by AProVE (version ba869e7b28377cd372aedcb96abeb62c4ad6aaa5 rene 20130719 unpublished dirty )
The rewrite relation of the following TRS is considered.
Tgc(SRlbeta(x)) | → | SRlapp(W32(k,x)) |
Tgc(SRlbeta(x)) | → | W38(k,x) |
Tgc(SRseq(x)) | → | SRlseq(W60(k,x)) |
Tgc(SRseq(x)) | → | W66(k,x) |
Tgc(SRcp(x)) | → | W87(k,x) |
Tgc(SRllet(x)) | → | W102(k,x) |
Tgc(SRlapp(x)) | → | SRlapp(W107(k,x)) |
Tgc(SRlapp(x)) | → | W113(k,x) |
Tgc(SRlseq(x)) | → | SRlseq(W135(k,x)) |
Tgc(SRlseq(x)) | → | W141(k,x) |
Tgc(SRlbeta(x)) | → | SRlbeta(Tgc(x)) |
Tgc(SRseq(x)) | → | SRseq(Tgc(x)) |
Tgc(SRcp(x)) | → | SRcp(Tgc(x)) |
Tgc(SRllet(x)) | → | SRllet(Tgc(x)) |
Tgc(SRlapp(x)) | → | SRlapp(Tgc(x)) |
Tgc(SRlseq(x)) | → | SRlseq(Tgc(x)) |
Tgc(Answer) | → | Answer |
W32(s(k),x) | → | SRlll(W32(k,x)) |
W32(s(k),x) | → | SRlll(SRlbeta(Tgc(x))) |
W38(s(k),x) | → | SRlll(W38(k,x)) |
W38(s(k),x) | → | SRlll(SRlbeta(Tgc(x))) |
Tgc(SRlbeta(x)) | → | SRlapp(SRlbeta(SRllet(Tgc(x)))) |
Tgc(SRlbeta(x)) | → | SRlapp(SRllet(SRlbeta(Tgc(x)))) |
Tgc(SRlbeta(x)) | → | SRllet(SRlbeta(Tgc(x))) |
W60(s(k),x) | → | SRlll(W60(k,x)) |
W60(s(k),x) | → | SRlll(SRseq(Tgc(x))) |
W66(s(k),x) | → | SRlll(W66(k,x)) |
W66(s(k),x) | → | SRlll(SRseq(Tgc(x))) |
Tgc(SRseq(x)) | → | SRlseq(SRseq(Tgc(x))) |
Tgc(SRseq(x)) | → | SRlseq(SRllet(SRseq(Tgc(x)))) |
Tgc(SRseq(x)) | → | SRllet(SRseq(Tgc(x))) |
W87(s(k),x) | → | SRlll(W87(k,x)) |
W87(s(k),x) | → | SRlll(SRcp(Tgc(x))) |
Tgc(SRcp(x)) | → | SRllet(SRcp(Tgc(x))) |
Tgc(SRllet(x)) | → | SRllet(SRllet(Tgc(x))) |
W102(s(k),x) | → | SRlll(W102(k,x)) |
W102(s(k),x) | → | SRlll(SRllet(Tgc(x))) |
W107(s(k),x) | → | SRlll(W107(k,x)) |
W107(s(k),x) | → | SRlll(SRlapp(Tgc(x))) |
W113(s(k),x) | → | SRlll(W113(k,x)) |
W113(s(k),x) | → | SRlll(SRlapp(Tgc(x))) |
Tgc(SRlapp(x)) | → | SRlapp(SRlapp(SRllet(Tgc(x)))) |
Tgc(SRlapp(x)) | → | SRlapp(SRllet(SRlapp(Tgc(x)))) |
Tgc(SRlapp(x)) | → | SRllet(SRlapp(Tgc(x))) |
W135(s(k),x) | → | SRlll(W135(k,x)) |
W135(s(k),x) | → | SRlll(SRlseq(Tgc(x))) |
W141(s(k),x) | → | SRlll(W141(k,x)) |
W141(s(k),x) | → | SRlll(SRlseq(Tgc(x))) |
Tgc(SRlseq(x)) | → | SRlseq(SRlseq(SRllet(Tgc(x)))) |
Tgc(SRlseq(x)) | → | SRlseq(SRllet(SRlseq(Tgc(x)))) |
Tgc(SRlseq(x)) | → | SRllet(SRlseq(Tgc(x))) |
Tgc(Answer) | → | SRllet(Answer) |
SRlll(x) | → | SRlapp(x) |
SRlll(x) | → | SRllet(x) |
There are no rules.
