by AProVE (version ba869e7b28377cd372aedcb96abeb62c4ad6aaa5 rene 20130719 unpublished dirty )
The rewrite relation of the following TRS is considered.
Tcpcx(SRlbeta(x)) | → | SRlbeta(Tcpcx(x)) |
Tcpcx(SRcp(x)) | → | SRcp(Tcpcx(x)) |
Tcpcx(SRllet(x)) | → | SRllet(Tcpcx(x)) |
Tcpcx(SRlapp(x)) | → | SRlapp(Tcpcx(x)) |
Tcpcx(SRlcase(x)) | → | SRlcase(Tcpcx(x)) |
Tcpcx(SRlseq(x)) | → | SRlseq(Tcpcx(x)) |
Tcpcx(SRcase(x)) | → | SRcase(Tcpcx(x)) |
Tcpcx(SRcase(x)) | → | SRcase(x) |
Tcpcx(SRseq(x)) | → | SRseq(Tcpcx(x)) |
Tcpcx(SRseq(x)) | → | SRseq(x) |
Tcpcx(Answer) | → | Answer |
Tcpcx(SRcase(x)) | → | SRcase(Tabs(x)) |
Tcpcx(SRcase(x)) | → | SRcase(Txch(Txch(Tcpx(Tcpx(Tcpcx(x)))))) |
Tcpcx(SRcase(x)) | → | SRcase(Txch(Txch(Tcpx(Tcpx(Tabs(x)))))) |
Tcpcx(SRseq(x)) | → | SRseq(Tabs(x)) |
Tcpcx(SRcp(x)) | → | SRcp(Tcpcx(Tcpcx(x))) |
Tcpcx(SRcp(x)) | → | SRcp(Tgc(Tcpx(Tcpx(Tcpx(Tcpx(Tcpcx(Tcpcx(x)))))))) |
SRlll(x) | → | SRlseq(x) |
SRlll(x) | → | SRlapp(x) |
SRlll(x) | → | SRllet(x) |
SRlll(x) | → | SRlcase(x) |
Tabs(SRlbeta(x)) | → | SRlbeta(Tabs(x)) |
Tabs(SRcp(x)) | → | SRcp(Tabs(x)) |
Tabs(SRllet(x)) | → | SRllet(Tabs(x)) |
Tabs(SRlapp(x)) | → | SRlapp(Tabs(x)) |
Tabs(SRlcase(x)) | → | SRlcase(Tabs(x)) |
Tabs(SRlseq(x)) | → | SRlseq(Tabs(x)) |
Tabs(SRcase(x)) | → | SRcase(Tabs(x)) |
Tabs(SRcase(x)) | → | SRcase(x) |
Tabs(SRcase(x)) | → | SRcase(Txch(Txch(Tcpx(Tcpx(Tabs(x)))))) |
Tabs(SRseq(x)) | → | SRseq(Tabs(x)) |
Tabs(SRseq(x)) | → | SRseq(x) |
Tabs(Answer) | → | Answer |
Tcpx(SRlbeta(x)) | → | SRlbeta(Tcpx(x)) |
Tcpx(SRcp(x)) | → | SRcp(Tcpx(x)) |
Tcpx(SRcp(x)) | → | SRcp(x) |
Tcpx(SRllet(x)) | → | SRllet(Tcpx(x)) |
Tcpx(SRlapp(x)) | → | SRlapp(Tcpx(x)) |
Tcpx(SRlcase(x)) | → | SRlcase(Tcpx(x)) |
Tcpx(SRlseq(x)) | → | SRlseq(Tcpx(x)) |
Tcpx(SRcase(x)) | → | SRcase(Tcpx(x)) |
Tcpx(SRcase(x)) | → | SRcase(x) |
Tcpx(SRseq(x)) | → | SRseq(Tcpx(x)) |
Tcpx(SRseq(x)) | → | SRseq(x) |
Tcpx(Answer) | → | Answer |
Tcpx(SRcp(x)) | → | SRcp(Tcpx(Tcpx(x))) |
Txch(SRlbeta(x)) | → | SRlbeta(Txch(x)) |
Txch(SRcp(x)) | → | SRcp(Txch(x)) |
