Termination Proof

by AProVE (version ba869e7b28377cd372aedcb96abeb62c4ad6aaa5 rene 20130719 unpublished dirty )

Input

The rewrite relation of the following TRS is considered.

Tllet(SRlbeta(x)) SRlbeta(Tllet(x))
Tllet(SRlbeta(x)) SRllet(SRlbeta(x))
Tllet(SRcp(x)) SRcp(Tllet(x))
Tllet(SRcp(x)) SRllet(SRcp(x))
Tllet(SRllet(x)) SRllet(Tllet(x))
Tllet(SRllet(x)) SRllet(SRllet(x))
Tllet(SRlapp(x)) SRlapp(Tllet(x))
Tllet(SRlapp(x)) SRlapp(Tlapp(Tllet(x)))
Tllet(SRlapp(x)) SRlapp(SRlapp(SRllet(x)))
Tllet(SRlapp(x)) SRllet(SRlapp(x))
Tllet(SRlcase(x)) SRlcase(Tllet(x))
Tllet(SRlcase(x)) SRlcase(Tlcase(Tllet(x)))
Tllet(SRlcase(x)) SRlcase(SRlcase(SRllet(x)))
Tllet(SRlcase(x)) SRllet(SRlcase(x))
Tllet(SRlseq(x)) SRlseq(Tllet(x))
Tllet(SRlseq(x)) SRlseq(Tlseq(Tllet(x)))
Tllet(SRlseq(x)) SRlseq(SRlseq(SRllet(x)))
Tllet(SRlseq(x)) SRllet(SRlseq(x))
Tllet(SRcase(x)) SRcase(Tllet(x))
Tllet(SRcase(x)) SRcase(x)
Tllet(SRcase(x)) SRllet(SRcase(x))
Tllet(SRseq(x)) SRseq(Tllet(x))
Tllet(SRseq(x)) SRseq(x)
Tllet(SRseq(x)) SRllet(SRseq(x))
Tllet(Answer) Answer
Tllet(Answer) SRllet(Answer)
SRlll(x) SRlseq(x)
SRlll(x) SRlapp(x)
SRlll(x) SRllet(x)
SRlll(x) SRlcase(x)
Tlapp(SRlbeta(x)) SRlbeta(Tlapp(x))
Tlapp(SRlbeta(x)) SRlapp(SRlbeta(x))
Tlapp(SRcp(x)) SRcp(Tlapp(x))
Tlapp(SRcp(x)) SRlapp(SRcp(x))
Tlapp(SRllet(x)) SRllet(Tlapp(x))
Tlapp(SRllet(x)) SRlapp(SRllet(x))
Tlapp(SRlapp(x)) SRlapp(Tlapp(x))
Tlapp(SRlapp(x)) SRlapp(SRlapp(x))
Tlapp(SRlcase(x)) SRlcase(Tlapp(x))
Tlapp(SRlcase(x)) SRlapp(SRlcase(x))
Tlapp(SRlseq(x)) SRlseq(Tlapp(x))
Tlapp(SRlseq(x)) SRlapp(SRlseq(x))
Tlapp(SRcase(x)) SRcase(Tlapp(x))
Tlapp(SRcase(x)) SRcase(x)
Tlapp(SRcase(x)) SRlapp(SRcase(x))
Tlapp(SRcase(x)) SRcase(SRlapp(x))
Tlapp(SRseq(x)) SRseq(Tlapp(x))
Tlapp(SRseq(x)) SRseq(x)
Tlapp(SRseq(x)) SRlapp(SRseq(x))
Tlapp(SRseq(x)) SRseq(SRlapp(x))
Tlapp(Answer) Answer
Tlcase(SRlbeta(x)) SRlbeta(Tlcase(x))
Tlcase(SRlbeta(x)) SRlcase(SRlbeta(x))
Tlcase(SRcp(x)) SRcp(Tlcase(x))
Tlcase(SRcp(x)) SRlcase(SRcp(x))
Tlcase(SRllet(x)) SRllet(Tlcase(x))
Tlcase(SRllet(x)) SRlcase(SRllet(x))
Tlcase(SRlapp(x)) SRlapp(Tlcase(x))
Tlcase(SRlapp(x)) SRlcase(SRlapp(x))
Tlcase(SRlcase(x)) SRlcase(Tlcase(x))
Tlcase(SRlcase(x)) SRlcase(SRlcase(x))
Tlcase(SRlseq(x)) SRlseq(Tlcase(x))
