Termination Proof

by AProVE (version ba869e7b28377cd372aedcb96abeb62c4ad6aaa5 rene 20130719 unpublished dirty )

Input

The rewrite relation of the following TRS is considered.

Tucp(SRlbeta(x)) SRlapp(W48(k,x))
Tucp(SRlbeta(x)) W54(k,x)
Tucp(SRlbeta(x)) W60(k,x)
Tucp(SRcp(x)) W95(k,x)
Tucp(SRcp(x)) W100(k,x)
Tucp(SRllet(x)) W120(k,x)
Tucp(SRlapp(x)) SRlapp(W125(k,x))
Tucp(SRlapp(W127(x))) SRlapp(W132(k,x))
Tucp(SRlapp(x)) W138(k,x)
Tucp(SRlapp(W139(x))) W144(k,x)
Tgc(SRlbeta(x)) SRlapp(W226(k,x))
Tgc(SRlbeta(x)) W232(k,x)
Tgc(SRcp(x)) W254(k,x)
Tgc(SRllet(x)) W269(k,x)
Tgc(SRlapp(x)) SRlapp(W274(k,x))
Tgc(SRlapp(x)) W280(k,x)
Tucp(SRlbeta(x)) SRlbeta(Tucp(x))
Tucp(SRlbeta(x)) SRcp(SRlbeta(Tgc(x)))
Tucp(SRcp(x)) SRcp(Tucp(x))
Tucp(SRcp(x)) SRcp(Tgc(x))
Tucp(SRllet(x)) SRllet(Tucp(x))
Tucp(SRlapp(x)) SRlapp(Tucp(x))
Tucp(SRlapp(W26(x))) SRllet(Tucp(x))
Tucp(SRlapp(SRlll(x))) Tucp(SRlapp(W26(x)))
Tucp(SRlapp(W26(SRlll(x)))) Tucp(SRlapp(W26(x)))
Tucp(SRlapp(SRllet(x))) SRllet(Tucp(x))
Tucp(Answer) Answer
Tucp(Answer) SRcp(Answer)
W48(s(k),x) SRlll(W48(k,x))
W48(s(k),x) SRlll(SRcp(SRlbeta(Tgc(x))))
W54(s(k),x) SRlll(W54(k,x))
W54(s(k),x) SRlll(SRlbeta(Tucp(x)))
W60(s(k),x) SRlll(W60(k,x))
W60(s(k),x) SRlll(SRcp(SRlbeta(Tgc(x))))
Tucp(SRlbeta(x)) SRlapp(SRcp(SRlbeta(SRllet(Tgc(x)))))
Tucp(SRlbeta(x)) SRlbeta(SRllet(Tucp(x)))
Tucp(SRlbeta(x)) SRlapp(SRllet(SRcp(SRlbeta(Tgc(x)))))
Tucp(SRlbeta(x)) SRllet(SRlbeta(Tucp(x)))
Tucp(SRlbeta(x)) SRllet(SRcp(SRlbeta(Tgc(x))))
W95(s(k),x) SRlll(W95(k,x))
W95(s(k),x) SRlll(SRcp(Tgc(x)))
W100(s(k),x) SRlll(W100(k,x))
W100(s(k),x) SRlll(SRcp(Tucp(x)))
Tucp(SRcp(x)) SRllet(SRcp(Tgc(x)))
Tucp(SRcp(x)) SRllet(SRcp(Tucp(x)))
Tucp(SRllet(x)) SRllet(SRllet(Tucp(x)))
W120(s(k),x) SRlll(W120(k,x))
W120(s(k),x) SRlll(SRllet(Tucp(x)))
W125(s(k),x) SRlll(W125(k,x))
W125(s(k),x) SRlll(SRlapp(Tucp(x)))