Txch(SRllet(x)) | → | SRllet(Txch(x)) |
Txch(SRlapp(x)) | → | SRlapp(Txch(x)) |
Txch(SRlcase(x)) | → | SRlcase(Txch(x)) |
Txch(SRlseq(x)) | → | SRlseq(Txch(x)) |
Txch(SRcase(x)) | → | SRcase(Txch(x)) |
Txch(SRcase(x)) | → | SRcase(x) |
Txch(SRseq(x)) | → | SRseq(Txch(x)) |
Txch(SRseq(x)) | → | SRseq(x) |
Txch(Answer) | → | Answer |
Tgc(SRlbeta(x)) | → | SRlbeta(Tgc(x)) |
Tgc(SRcp(x)) | → | SRcp(Tgc(x)) |
Tgc(SRllet(x)) | → | SRllet(Tgc(x)) |
Tgc(SRlapp(x)) | → | SRlapp(Tgc(x)) |
Tgc(SRlcase(x)) | → | SRlcase(Tgc(x)) |
Tgc(SRlseq(x)) | → | SRlseq(Tgc(x)) |
Tgc(SRcase(x)) | → | SRcase(Tgc(x)) |
Tgc(SRcase(x)) | → | SRcase(x) |
Tgc(SRseq(x)) | → | SRseq(Tgc(x)) |
Tgc(SRseq(x)) | → | SRseq(x) |
Tgc(Answer) | → | Answer |
Tgc(SRllet(x)) | → | Tgc(x) |
Tgc(SRlapp(x)) | → | Tgc(x) |
Tgc(SRlcase(x)) | → | Tgc(x) |
Tgc(SRlseq(x)) | → | Tgc(x) |
[Tcpcx(x1)] | = | 1 · x1 |
[SRlbeta(x1)] | = | 1 · x1 |
[SRcp(x1)] | = | 1 · x1 |
[SRllet(x1)] | = | 1 · x1 + 1 |
[SRlapp(x1)] | = | 1 · x1 + 1 |
[SRlcase(x1)] | = | 1 · x1 + 1 |
[SRlseq(x1)] | = | 1 · x1 + 1 |
[SRcase(x1)] | = | 1 · x1 |
[SRseq(x1)] | = | 1 · x1 |
[Answer] | = | 0 |
[Tabs(x1)] | = | 1 · x1 |
[Txch(x1)] | = | 1 · x1 |
[Tcpx(x1)] | = | 1 · x1 |
[Tgc(x1)] | = | 1 · x1 |
[SRlll(x1)] | = | 1 · x1 + 2 |
Tcpcx(SRlbeta(x)) | → | SRlbeta(Tcpcx(x)) |
Tcpcx(SRcp(x)) | → | SRcp(Tcpcx(x)) |
Tcpcx(SRllet(x)) | → | SRllet(Tcpcx(x)) |
Tcpcx(SRlapp(x)) | → | SRlapp(Tcpcx(x)) |
Tcpcx(SRlcase(x)) | → | SRlcase(Tcpcx(x)) |
Tcpcx(SRlseq(x)) | → | SRlseq(Tcpcx(x)) |
Tcpcx(SRcase(x)) | → | SRcase(Tcpcx(x)) |
Tcpcx(SRcase(x)) | → | SRcase(x) |
Tcpcx(SRseq(x)) | → | SRseq(Tcpcx(x)) |
Tcpcx(SRseq(x)) | → | SRseq(x) |
Tcpcx(Answer) | → | Answer |
Tcpcx(SRcase(x)) | → | SRcase(Tabs(x)) |
Tcpcx(SRcase(x)) | → | SRcase(Txch(Txch(Tcpx(Tcpx(Tcpcx(x)))))) |
Tcpcx(SRcase(x)) | → | SRcase(Txch(Txch(Tcpx(Tcpx(Tabs(x)))))) |
Tcpcx(SRseq(x)) | → | SRseq(Tabs(x)) |
Tcpcx(SRcp(x)) | → | SRcp(Tcpcx(Tcpcx(x))) |
Tcpcx(SRcp(x)) | → | SRcp(Tgc(Tcpx(Tcpx(Tcpx(Tcpx(Tcpcx(Tcpcx(x)))))))) |
Tabs(SRlbeta(x)) | → | SRlbeta(Tabs(x)) |
Tabs(SRcp(x)) | → | SRcp(Tabs(x)) |