Tlcase(SRlseq(x)) SRlcase(SRlseq(x))
Tlcase(SRcase(x)) SRcase(Tlcase(x))
Tlcase(SRcase(x)) SRcase(x)
Tlcase(SRcase(x)) SRlcase(SRcase(x))
Tlcase(SRcase(x)) SRcase(SRlcase(x))
Tlcase(SRseq(x)) SRseq(Tlcase(x))
Tlcase(SRseq(x)) SRseq(x)
Tlcase(SRseq(x)) SRlcase(SRseq(x))
Tlcase(SRseq(x)) SRseq(SRlcase(x))
Tlcase(Answer) Answer
Tlseq(SRlbeta(x)) SRlbeta(Tlseq(x))
Tlseq(SRlbeta(x)) SRlseq(SRlbeta(x))
Tlseq(SRcp(x)) SRcp(Tlseq(x))
Tlseq(SRcp(x)) SRlseq(SRcp(x))
Tlseq(SRllet(x)) SRllet(Tlseq(x))
Tlseq(SRllet(x)) SRlseq(SRllet(x))
Tlseq(SRlapp(x)) SRlapp(Tlseq(x))
Tlseq(SRlapp(x)) SRlseq(SRlapp(x))
Tlseq(SRlcase(x)) SRlcase(Tlseq(x))
Tlseq(SRlcase(x)) SRlseq(SRlcase(x))
Tlseq(SRlseq(x)) SRlseq(Tlseq(x))
Tlseq(SRlseq(x)) SRlseq(SRlseq(x))
Tlseq(SRcase(x)) SRcase(Tlseq(x))
Tlseq(SRcase(x)) SRcase(x)
Tlseq(SRcase(x)) SRlseq(SRcase(x))
Tlseq(SRcase(x)) SRcase(SRlseq(x))
Tlseq(SRseq(x)) SRseq(Tlseq(x))
Tlseq(SRseq(x)) SRseq(x)
Tlseq(SRseq(x)) SRlseq(SRseq(x))
Tlseq(SRseq(x)) SRseq(SRlseq(x))
Tlseq(Answer) Answer
The evaluation strategy is innermost.

Proof

1 Rule Removal

Using the linear polynomial interpretation over the naturals
[Tllet(x1)] = 1 · x1
[SRlbeta(x1)] = 1 · x1
[SRllet(x1)] = 1 · x1
[SRcp(x1)] = 1 · x1
[SRlapp(x1)] = 1 · x1
[Tlapp(x1)] = 1 · x1
[SRlcase(x1)] = 1 · x1
[Tlcase(x1)] = 1 · x1
[SRlseq(x1)] = 1 · x1
[Tlseq(x1)] = 1 · x1
[SRcase(x1)] = 1 · x1
[SRseq(x1)] = 1 · x1
[Answer] = 0
[SRlll(x1)] = 1 · x1 + 1
the rules
Tllet(SRlbeta(x)) SRlbeta(Tllet(x))
Tllet(SRlbeta(x)) SRllet(SRlbeta(x))
Tllet(SRcp(x)) SRcp(Tllet(x))
Tllet(SRcp(x)) SRllet(SRcp(x))
Tllet(SRllet(x)) SRllet(Tllet(x))
Tllet(SRllet(x)) SRllet(SRllet(x))
Tllet(SRlapp(x)) SRlapp(Tllet(x))
Tllet(SRlapp(x)) SRlapp(Tlapp(Tllet(x)))
Tllet(SRlapp(x)) SRlapp(SRlapp(SRllet(x)))
Tllet(SRlapp(x)) SRllet(SRlapp(x))
Tllet(SRlcase(x)) SRlcase(Tllet(x))
Tllet(SRlcase(x)) SRlcase(Tlcase(Tllet(x)))
Tllet(SRlcase(x)) SRlcase(SRlcase(SRllet(x)))
Tllet(SRlcase(x)) SRllet(SRlcase(x))
Tllet(SRlseq(x)) SRlseq(Tllet(x))
Tllet(SRlseq(x)) SRlseq(Tlseq(Tllet(x)))
Tllet(SRlseq(x)) SRlseq(SRlseq(SRllet(x)))
Tllet(SRlseq(x)) SRllet(SRlseq(x))
Tllet(SRcase(x)) SRcase(Tllet(x))
Tllet(SRcase(x)) SRcase(x)
Tllet(SRcase(x)) SRllet(SRcase(x))
