Termination Proof

by AProVE (version ba869e7b28377cd372aedcb96abeb62c4ad6aaa5 rene 20130719 unpublished dirty )

Input

The rewrite relation of the following TRS is considered.

Tucp(SRlbeta(x)) W43(k,x)
Tucp(SRlbeta(x)) W48(k,x)
Tucp(SRcp(x)) W83(k,x)
Tucp(SRcp(x)) W88(k,x)
Tucp(SRlll(x)) W108(k,x)
Tucp(W109(x)) W113(k,x)
Tgc(SRlbeta(x)) W166(k,x)
Tgc(SRcp(x)) W188(k,x)
Tgc(SRlll(x)) W203(k,x)
Tucp(SRlbeta(x)) SRlbeta(Tucp(x))
Tucp(SRlbeta(x)) SRcp(SRlbeta(Tgc(x)))
Tucp(SRcp(x)) SRcp(Tucp(x))
Tucp(SRcp(x)) SRcp(Tgc(x))
Tucp(SRlll(x)) SRlll(Tucp(x))
Tucp(W22(x)) SRlll(Tucp(x))
Tucp(SRlll(x)) Tucp(W22(x))
Tucp(W22(SRlll(x))) Tucp(W22(x))
Tucp(SRlll(SRlll(x))) SRlll(Tucp(x))
Tucp(Answer) Answer
Tucp(Answer) SRcp(Answer)
W43(s(k),x) SRlll(W43(k,x))
W43(s(k),x) SRlll(SRcp(SRlbeta(Tgc(x))))
W48(s(k),x) SRlll(W48(k,x))
W48(s(k),x) SRlll(SRlbeta(Tucp(x)))
Tucp(SRlbeta(x)) SRlll(SRcp(SRlbeta(SRlll(Tgc(x)))))
Tucp(SRlbeta(x)) SRlbeta(SRlll(Tucp(x)))
Tucp(SRlbeta(x)) SRlll(SRlll(SRcp(SRlbeta(Tgc(x)))))
Tucp(SRlbeta(x)) SRlll(SRlbeta(Tucp(x)))
Tucp(SRlbeta(x)) SRlll(SRcp(SRlbeta(Tgc(x))))
W83(s(k),x) SRlll(W83(k,x))
W83(s(k),x) SRlll(SRcp(Tgc(x)))
W88(s(k),x) SRlll(W88(k,x))
W88(s(k),x) SRlll(SRcp(Tucp(x)))
Tucp(SRcp(x)) SRlll(SRcp(Tgc(x)))
Tucp(SRcp(x)) SRlll(SRcp(Tucp(x)))
Tucp(SRlll(x)) SRlll(SRlll(Tucp(x)))
W108(s(k),x) SRlll(W108(k,x))
W108(s(k),x) SRlll(SRlll(Tucp(x)))
Tucp(SRlll(x)) Tucp(W109(x))
Tucp(W109(SRlll(x))) Tucp(W109(x))
W113(s(k),x) SRlll(W113(k,x))
W113(s(k),x) SRlll(SRlll(Tucp(x)))
Tucp(SRlll(x)) SRlll(SRlll(SRlll(Tucp(x))))
Tucp(SRlll(SRlll(x))) SRlll(SRlll(SRlll(Tucp(x))))
Tucp(W127(x)) SRlll(SRlll(Tucp(x)))
Tucp(SRlll(x)) Tucp(W127(x))
Tucp(W127(SRlll(x))) Tucp(W127(x))
Tucp(SRlll(SRlll(x))) SRlll(SRlll(Tucp(x)))
Tucp(Answer) SRlll(SRcp(Answer))
Tucp(Answer) SRlll(Answer)
Tgc(SRlbeta(x)) SRlbeta(Tgc(x))
Tgc(SRcp(x)) SRcp(Tgc(x))
Tgc(SRlll(x)) SRlll(Tgc(x))
Tgc(Answer) Answer
W166(s(k),x) SRlll(W166(k,x))
W166(s(k),x) SRlll(SRlbeta(Tgc(x)))
Tgc(SRlbeta(x)) SRlll(SRlbeta(SRlll(Tgc(x))))
Tgc(SRlbeta(x)) SRlll(SRlll(SRlbeta(Tgc(x))))
Tgc(SRlbeta(x)) SRlll(SRlbeta(Tgc(x)))
W188(s(k),x) SRlll(W188(k,x))
W188(s(k),x) SRlll(SRcp(Tgc(x)))
Tgc(SRcp(x)) SRlll(SRcp(Tgc(x)))
Tgc(SRlll(x)) SRlll(SRlll(Tgc(x)))
W203(s(k),x) SRlll(W203(k,x))
W203(s(k),x) SRlll(SRlll(Tgc(x)))
Tgc(SRlll(x)) SRlll(SRlll(SRlll(Tgc(x))))
Tgc(Answer) SRlll(Answer)
The evaluation strategy is innermost.

Proof

1 Removal of non-applicable rules

The following rules have arguments which are not in normal form. Due to the strategy restrictions these can be removed.

There are no rules.

1.1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
Tucp#(SRlbeta(x)) W43#(k,x)
Tucp#(SRlbeta(x)) W48#(k,x)
Tucp#(SRcp(x)) W83#(k,x)
Tucp#(SRcp(x)) W88#(k,x)
Tucp#(SRlll(x)) W108#(k,x)
Tucp#(W109(x)) W113#(k,x)
Tgc#(SRlbeta(x)) W166#(k,x)
Tgc#(SRcp(x)) W188#(k,x)
Tgc#(SRlll(x)) W203#(k,x)
Tucp#(SRlbeta(x)) Tucp#(x)
Tucp#(SRlbeta(x)) Tgc#(x)
Tucp#(SRcp(x)) Tucp#(x)
Tucp#(SRcp(x)) Tgc#(x)
Tucp#(SRlll(x)) Tucp#(x)
Tucp#(W22(x)) Tucp#(x)
Tucp#(SRlll(x)) Tucp#(W22(x))
Tucp#(W22(SRlll(x))) Tucp#(W22(x))
Tucp#(SRlll(SRlll(x))) Tucp#(x)
W43#(s(k),x) W43#(k,x)
W43#(s(k),x) Tgc#(x)
W48#(s(k),x) W48#(k,x)
W48#(s(k),x) Tucp#(x)
W83#(s(k),x) W83#(k,x)
W83#(s(k),x) Tgc#(x)
W88#(s(k),x) W88#(k,x)
W88#(s(k),x) Tucp#(x)
W108#(s(k),x) W108#(k,x)
W108#(s(k),x) Tucp#(x)
Tucp#(SRlll(x)) Tucp#(W109(x))
Tucp#(W109(SRlll(x))) Tucp#(W109(x))
W113#(s(k),x) W113#(k,x)
W113#(s(k),x) Tucp#(x)
Tucp#(W127(x)) Tucp#(x)
Tucp#(SRlll(x)) Tucp#(W127(x))
Tucp#(W127(SRlll(x))) Tucp#(W127(x))
Tgc#(SRlbeta(x)) Tgc#(x)
Tgc#(SRcp(x)) Tgc#(x)
Tgc#(SRlll(x)) Tgc#(x)
W166#(s(k),x) W166#(k,x)
W166#(s(k),x) Tgc#(x)
W188#(s(k),x) W188#(k,x)
W188#(s(k),x) Tgc#(x)
W203#(s(k),x) W203#(k,x)
W203#(s(k),x) Tgc#(x)

1.1.1 Dependency Graph Processor

The dependency pairs are split into 4 components.