Tabs(SRllet(x)) | → | SRllet(Tabs(x)) |
Tabs(SRlapp(x)) | → | SRlapp(Tabs(x)) |
Tabs(SRlcase(x)) | → | SRlcase(Tabs(x)) |
Tabs(SRlseq(x)) | → | SRlseq(Tabs(x)) |
Tabs(SRcase(x)) | → | SRcase(Tabs(x)) |
Tabs(SRcase(x)) | → | SRcase(x) |
Tabs(SRcase(x)) | → | SRcase(Txch(Txch(Tcpx(Tcpx(Tabs(x)))))) |
Tabs(SRseq(x)) | → | SRseq(Tabs(x)) |
Tabs(SRseq(x)) | → | SRseq(x) |
Tabs(Answer) | → | Answer |
Tcpx(SRlbeta(x)) | → | SRlbeta(Tcpx(x)) |
Tcpx(SRcp(x)) | → | SRcp(Tcpx(x)) |
Tcpx(SRcp(x)) | → | SRcp(x) |
Tcpx(SRllet(x)) | → | SRllet(Tcpx(x)) |
Tcpx(SRlapp(x)) | → | SRlapp(Tcpx(x)) |
Tcpx(SRlcase(x)) | → | SRlcase(Tcpx(x)) |
Tcpx(SRlseq(x)) | → | SRlseq(Tcpx(x)) |
Tcpx(SRcase(x)) | → | SRcase(Tcpx(x)) |
Tcpx(SRcase(x)) | → | SRcase(x) |
Tcpx(SRseq(x)) | → | SRseq(Tcpx(x)) |
Tcpx(SRseq(x)) | → | SRseq(x) |
Tcpx(Answer) | → | Answer |
Tcpx(SRcp(x)) | → | SRcp(Tcpx(Tcpx(x))) |
Txch(SRlbeta(x)) | → | SRlbeta(Txch(x)) |
Txch(SRcp(x)) | → | SRcp(Txch(x)) |
Txch(SRllet(x)) | → | SRllet(Txch(x)) |
Txch(SRlapp(x)) | → | SRlapp(Txch(x)) |
Txch(SRlcase(x)) | → | SRlcase(Txch(x)) |
Txch(SRlseq(x)) | → | SRlseq(Txch(x)) |
Txch(SRcase(x)) | → | SRcase(Txch(x)) |
Txch(SRcase(x)) | → | SRcase(x) |
Txch(SRseq(x)) | → | SRseq(Txch(x)) |
Txch(SRseq(x)) | → | SRseq(x) |
Txch(Answer) | → | Answer |
Tgc(SRlbeta(x)) | → | SRlbeta(Tgc(x)) |
Tgc(SRcp(x)) | → | SRcp(Tgc(x)) |
Tgc(SRllet(x)) | → | SRllet(Tgc(x)) |
Tgc(SRlapp(x)) | → | SRlapp(Tgc(x)) |
Tgc(SRlcase(x)) | → | SRlcase(Tgc(x)) |
Tgc(SRlseq(x)) | → | SRlseq(Tgc(x)) |
Tgc(SRcase(x)) | → | SRcase(Tgc(x)) |
Tgc(SRcase(x)) | → | SRcase(x) |
Tgc(SRseq(x)) | → | SRseq(Tgc(x)) |
Tgc(SRseq(x)) | → | SRseq(x) |
Tgc(Answer) | → | Answer |
Tcpcx#(SRlbeta(x)) | → | Tcpcx#(x) |
Tcpcx#(SRcp(x)) | → | Tcpcx#(x) |
Tcpcx#(SRllet(x)) | → | Tcpcx#(x) |
Tcpcx#(SRlapp(x)) | → | Tcpcx#(x) |
Tcpcx#(SRlcase(x)) | → | Tcpcx#(x) |
Tcpcx#(SRlseq(x)) | → | Tcpcx#(x) |
Tcpcx#(SRcase(x)) | → | Tcpcx#(x) |
Tcpcx#(SRseq(x)) | → | Tcpcx#(x) |
Tcpcx#(SRcase(x)) | → | Tabs#(x) |
Tcpcx#(SRcase(x)) | → | Txch#(Txch(Tcpx(Tcpx(Tcpcx(x))))) |