Tllet(SRseq(x)) SRseq(Tllet(x))
Tllet(SRseq(x)) SRseq(x)
Tllet(SRseq(x)) SRllet(SRseq(x))
Tllet(Answer) Answer
Tllet(Answer) SRllet(Answer)
Tlapp(SRlbeta(x)) SRlbeta(Tlapp(x))
Tlapp(SRlbeta(x)) SRlapp(SRlbeta(x))
Tlapp(SRcp(x)) SRcp(Tlapp(x))
Tlapp(SRcp(x)) SRlapp(SRcp(x))
Tlapp(SRllet(x)) SRllet(Tlapp(x))
Tlapp(SRllet(x)) SRlapp(SRllet(x))
Tlapp(SRlapp(x)) SRlapp(Tlapp(x))
Tlapp(SRlapp(x)) SRlapp(SRlapp(x))
Tlapp(SRlcase(x)) SRlcase(Tlapp(x))
Tlapp(SRlcase(x)) SRlapp(SRlcase(x))
Tlapp(SRlseq(x)) SRlseq(Tlapp(x))
Tlapp(SRlseq(x)) SRlapp(SRlseq(x))
Tlapp(SRcase(x)) SRcase(Tlapp(x))
Tlapp(SRcase(x)) SRcase(x)
Tlapp(SRcase(x)) SRlapp(SRcase(x))
Tlapp(SRcase(x)) SRcase(SRlapp(x))
Tlapp(SRseq(x)) SRseq(Tlapp(x))
Tlapp(SRseq(x)) SRseq(x)
Tlapp(SRseq(x)) SRlapp(SRseq(x))
Tlapp(SRseq(x)) SRseq(SRlapp(x))
Tlapp(Answer) Answer
Tlcase(SRlbeta(x)) SRlbeta(Tlcase(x))
Tlcase(SRlbeta(x)) SRlcase(SRlbeta(x))
Tlcase(SRcp(x)) SRcp(Tlcase(x))
Tlcase(SRcp(x)) SRlcase(SRcp(x))
Tlcase(SRllet(x)) SRllet(Tlcase(x))
Tlcase(SRllet(x)) SRlcase(SRllet(x))
Tlcase(SRlapp(x)) SRlapp(Tlcase(x))
Tlcase(SRlapp(x)) SRlcase(SRlapp(x))
Tlcase(SRlcase(x)) SRlcase(Tlcase(x))
Tlcase(SRlcase(x)) SRlcase(SRlcase(x))
Tlcase(SRlseq(x)) SRlseq(Tlcase(x))
Tlcase(SRlseq(x)) SRlcase(SRlseq(x))
Tlcase(SRcase(x)) SRcase(Tlcase(x))
Tlcase(SRcase(x)) SRcase(x)
Tlcase(SRcase(x)) SRlcase(SRcase(x))
Tlcase(SRcase(x)) SRcase(SRlcase(x))
Tlcase(SRseq(x)) SRseq(Tlcase(x))
Tlcase(SRseq(x)) SRseq(x)
Tlcase(SRseq(x)) SRlcase(SRseq(x))
Tlcase(SRseq(x)) SRseq(SRlcase(x))
Tlcase(Answer) Answer
Tlseq(SRlbeta(x)) SRlbeta(Tlseq(x))
Tlseq(SRlbeta(x)) SRlseq(SRlbeta(x))
Tlseq(SRcp(x)) SRcp(Tlseq(x))
Tlseq(SRcp(x)) SRlseq(SRcp(x))
Tlseq(SRllet(x)) SRllet(Tlseq(x))
Tlseq(SRllet(x)) SRlseq(SRllet(x))
Tlseq(SRlapp(x)) SRlapp(Tlseq(x))
Tlseq(SRlapp(x)) SRlseq(SRlapp(x))
Tlseq(SRlcase(x)) SRlcase(Tlseq(x))
Tlseq(SRlcase(x)) SRlseq(SRlcase(x))
Tlseq(SRlseq(x)) SRlseq(Tlseq(x))
Tlseq(SRlseq(x)) SRlseq(SRlseq(x))
Tlseq(SRcase(x)) SRcase(Tlseq(x))
Tlseq(SRcase(x)) SRcase(x)
Tlseq(SRcase(x)) SRlseq(SRcase(x))
Tlseq(SRcase(x)) SRcase(SRlseq(x))
Tlseq(SRseq(x)) SRseq(Tlseq(x))
Tlseq(SRseq(x)) SRseq(x)
Tlseq(SRseq(x)) SRlseq(SRseq(x))
Tlseq(SRseq(x)) SRseq(SRlseq(x))
Tlseq(Answer) Answer
remain.

