. Sabel · KI · SoSe 2014 · Suchverfahren

46/1

GORTHIH EU

### **Fazit**

- Monotone Schätzfunktion wünschenswert
- Besser informierte Schätzfunktion wünschenswert
- ullet Für montone Heuristik ist  $A^*$  optimal

Problem:  $A^*$  verbraucht zuviel Platz (alle besuchten Knoten)

# Varianten des $A^*$ -Algorithmus

**IDA**\* (Iterative Deepening  $A^*$ ) mit Grenze d

- Ist analog zu  $A^*$ .
- es gibt keine Open/Closed-Listen, nur einen Stack mit Knoten und Wegekosten.
- ullet der Wert g(N) wird bei gerichteten Graphen nicht per Update verbessert.
- Der Knoten N wird nicht expandiert, wenn f(N) > d.
- das Minimum der Werte f(N) mit f(N) > d wird das d in der nächsten Iteration.

Platz: Linear in der Länge des optimalen Weges

Problem: Durch Nicht-Speichern der entdeckten Knoten: Eventuell exponentiell viele Pfade ablaufen (Zeit)

D. Sabel·KI·SoSe 2014·Suchverfahren 47/1 D. Sabel·KI·SoSe 2014·Suchverfahren 48/1

# Varianten des $A^*$ -Algorithmus (2)

### **SMA**\* (Simplified Memory Bounded $A^*$ )

- $\bullet$  Wie  $A^*$ , aber die Größe der Open und Closed-Mengen ist beschänkt
- Wenn der Platz verbraucht ist, wird der schlechteste Knoten gelöscht
- $\bullet$  Schlechtester Knoten: Größter f(N)-Wert.