Tcpcx#(SRcase(x)) | → | Txch#(Tcpx(Tcpx(Tcpcx(x)))) |
Tcpcx#(SRcase(x)) | → | Tcpx#(Tcpx(Tcpcx(x))) |
Tcpcx#(SRcase(x)) | → | Tcpx#(Tcpcx(x)) |
Tcpcx#(SRcase(x)) | → | Txch#(Txch(Tcpx(Tcpx(Tabs(x))))) |
Tcpcx#(SRcase(x)) | → | Txch#(Tcpx(Tcpx(Tabs(x)))) |
Tcpcx#(SRcase(x)) | → | Tcpx#(Tcpx(Tabs(x))) |
Tcpcx#(SRcase(x)) | → | Tcpx#(Tabs(x)) |
Tcpcx#(SRseq(x)) | → | Tabs#(x) |
Tcpcx#(SRcp(x)) | → | Tcpcx#(Tcpcx(x)) |
Tcpcx#(SRcp(x)) | → | Tgc#(Tcpx(Tcpx(Tcpx(Tcpx(Tcpcx(Tcpcx(x))))))) |
Tcpcx#(SRcp(x)) | → | Tcpx#(Tcpx(Tcpx(Tcpx(Tcpcx(Tcpcx(x)))))) |
Tcpcx#(SRcp(x)) | → | Tcpx#(Tcpx(Tcpx(Tcpcx(Tcpcx(x))))) |
Tcpcx#(SRcp(x)) | → | Tcpx#(Tcpx(Tcpcx(Tcpcx(x)))) |
Tcpcx#(SRcp(x)) | → | Tcpx#(Tcpcx(Tcpcx(x))) |
Tabs#(SRlbeta(x)) | → | Tabs#(x) |
Tabs#(SRcp(x)) | → | Tabs#(x) |
Tabs#(SRllet(x)) | → | Tabs#(x) |
Tabs#(SRlapp(x)) | → | Tabs#(x) |
Tabs#(SRlcase(x)) | → | Tabs#(x) |
Tabs#(SRlseq(x)) | → | Tabs#(x) |
Tabs#(SRcase(x)) | → | Tabs#(x) |
Tabs#(SRcase(x)) | → | Txch#(Txch(Tcpx(Tcpx(Tabs(x))))) |
Tabs#(SRcase(x)) | → | Txch#(Tcpx(Tcpx(Tabs(x)))) |
Tabs#(SRcase(x)) | → | Tcpx#(Tcpx(Tabs(x))) |
Tabs#(SRcase(x)) | → | Tcpx#(Tabs(x)) |
Tabs#(SRseq(x)) | → | Tabs#(x) |
Tcpx#(SRlbeta(x)) | → | Tcpx#(x) |
Tcpx#(SRcp(x)) | → | Tcpx#(x) |
Tcpx#(SRllet(x)) | → | Tcpx#(x) |
Tcpx#(SRlapp(x)) | → | Tcpx#(x) |
Tcpx#(SRlcase(x)) | → | Tcpx#(x) |
Tcpx#(SRlseq(x)) | → | Tcpx#(x) |
Tcpx#(SRcase(x)) | → | Tcpx#(x) |
Tcpx#(SRseq(x)) | → | Tcpx#(x) |
Tcpx#(SRcp(x)) | → | Tcpx#(Tcpx(x)) |
Txch#(SRlbeta(x)) | → | Txch#(x) |
Txch#(SRcp(x)) | → | Txch#(x) |
Txch#(SRllet(x)) | → | Txch#(x) |
Txch#(SRlapp(x)) | → | Txch#(x) |
Txch#(SRlcase(x)) | → | Txch#(x) |
Txch#(SRlseq(x)) | → | Txch#(x) |
Txch#(SRcase(x)) | → | Txch#(x) |
Txch#(SRseq(x)) | → | Txch#(x) |
Tgc#(SRlbeta(x)) | → | Tgc#(x) |
Tgc#(SRcp(x)) | → | Tgc#(x) |
Tgc#(SRllet(x)) | → | Tgc#(x) |
Tgc#(SRlapp(x)) | → | Tgc#(x) |
Tgc#(SRlcase(x)) | → | Tgc#(x) |
Tgc#(SRlseq(x)) | → | Tgc#(x) |
Tgc#(SRcase(x)) | → | Tgc#(x) |
Tgc#(SRseq(x)) | → | Tgc#(x) |
The dependency pairs are split into 5 components.