1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[Tllet(x1)] = 1 · x1 + 1
[SRlbeta(x1)] = 1 · x1
[SRllet(x1)] = 1 · x1 + 1
[SRcp(x1)] = 1 · x1
[SRlapp(x1)] = 1 · x1
[Tlapp(x1)] = 1 · x1
[SRlcase(x1)] = 1 · x1
[Tlcase(x1)] = 1 · x1
[SRlseq(x1)] = 1 · x1
[Tlseq(x1)] = 1 · x1
[SRcase(x1)] = 1 · x1
[SRseq(x1)] = 1 · x1
[Answer] = 0
the rules
Tllet(SRlbeta(x)) SRlbeta(Tllet(x))
Tllet(SRlbeta(x)) SRllet(SRlbeta(x))
Tllet(SRcp(x)) SRcp(Tllet(x))
Tllet(SRcp(x)) SRllet(SRcp(x))
Tllet(SRllet(x)) SRllet(Tllet(x))
Tllet(SRllet(x)) SRllet(SRllet(x))
Tllet(SRlapp(x)) SRlapp(Tllet(x))
Tllet(SRlapp(x)) SRlapp(Tlapp(Tllet(x)))
Tllet(SRlapp(x)) SRlapp(SRlapp(SRllet(x)))
Tllet(SRlapp(x)) SRllet(SRlapp(x))
Tllet(SRlcase(x)) SRlcase(Tllet(x))
Tllet(SRlcase(x)) SRlcase(Tlcase(Tllet(x)))
Tllet(SRlcase(x)) SRlcase(SRlcase(SRllet(x)))
Tllet(SRlcase(x)) SRllet(SRlcase(x))
Tllet(SRlseq(x)) SRlseq(Tllet(x))
Tllet(SRlseq(x)) SRlseq(Tlseq(Tllet(x)))
Tllet(SRlseq(x)) SRlseq(SRlseq(SRllet(x)))
Tllet(SRlseq(x)) SRllet(SRlseq(x))
Tllet(SRcase(x)) SRcase(Tllet(x))
Tllet(SRcase(x)) SRllet(SRcase(x))
Tllet(SRseq(x)) SRseq(Tllet(x))
Tllet(SRseq(x)) SRllet(SRseq(x))
Tllet(Answer) SRllet(Answer)
Tlapp(SRlbeta(x)) SRlbeta(Tlapp(x))
Tlapp(SRlbeta(x)) SRlapp(SRlbeta(x))
Tlapp(SRcp(x)) SRcp(Tlapp(x))
Tlapp(SRcp(x)) SRlapp(SRcp(x))
Tlapp(SRllet(x)) SRllet(Tlapp(x))
Tlapp(SRllet(x)) SRlapp(SRllet(x))
Tlapp(SRlapp(x)) SRlapp(Tlapp(x))
Tlapp(SRlapp(x)) SRlapp(SRlapp(x))
Tlapp(SRlcase(x)) SRlcase(Tlapp(x))
Tlapp(SRlcase(x)) SRlapp(SRlcase(x))
Tlapp(SRlseq(x)) SRlseq(Tlapp(x))
Tlapp(SRlseq(x)) SRlapp(SRlseq(x))
Tlapp(SRcase(x)) SRcase(Tlapp(x))
Tlapp(SRcase(x)) SRcase(x)