Tucp(SRlapp(SRlll(x))) Tucp(SRlapp(W127(x)))
Tucp(SRlapp(W127(SRlll(x)))) Tucp(SRlapp(W127(x)))
W132(s(k),x) SRlll(W132(k,x))
W132(s(k),x) SRlll(SRllet(Tucp(x)))
W138(s(k),x) SRlll(W138(k,x))
W138(s(k),x) SRlll(SRlapp(Tucp(x)))
Tucp(SRlapp(SRlll(x))) Tucp(SRlapp(W139(x)))
Tucp(SRlapp(W139(SRlll(x)))) Tucp(SRlapp(W139(x)))
W144(s(k),x) SRlll(W144(k,x))
W144(s(k),x) SRlll(SRllet(Tucp(x)))
Tucp(SRlapp(x)) SRlapp(SRlapp(SRllet(Tucp(x))))
Tucp(SRlapp(x)) SRlapp(SRllet(Tucp(x)))
Tucp(SRlapp(x)) SRllet(Tucp(x))
Tucp(SRlapp(x)) SRlapp(SRllet(SRlapp(Tucp(x))))
Tucp(SRlapp(SRllet(x))) SRlapp(SRllet(SRllet(Tucp(x))))
Tucp(SRlapp(x)) SRllet(SRlapp(Tucp(x)))
Tucp(SRlapp(W178(x))) SRllet(SRllet(Tucp(x)))
Tucp(SRlapp(SRlll(x))) Tucp(SRlapp(W178(x)))
Tucp(SRlapp(W178(SRlll(x)))) Tucp(SRlapp(W178(x)))
Tucp(SRlapp(SRllet(x))) SRllet(SRllet(Tucp(x)))
Tucp(Answer) SRllet(SRcp(Answer))
Tucp(Answer) SRllet(Answer)
SRlll(x) SRlapp(x)
SRlll(x) SRllet(x)
Tgc(SRlbeta(x)) SRlbeta(Tgc(x))
Tgc(SRcp(x)) SRcp(Tgc(x))
Tgc(SRllet(x)) SRllet(Tgc(x))
Tgc(SRlapp(x)) SRlapp(Tgc(x))
Tgc(Answer) Answer
W226(s(k),x) SRlll(W226(k,x))
W226(s(k),x) SRlll(SRlbeta(Tgc(x)))
W232(s(k),x) SRlll(W232(k,x))
W232(s(k),x) SRlll(SRlbeta(Tgc(x)))
Tgc(SRlbeta(x)) SRlapp(SRlbeta(SRllet(Tgc(x))))
Tgc(SRlbeta(x)) SRlapp(SRllet(SRlbeta(Tgc(x))))
Tgc(SRlbeta(x)) SRllet(SRlbeta(Tgc(x)))
W254(s(k),x) SRlll(W254(k,x))
W254(s(k),x) SRlll(SRcp(Tgc(x)))
Tgc(SRcp(x)) SRllet(SRcp(Tgc(x)))
Tgc(SRllet(x)) SRllet(SRllet(Tgc(x)))
W269(s(k),x) SRlll(W269(k,x))
W269(s(k),x) SRlll(SRllet(Tgc(x)))
W274(s(k),x) SRlll(W274(k,x))
W274(s(k),x) SRlll(SRlapp(Tgc(x)))
W280(s(k),x) SRlll(W280(k,x))
W280(s(k),x) SRlll(SRlapp(Tgc(x)))
Tgc(SRlapp(x)) SRlapp(SRlapp(SRllet(Tgc(x))))
Tgc(SRlapp(x)) SRlapp(SRllet(SRlapp(Tgc(x))))
Tgc(SRlapp(x)) SRllet(SRlapp(Tgc(x)))
Tgc(Answer) SRllet(Answer)
The evaluation strategy is innermost.