Tcpcx#(SRcp(x)) | → | Tcpcx#(x) |
Tcpcx#(SRlbeta(x)) | → | Tcpcx#(x) |
Tcpcx#(SRllet(x)) | → | Tcpcx#(x) |
Tcpcx#(SRlapp(x)) | → | Tcpcx#(x) |
Tcpcx#(SRlcase(x)) | → | Tcpcx#(x) |
Tcpcx#(SRlseq(x)) | → | Tcpcx#(x) |
Tcpcx#(SRcase(x)) | → | Tcpcx#(x) |
Tcpcx#(SRseq(x)) | → | Tcpcx#(x) |
Tcpcx#(SRcp(x)) | → | Tcpcx#(Tcpcx(x)) |
We restrict the innermost strategy to the following left hand sides.
Tcpcx(SRlbeta(x0)) |
Tcpcx(SRcp(x0)) |
Tcpcx(SRllet(x0)) |
Tcpcx(SRlapp(x0)) |
Tcpcx(SRlcase(x0)) |
Tcpcx(SRlseq(x0)) |
Tcpcx(SRcase(x0)) |
Tcpcx(SRseq(x0)) |
Tcpcx(Answer) |
Tabs(SRlbeta(x0)) |
Tabs(SRcp(x0)) |
Tabs(SRllet(x0)) |
Tabs(SRlapp(x0)) |
Tabs(SRlcase(x0)) |
Tabs(SRlseq(x0)) |
Tabs(SRcase(x0)) |
Tabs(SRseq(x0)) |
Tabs(Answer) |
Tcpx(SRlbeta(x0)) |
Tcpx(SRcp(x0)) |
Tcpx(SRllet(x0)) |
Tcpx(SRlapp(x0)) |
Tcpx(SRlcase(x0)) |
Tcpx(SRlseq(x0)) |
Tcpx(SRcase(x0)) |
Tcpx(SRseq(x0)) |
Tcpx(Answer) |
Txch(SRlbeta(x0)) |
Txch(SRcp(x0)) |
Txch(SRllet(x0)) |
Txch(SRlapp(x0)) |
Txch(SRlcase(x0)) |
Txch(SRlseq(x0)) |
Txch(SRcase(x0)) |
Txch(SRseq(x0)) |
Txch(Answer) |
Tgc(SRlbeta(x0)) |
Tgc(SRcp(x0)) |
Tgc(SRllet(x0)) |
Tgc(SRlapp(x0)) |
Tgc(SRlcase(x0)) |
Tgc(SRlseq(x0)) |
Tgc(SRcase(x0)) |
Tgc(SRseq(x0)) |
Tgc(Answer) |
[Tcpcx#(x1)] | = | 1 · x1 |
[SRcp(x1)] | = | 1 · x1 |
[SRlbeta(x1)] | = | 1 + 1 · x1 |
[SRllet(x1)] | = | 1 + 1 · x1 |
[SRlapp(x1)] | = | 1 + 1 · x1 |
[SRlcase(x1)] | = | 1 + 1 · x1 |
[SRlseq(x1)] | = | 1 + 1 · x1 |
[SRcase(x1)] | = | 1 + 1 · x1 |
[SRseq(x1)] | = | 1 + 1 · x1 |
[Tcpcx(x1)] | = | 1 · x1 |
[Answer] | = | 1 |
[Tabs(x1)] | = | 1 · x1 |
[Txch(x1)] | = | 1 · x1 |
[Tcpx(x1)] | = | 1 · x1 |
[Tgc(x1)] | = | 1 · x1 |
Tcpcx#(SRcp(x)) | → | Tcpcx#(x) |
Tcpcx#(SRcp(x)) | → | Tcpcx#(Tcpcx(x)) |
[Tcpcx#(x1)] | = | 1 · x1 |
[SRcp(x1)] | = | 1 + 1 · x1 |
[Tcpcx(x1)] | = | 1 · x1 |
[SRlbeta(x1)] | = | 1 + 1 · x1 |
[SRllet(x1)] | = | 1 |
[SRlapp(x1)] | = | 1 + 1 · x1 |