Tlapp(SRcase(x)) SRlapp(SRcase(x))
Tlapp(SRcase(x)) SRcase(SRlapp(x))
Tlapp(SRseq(x)) SRseq(Tlapp(x))
Tlapp(SRseq(x)) SRseq(x)
Tlapp(SRseq(x)) SRlapp(SRseq(x))
Tlapp(SRseq(x)) SRseq(SRlapp(x))
Tlapp(Answer) Answer
Tlcase(SRlbeta(x)) SRlbeta(Tlcase(x))
Tlcase(SRlbeta(x)) SRlcase(SRlbeta(x))
Tlcase(SRcp(x)) SRcp(Tlcase(x))
Tlcase(SRcp(x)) SRlcase(SRcp(x))
Tlcase(SRllet(x)) SRllet(Tlcase(x))
Tlcase(SRllet(x)) SRlcase(SRllet(x))
Tlcase(SRlapp(x)) SRlapp(Tlcase(x))
Tlcase(SRlapp(x)) SRlcase(SRlapp(x))
Tlcase(SRlcase(x)) SRlcase(Tlcase(x))
Tlcase(SRlcase(x)) SRlcase(SRlcase(x))
Tlcase(SRlseq(x)) SRlseq(Tlcase(x))
Tlcase(SRlseq(x)) SRlcase(SRlseq(x))
Tlcase(SRcase(x)) SRcase(Tlcase(x))
Tlcase(SRcase(x)) SRcase(x)
Tlcase(SRcase(x)) SRlcase(SRcase(x))
Tlcase(SRcase(x)) SRcase(SRlcase(x))
Tlcase(SRseq(x)) SRseq(Tlcase(x))
Tlcase(SRseq(x)) SRseq(x)
Tlcase(SRseq(x)) SRlcase(SRseq(x))
Tlcase(SRseq(x)) SRseq(SRlcase(x))
Tlcase(Answer) Answer
Tlseq(SRlbeta(x)) SRlbeta(Tlseq(x))
Tlseq(SRlbeta(x)) SRlseq(SRlbeta(x))
Tlseq(SRcp(x)) SRcp(Tlseq(x))
Tlseq(SRcp(x)) SRlseq(SRcp(x))
Tlseq(SRllet(x)) SRllet(Tlseq(x))
Tlseq(SRllet(x)) SRlseq(SRllet(x))
Tlseq(SRlapp(x)) SRlapp(Tlseq(x))
Tlseq(SRlapp(x)) SRlseq(SRlapp(x))
Tlseq(SRlcase(x)) SRlcase(Tlseq(x))
Tlseq(SRlcase(x)) SRlseq(SRlcase(x))
Tlseq(SRlseq(x)) SRlseq(Tlseq(x))
Tlseq(SRlseq(x)) SRlseq(SRlseq(x))
Tlseq(SRcase(x)) SRcase(Tlseq(x))
Tlseq(SRcase(x)) SRcase(x)
Tlseq(SRcase(x)) SRlseq(SRcase(x))
Tlseq(SRcase(x)) SRcase(SRlseq(x))
Tlseq(SRseq(x)) SRseq(Tlseq(x))
Tlseq(SRseq(x)) SRseq(x)
Tlseq(SRseq(x)) SRlseq(SRseq(x))
Tlseq(SRseq(x)) SRseq(SRlseq(x))
Tlseq(Answer) Answer
remain.