Proof

1 Removal of non-applicable rules

The following rules have arguments which are not in normal form. Due to the strategy restrictions these can be removed.

There are no rules.

1.1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
Tucp#(SRlbeta(x)) W48#(k,x)
Tucp#(SRlbeta(x)) W54#(k,x)
Tucp#(SRlbeta(x)) W60#(k,x)
Tucp#(SRcp(x)) W95#(k,x)
Tucp#(SRcp(x)) W100#(k,x)
Tucp#(SRllet(x)) W120#(k,x)
Tucp#(SRlapp(x)) W125#(k,x)
Tucp#(SRlapp(W127(x))) W132#(k,x)
Tucp#(SRlapp(x)) W138#(k,x)
Tucp#(SRlapp(W139(x))) W144#(k,x)
Tgc#(SRlbeta(x)) W226#(k,x)
Tgc#(SRlbeta(x)) W232#(k,x)
Tgc#(SRcp(x)) W254#(k,x)
Tgc#(SRllet(x)) W269#(k,x)
Tgc#(SRlapp(x)) W274#(k,x)
Tgc#(SRlapp(x)) W280#(k,x)
Tucp#(SRlbeta(x)) Tucp#(x)
Tucp#(SRlbeta(x)) Tgc#(x)
Tucp#(SRcp(x)) Tucp#(x)
Tucp#(SRcp(x)) Tgc#(x)
Tucp#(SRllet(x)) Tucp#(x)
Tucp#(SRlapp(x)) Tucp#(x)
Tucp#(SRlapp(W26(x))) Tucp#(x)
Tucp#(SRlapp(SRlll(x))) Tucp#(SRlapp(W26(x)))
Tucp#(SRlapp(W26(SRlll(x)))) Tucp#(SRlapp(W26(x)))
Tucp#(SRlapp(SRllet(x))) Tucp#(x)
W48#(s(k),x) SRlll#(W48(k,x))
W48#(s(k),x) W48#(k,x)
W48#(s(k),x) SRlll#(SRcp(SRlbeta(Tgc(x))))
W48#(s(k),x) Tgc#(x)
W54#(s(k),x) SRlll#(W54(k,x))
W54#(s(k),x) W54#(k,x)
W54#(s(k),x) SRlll#(SRlbeta(Tucp(x)))
W54#(s(k),x) Tucp#(x)
W60#(s(k),x) SRlll#(W60(k,x))
W60#(s(k),x) W60#(k,x)
W60#(s(k),x) SRlll#(SRcp(SRlbeta(Tgc(x))))
W60#(s(k),x) Tgc#(x)
W95#(s(k),x) SRlll#(W95(k,x))
W95#(s(k),x) W95#(k,x)
W95#(s(k),x) SRlll#(SRcp(Tgc(x)))
W95#(s(k),x) Tgc#(x)
W100#(s(k),x) SRlll#(W100(k,x))
W100#(s(k),x) W100#(k,x)
W100#(s(k),x) SRlll#(SRcp(Tucp(x)))
W100#(s(k),x) Tucp#(x)
W120#(s(k),x) SRlll#(W120(k,x))
W120#(s(k),x) W120#(k,x)
W120#(s(k),x) SRlll#(SRllet(Tucp(x)))
W120#(s(k),x) Tucp#(x)
W125#(s(k),x) SRlll#(W125(k,x))
W125#(s(k),x) W125#(k,x)
W125#(s(k),x) SRlll#(SRlapp(Tucp(x)))
W125#(s(k),x) Tucp#(x)
Tucp#(SRlapp(SRlll(x))) Tucp#(SRlapp(W127(x)))
Tucp#(SRlapp(W127(SRlll(x)))) Tucp#(SRlapp(W127(x)))
W132#(s(k),x) SRlll#(W132(k,x))
W132#(s(k),x) W132#(k,x)
W132#(s(k),x) SRlll#(SRllet(Tucp(x)))
W132#(s(k),x) Tucp#(x)
W138#(s(k),x) SRlll#(W138(k,x))
W138#(s(k),x) W138#(k,x)
W138#(s(k),x) SRlll#(SRlapp(Tucp(x)))
W138#(s(k),x) Tucp#(x)
Tucp#(SRlapp(SRlll(x))) Tucp#(SRlapp(W139(x)))
Tucp#(SRlapp(W139(SRlll(x)))) Tucp#(SRlapp(W139(x)))
W144#(s(k),x) SRlll#(W144(k,x))
W144#(s(k),x) W144#(k,x)
W144#(s(k),x) SRlll#(SRllet(Tucp(x)))
W144#(s(k),x) Tucp#(x)
Tucp#(SRlapp(W178(x))) Tucp#(x)
Tucp#(SRlapp(SRlll(x))) Tucp#(SRlapp(W178(x)))
Tucp#(SRlapp(W178(SRlll(x)))) Tucp#(SRlapp(W178(x)))
Tgc#(SRlbeta(x)) Tgc#(x)
Tgc#(SRcp(x)) Tgc#(x)
Tgc#(SRllet(x)) Tgc#(x)
Tgc#(SRlapp(x)) Tgc#(x)
W226#(s(k),x) SRlll#(W226(k,x))
W226#(s(k),x) W226#(k,x)
W226#(s(k),x) SRlll#(SRlbeta(Tgc(x)))
W226#(s(k),x) Tgc#(x)
W232#(s(k),x) SRlll#(W232(k,x))
W232#(s(k),x) W232#(k,x)
W232#(s(k),x) SRlll#(SRlbeta(Tgc(x)))
W232#(s(k),x) Tgc#(x)
W254#(s(k),x) SRlll#(W254(k,x))
W254#(s(k),x) W254#(k,x)
W254#(s(k),x) SRlll#(SRcp(Tgc(x)))
W254#(s(k),x) Tgc#(x)
W269#(s(k),x) SRlll#(W269(k,x))
W269#(s(k),x) W269#(k,x)
W269#(s(k),x) SRlll#(SRllet(Tgc(x)))
W269#(s(k),x) Tgc#(x)
W274#(s(k),x) SRlll#(W274(k,x))
W274#(s(k),x) W274#(k,x)
W274#(s(k),x) SRlll#(SRlapp(Tgc(x)))
W274#(s(k),x) Tgc#(x)
W280#(s(k),x) SRlll#(W280(k,x))
W280#(s(k),x) W280#(k,x)
W280#(s(k),x) SRlll#(SRlapp(Tgc(x)))
W280#(s(k),x) Tgc#(x)

1.1.1 Dependency Graph Processor

The dependency pairs are split into 5 components.