[SRlcase(x1)] | = | 1 · x1 |
[SRlseq(x1)] | = | 1 · x1 |
[SRcase(x1)] | = | 0 |
[SRseq(x1)] | = | 1 |
[Answer] | = | 1 |
[Tabs(x1)] | = | 1 + 1 · x1 |
[Txch(x1)] | = | 1 + 1 · x1 |
[Tcpx(x1)] | = | 1 · x1 |
[Tgc(x1)] | = | 1 · x1 |
Tcpcx(SRlbeta(x)) | → | SRlbeta(Tcpcx(x)) |
Tcpcx(SRcp(x)) | → | SRcp(Tcpcx(x)) |
Tcpcx(SRllet(x)) | → | SRllet(Tcpcx(x)) |
Tcpcx(SRlapp(x)) | → | SRlapp(Tcpcx(x)) |
Tcpcx(SRlcase(x)) | → | SRlcase(Tcpcx(x)) |
Tcpcx(SRlseq(x)) | → | SRlseq(Tcpcx(x)) |
Tcpcx(SRcase(x)) | → | SRcase(Tcpcx(x)) |
Tcpcx(SRcase(x)) | → | SRcase(x) |
Tcpcx(SRseq(x)) | → | SRseq(Tcpcx(x)) |
Tcpcx(SRseq(x)) | → | SRseq(x) |
Tcpcx(Answer) | → | Answer |
Tcpcx(SRcase(x)) | → | SRcase(Tabs(x)) |
Tcpcx(SRcase(x)) | → | SRcase(Txch(Txch(Tcpx(Tcpx(Tcpcx(x)))))) |
Tcpcx(SRcase(x)) | → | SRcase(Txch(Txch(Tcpx(Tcpx(Tabs(x)))))) |
Tcpcx(SRseq(x)) | → | SRseq(Tabs(x)) |
Tcpcx(SRcp(x)) | → | SRcp(Tcpcx(Tcpcx(x))) |
Tcpcx(SRcp(x)) | → | SRcp(Tgc(Tcpx(Tcpx(Tcpx(Tcpx(Tcpcx(Tcpcx(x)))))))) |
Tcpx(SRlbeta(x)) | → | SRlbeta(Tcpx(x)) |
Tcpx(SRcp(x)) | → | SRcp(Tcpx(x)) |
Tcpx(SRcp(x)) | → | SRcp(x) |
Tcpx(SRllet(x)) | → | SRllet(Tcpx(x)) |
Tcpx(SRlapp(x)) | → | SRlapp(Tcpx(x)) |
Tcpx(SRlcase(x)) | → | SRlcase(Tcpx(x)) |
Tcpx(SRlseq(x)) | → | SRlseq(Tcpx(x)) |
Tcpx(SRcase(x)) | → | SRcase(Tcpx(x)) |
Tcpx(SRcase(x)) | → | SRcase(x) |
Tcpx(SRseq(x)) | → | SRseq(Tcpx(x)) |
Tcpx(SRseq(x)) | → | SRseq(x) |
Tcpx(Answer) | → | Answer |
Tcpx(SRcp(x)) | → | SRcp(Tcpx(Tcpx(x))) |
Tgc(SRlbeta(x)) | → | SRlbeta(Tgc(x)) |
Tgc(SRcp(x)) | → | SRcp(Tgc(x)) |
Tgc(SRllet(x)) | → | SRllet(Tgc(x)) |
Tgc(SRlapp(x)) | → | SRlapp(Tgc(x)) |
Tgc(SRlcase(x)) | → | SRlcase(Tgc(x)) |
Tgc(SRlseq(x)) | → | SRlseq(Tgc(x)) |
Tgc(SRcase(x)) | → | SRcase(Tgc(x)) |
Tgc(SRcase(x)) | → | SRcase(x) |
Tgc(SRseq(x)) | → | SRseq(Tgc(x)) |
Tgc(SRseq(x)) | → | SRseq(x) |
Tgc(Answer) | → | Answer |
There are no pairs anymore.