Tgc#(SRlbeta(x)) | → | W32#(k,x) |
Tgc#(SRlbeta(x)) | → | W38#(k,x) |
Tgc#(SRseq(x)) | → | W60#(k,x) |
Tgc#(SRseq(x)) | → | W66#(k,x) |
Tgc#(SRcp(x)) | → | W87#(k,x) |
Tgc#(SRllet(x)) | → | W102#(k,x) |
Tgc#(SRlapp(x)) | → | W107#(k,x) |
Tgc#(SRlapp(x)) | → | W113#(k,x) |
Tgc#(SRlseq(x)) | → | W135#(k,x) |
Tgc#(SRlseq(x)) | → | W141#(k,x) |
Tgc#(SRlbeta(x)) | → | Tgc#(x) |
Tgc#(SRseq(x)) | → | Tgc#(x) |
Tgc#(SRcp(x)) | → | Tgc#(x) |
Tgc#(SRllet(x)) | → | Tgc#(x) |
Tgc#(SRlapp(x)) | → | Tgc#(x) |
Tgc#(SRlseq(x)) | → | Tgc#(x) |
W32#(s(k),x) | → | SRlll#(W32(k,x)) |
W32#(s(k),x) | → | W32#(k,x) |
W32#(s(k),x) | → | SRlll#(SRlbeta(Tgc(x))) |
W32#(s(k),x) | → | Tgc#(x) |
W38#(s(k),x) | → | SRlll#(W38(k,x)) |
W38#(s(k),x) | → | W38#(k,x) |
W38#(s(k),x) | → | SRlll#(SRlbeta(Tgc(x))) |
W38#(s(k),x) | → | Tgc#(x) |
W60#(s(k),x) | → | SRlll#(W60(k,x)) |
W60#(s(k),x) | → | W60#(k,x) |
W60#(s(k),x) | → | SRlll#(SRseq(Tgc(x))) |
W60#(s(k),x) | → | Tgc#(x) |
W66#(s(k),x) | → | SRlll#(W66(k,x)) |
W66#(s(k),x) | → | W66#(k,x) |
W66#(s(k),x) | → | SRlll#(SRseq(Tgc(x))) |
W66#(s(k),x) | → | Tgc#(x) |
W87#(s(k),x) | → | SRlll#(W87(k,x)) |
W87#(s(k),x) | → | W87#(k,x) |
W87#(s(k),x) | → | SRlll#(SRcp(Tgc(x))) |
W87#(s(k),x) | → | Tgc#(x) |
W102#(s(k),x) | → | SRlll#(W102(k,x)) |
W102#(s(k),x) | → | W102#(k,x) |
W102#(s(k),x) | → | SRlll#(SRllet(Tgc(x))) |
W102#(s(k),x) | → | Tgc#(x) |
W107#(s(k),x) | → | SRlll#(W107(k,x)) |
W107#(s(k),x) | → | W107#(k,x) |
W107#(s(k),x) | → | SRlll#(SRlapp(Tgc(x))) |
W107#(s(k),x) | → | Tgc#(x) |
W113#(s(k),x) | → | SRlll#(W113(k,x)) |
W113#(s(k),x) | → | W113#(k,x) |
W113#(s(k),x) | → | SRlll#(SRlapp(Tgc(x))) |
W113#(s(k),x) | → | Tgc#(x) |
W135#(s(k),x) | → | SRlll#(W135(k,x)) |
W135#(s(k),x) | → | W135#(k,x) |
W135#(s(k),x) | → | SRlll#(SRlseq(Tgc(x))) |
W135#(s(k),x) | → | Tgc#(x) |
W141#(s(k),x) | → | SRlll#(W141(k,x)) |
W141#(s(k),x) | → | W141#(k,x) |
W141#(s(k),x) | → | SRlll#(SRlseq(Tgc(x))) |
W141#(s(k),x) | → | Tgc#(x) |
The dependency pairs are split into 1 component.