Tabs#(SRcp(x)) | → | Tabs#(x) |
Tabs#(SRlbeta(x)) | → | Tabs#(x) |
Tabs#(SRllet(x)) | → | Tabs#(x) |
Tabs#(SRlapp(x)) | → | Tabs#(x) |
Tabs#(SRlcase(x)) | → | Tabs#(x) |
Tabs#(SRlseq(x)) | → | Tabs#(x) |
Tabs#(SRcase(x)) | → | Tabs#(x) |
Tabs#(SRseq(x)) | → | Tabs#(x) |
We restrict the rewrite rules to the following usable rules of the DP problem.
There are no rules.
We restrict the innermost strategy to the following left hand sides.
There are no lhss.
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
Tabs#(SRcp(x)) → Tabs#(x):
1>1Tabs#(SRlbeta(x)) → Tabs#(x):
1>1Tabs#(SRllet(x)) → Tabs#(x):
1>1Tabs#(SRlapp(x)) → Tabs#(x):
1>1Tabs#(SRlcase(x)) → Tabs#(x):
1>1Tabs#(SRlseq(x)) → Tabs#(x):
1>1Tabs#(SRcase(x)) → Tabs#(x):
1>1Tabs#(SRseq(x)) → Tabs#(x):
1>1As there is no critical graph in the transitive closure, there are no infinite chains.
Tcpx#(SRcp(x)) | → | Tcpx#(x) |
Tcpx#(SRlbeta(x)) | → | Tcpx#(x) |
Tcpx#(SRllet(x)) | → | Tcpx#(x) |
Tcpx#(SRlapp(x)) | → | Tcpx#(x) |
Tcpx#(SRlcase(x)) | → | Tcpx#(x) |
Tcpx#(SRlseq(x)) | → | Tcpx#(x) |
Tcpx#(SRcase(x)) | → | Tcpx#(x) |
Tcpx#(SRseq(x)) | → | Tcpx#(x) |
Tcpx#(SRcp(x)) | → | Tcpx#(Tcpx(x)) |
We restrict the rewrite rules to the following usable rules of the DP problem.
Tcpx(SRlbeta(x)) | → | SRlbeta(Tcpx(x)) |
Tcpx(SRcp(x)) | → | SRcp(Tcpx(x)) |
Tcpx(SRcp(x)) | → | SRcp(x) |
Tcpx(SRllet(x)) | → | SRllet(Tcpx(x)) |
Tcpx(SRlapp(x)) | → | SRlapp(Tcpx(x)) |
Tcpx(SRlcase(x)) | → | SRlcase(Tcpx(x)) |
Tcpx(SRlseq(x)) | → | SRlseq(Tcpx(x)) |
Tcpx(SRcase(x)) | → | SRcase(Tcpx(x)) |
Tcpx(SRcase(x)) | → | SRcase(x) |
Tcpx(SRseq(x)) | → | SRseq(Tcpx(x)) |
Tcpx(SRseq(x)) | → | SRseq(x) |
Tcpx(Answer) | → | Answer |
Tcpx(SRcp(x)) | → | SRcp(Tcpx(Tcpx(x))) |
We restrict the innermost strategy to the following left hand sides.
Tcpx(SRlbeta(x0)) |
Tcpx(SRcp(x0)) |
Tcpx(SRllet(x0)) |
Tcpx(SRlapp(x0)) |
Tcpx(SRlcase(x0)) |
Tcpx(SRlseq(x0)) |
Tcpx(SRcase(x0)) |
Tcpx(SRseq(x0)) |
Tcpx(Answer) |
[Tcpx#(x1)] | = | 1 · x1 |
[SRcp(x1)] | = | 1 · x1 |
[SRlbeta(x1)] | = | 1 + 1 · x1 |
[SRllet(x1)] | = | 1 + 1 · x1 |
[SRlapp(x1)] | = | 1 + 1 · x1 |
[SRlcase(x1)] | = | 1 + 1 · x1 |
[SRlseq(x1)] | = | 1 + 1 · x1 |
[SRcase(x1)] | = | 1 + 1 · x1 |
[SRseq(x1)] | = | 1 + 1 · x1 |
[Tcpx(x1)] | = | 1 · x1 |
[Answer] | = | 1 |
Tcpx#(SRcp(x)) | → | Tcpx#(x) |
Tcpx#(SRcp(x)) | → | Tcpx#(Tcpx(x)) |
[Tcpx#(x1)] | = | 4 · x1 |
[SRcp(x1)] | = | 2 + 1 · x1 |
[Tcpx(x1)] | = | 1 · x1 |
[SRlbeta(x1)] | = | 0 |
[SRllet(x1)] | = | 0 |
[SRlapp(x1)] | = | 0 |
[SRlcase(x1)] | = | 0 |
[SRlseq(x1)] | = | 0 |
[SRcase(x1)] | = | 0 |
[SRseq(x1)] | = | 0 |
[Answer] | = | 0 |
There are no pairs anymore.
Txch#(SRcp(x)) | → | Txch#(x) |
Txch#(SRlbeta(x)) | → | Txch#(x) |
Txch#(SRllet(x)) | → | Txch#(x) |
Txch#(SRlapp(x)) | → | Txch#(x) |
Txch#(SRlcase(x)) | → | Txch#(x) |
Txch#(SRlseq(x)) | → | Txch#(x) |
Txch#(SRcase(x)) | → | Txch#(x) |
Txch#(SRseq(x)) | → | Txch#(x) |
We restrict the rewrite rules to the following usable rules of the DP problem.
There are no rules.
We restrict the innermost strategy to the following left hand sides.
There are no lhss.
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
Txch#(SRcp(x)) → Txch#(x):
1>1Txch#(SRlbeta(x)) → Txch#(x):
1>1Txch#(SRllet(x)) → Txch#(x):
1>1Txch#(SRlapp(x)) → Txch#(x):
1>1Txch#(SRlcase(x)) → Txch#(x):
1>1Txch#(SRlseq(x)) → Txch#(x):
1>1Txch#(SRcase(x)) → Txch#(x):
1>1Txch#(SRseq(x)) → Txch#(x):
1>1As there is no critical graph in the transitive closure, there are no infinite chains.
Tgc#(SRcp(x)) | → | Tgc#(x) |
Tgc#(SRlbeta(x)) | → | Tgc#(x) |
Tgc#(SRllet(x)) | → | Tgc#(x) |
Tgc#(SRlapp(x)) | → | Tgc#(x) |
Tgc#(SRlcase(x)) | → | Tgc#(x) |
Tgc#(SRlseq(x)) | → | Tgc#(x) |
Tgc#(SRcase(x)) | → | Tgc#(x) |
Tgc#(SRseq(x)) | → | Tgc#(x) |
We restrict the rewrite rules to the following usable rules of the DP problem.
There are no rules.
We restrict the innermost strategy to the following left hand sides.
There are no lhss.
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
Tgc#(SRcp(x)) → Tgc#(x):
1>1Tgc#(SRlbeta(x)) → Tgc#(x):
1>1Tgc#(SRllet(x)) → Tgc#(x):
1>1Tgc#(SRlapp(x)) → Tgc#(x):
1>1Tgc#(SRlcase(x)) → Tgc#(x):
1>1Tgc#(SRlseq(x)) → Tgc#(x):
1>1Tgc#(SRcase(x)) → Tgc#(x):
1>1Tgc#(SRseq(x)) → Tgc#(x):
1>1As there is no critical graph in the transitive closure, there are no infinite chains.