W32#(s(k),x) | → | W32#(k,x) |
W32#(s(k),x) | → | Tgc#(x) |
Tgc#(SRlbeta(x)) | → | W32#(k,x) |
Tgc#(SRlbeta(x)) | → | W38#(k,x) |
W38#(s(k),x) | → | W38#(k,x) |
W38#(s(k),x) | → | Tgc#(x) |
Tgc#(SRseq(x)) | → | W60#(k,x) |
W60#(s(k),x) | → | W60#(k,x) |
W60#(s(k),x) | → | Tgc#(x) |
Tgc#(SRseq(x)) | → | W66#(k,x) |
W66#(s(k),x) | → | W66#(k,x) |
W66#(s(k),x) | → | Tgc#(x) |
Tgc#(SRcp(x)) | → | W87#(k,x) |
W87#(s(k),x) | → | W87#(k,x) |
W87#(s(k),x) | → | Tgc#(x) |
Tgc#(SRllet(x)) | → | W102#(k,x) |
W102#(s(k),x) | → | W102#(k,x) |
W102#(s(k),x) | → | Tgc#(x) |
Tgc#(SRlapp(x)) | → | W107#(k,x) |
W107#(s(k),x) | → | W107#(k,x) |
W107#(s(k),x) | → | Tgc#(x) |
Tgc#(SRlapp(x)) | → | W113#(k,x) |
W113#(s(k),x) | → | W113#(k,x) |
W113#(s(k),x) | → | Tgc#(x) |
Tgc#(SRlseq(x)) | → | W135#(k,x) |
W135#(s(k),x) | → | W135#(k,x) |
W135#(s(k),x) | → | Tgc#(x) |
Tgc#(SRlseq(x)) | → | W141#(k,x) |
W141#(s(k),x) | → | W141#(k,x) |
W141#(s(k),x) | → | Tgc#(x) |
Tgc#(SRlbeta(x)) | → | Tgc#(x) |
Tgc#(SRseq(x)) | → | Tgc#(x) |
Tgc#(SRcp(x)) | → | Tgc#(x) |
Tgc#(SRllet(x)) | → | Tgc#(x) |
Tgc#(SRlapp(x)) | → | Tgc#(x) |
Tgc#(SRlseq(x)) | → | Tgc#(x) |
We restrict the rewrite rules to the following usable rules of the DP problem.
There are no rules.
We restrict the innermost strategy to the following left hand sides.
There are no lhss.
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
W32#(s(k),x) → W32#(k,x):
1>1, 2>=2W32#(s(k),x) → Tgc#(x):
2>=1Tgc#(SRlbeta(x)) → W32#(k,x):
1>2W38#(s(k),x) → Tgc#(x):
2>=1W38#(s(k),x) → W38#(k,x):
1>1, 2>=2Tgc#(SRlbeta(x)) → W38#(k,x):
1>2W60#(s(k),x) → Tgc#(x):
2>=1W60#(s(k),x) → W60#(k,x):
1>1, 2>=2Tgc#(SRseq(x)) → W60#(k,x):
1>2W66#(s(k),x) → Tgc#(x):
2>=1W66#(s(k),x) → W66#(k,x):
1>1, 2>=2Tgc#(SRseq(x)) → W66#(k,x):
1>2W87#(s(k),x) → Tgc#(x):
2>=1W87#(s(k),x) → W87#(k,x):
1>1, 2>=2Tgc#(SRcp(x)) → W87#(k,x):
1>2W102#(s(k),x) → Tgc#(x):
2>=1W102#(s(k),x) → W102#(k,x):
1>1, 2>=2Tgc#(SRllet(x)) → W102#(k,x):
1>2W107#(s(k),x) → Tgc#(x):
2>=1W107#(s(k),x) → W107#(k,x):
1>1, 2>=2Tgc#(SRlapp(x)) → W107#(k,x):
1>2W113#(s(k),x) → Tgc#(x):
2>=1W113#(s(k),x) → W113#(k,x):
1>1, 2>=2Tgc#(SRlapp(x)) → W113#(k,x):
1>2W135#(s(k),x) → Tgc#(x):
2>=1W141#(s(k),x) → Tgc#(x):
2>=1W135#(s(k),x) → W135#(k,x):
1>1, 2>=2W141#(s(k),x) → W141#(k,x):
1>1, 2>=2Tgc#(SRlseq(x)) → W135#(k,x):
1>2Tgc#(SRlseq(x)) → W141#(k,x):
1>2Tgc#(SRlbeta(x)) → Tgc#(x):
1>1Tgc#(SRseq(x)) → Tgc#(x):
1>1Tgc#(SRcp(x)) → Tgc#(x):
1>1Tgc#(SRllet(x)) → Tgc#(x):
1>1Tgc#(SRlapp(x)) → Tgc#(x):
1>1Tgc#(SRlseq(x)) → Tgc#(x):
1>1As there is no critical graph in the transitive closure, there are no infinite chains.