1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[Tllet(x1)] = 1 · x1 + 1
[SRlbeta(x1)] = 1 · x1
[SRllet(x1)] = 1 · x1
[SRcp(x1)] = 1 · x1
[SRlapp(x1)] = 1 · x1
[Tlapp(x1)] = 1 · x1
[SRlcase(x1)] = 1 · x1
[Tlcase(x1)] = 1 · x1
[SRlseq(x1)] = 1 · x1
[Tlseq(x1)] = 1 · x1
[SRcase(x1)] = 1 · x1
[SRseq(x1)] = 1 · x1
[Answer] = 0
the rules
Tllet(SRlbeta(x)) SRlbeta(Tllet(x))
Tllet(SRcp(x)) SRcp(Tllet(x))
Tllet(SRllet(x)) SRllet(Tllet(x))
Tllet(SRlapp(x)) SRlapp(Tllet(x))
Tllet(SRlapp(x)) SRlapp(Tlapp(Tllet(x)))
Tllet(SRlcase(x)) SRlcase(Tllet(x))
Tllet(SRlcase(x)) SRlcase(Tlcase(Tllet(x)))
Tllet(SRlseq(x)) SRlseq(Tllet(x))
Tllet(SRlseq(x)) SRlseq(Tlseq(Tllet(x)))
Tllet(SRcase(x)) SRcase(Tllet(x))
Tllet(SRseq(x)) SRseq(Tllet(x))
Tlapp(SRlbeta(x)) SRlbeta(Tlapp(x))
Tlapp(SRlbeta(x)) SRlapp(SRlbeta(x))
Tlapp(SRcp(x)) SRcp(Tlapp(x))
Tlapp(SRcp(x)) SRlapp(SRcp(x))
Tlapp(SRllet(x)) SRllet(Tlapp(x))
Tlapp(SRllet(x)) SRlapp(SRllet(x))
Tlapp(SRlapp(x)) SRlapp(Tlapp(x))
Tlapp(SRlapp(x)) SRlapp(SRlapp(x))
Tlapp(SRlcase(x)) SRlcase(Tlapp(x))
Tlapp(SRlcase(x)) SRlapp(SRlcase(x))
Tlapp(SRlseq(x)) SRlseq(Tlapp(x))
Tlapp(SRlseq(x)) SRlapp(SRlseq(x))
Tlapp(SRcase(x)) SRcase(Tlapp(x))
Tlapp(SRcase(x)) SRcase(x)
Tlapp(SRcase(x)) SRlapp(SRcase(x))
Tlapp(SRcase(x)) SRcase(SRlapp(x))
Tlapp(SRseq(x)) SRseq(Tlapp(x))
Tlapp(SRseq(x)) SRseq(x)
Tlapp(SRseq(x)) SRlapp(SRseq(x))
Tlapp(SRseq(x)) SRseq(SRlapp(x))
Tlapp(Answer) Answer
Tlcase(SRlbeta(x)) SRlbeta(Tlcase(x))
Tlcase(SRlbeta(x)) SRlcase(SRlbeta(x))
Tlcase(SRcp(x)) SRcp(Tlcase(x))
Tlcase(SRcp(x)) SRlcase(SRcp(x))
Tlcase(SRllet(x)) SRllet(Tlcase(x))
Tlcase(SRllet(x)) SRlcase(SRllet(x))
Tlcase(SRlapp(x)) SRlapp(Tlcase(x))
Tlcase(SRlapp(x)) SRlcase(SRlapp(x))
Tlcase(SRlcase(x)) SRlcase(Tlcase(x))
Tlcase(SRlcase(x)) SRlcase(SRlcase(x))
Tlcase(SRlseq(x)) SRlseq(Tlcase(x))
Tlcase(SRlseq(x)) SRlcase(SRlseq(x))
Tlcase(SRcase(x)) SRcase(Tlcase(x))
Tlcase(SRcase(x)) SRcase(x)
Tlcase(SRcase(x)) SRlcase(SRcase(x))
Tlcase(SRcase(x)) SRcase(SRlcase(x))
Tlcase(SRseq(x)) SRseq(Tlcase(x))
Tlcase(SRseq(x)) SRseq(x)
Tlcase(SRseq(x)) SRlcase(SRseq(x))
Tlcase(SRseq(x)) SRseq(SRlcase(x))
Tlcase(Answer) Answer
Tlseq(SRlbeta(x)) SRlbeta(Tlseq(x))
Tlseq(SRlbeta(x)) SRlseq(SRlbeta(x))
Tlseq(SRcp(x)) SRcp(Tlseq(x))
Tlseq(SRcp(x)) SRlseq(SRcp(x))
Tlseq(SRllet(x)) SRllet(Tlseq(x))
Tlseq(SRllet(x)) SRlseq(SRllet(x))
Tlseq(SRlapp(x)) SRlapp(Tlseq(x))
Tlseq(SRlapp(x)) SRlseq(SRlapp(x))
Tlseq(SRlcase(x)) SRlcase(Tlseq(x))
Tlseq(SRlcase(x)) SRlseq(SRlcase(x))
Tlseq(SRlseq(x)) SRlseq(Tlseq(x))
Tlseq(SRlseq(x)) SRlseq(SRlseq(x))
Tlseq(SRcase(x)) SRcase(Tlseq(x))
Tlseq(SRcase(x)) SRcase(x)
Tlseq(SRcase(x)) SRlseq(SRcase(x))
Tlseq(SRcase(x)) SRcase(SRlseq(x))
Tlseq(SRseq(x)) SRseq(Tlseq(x))
Tlseq(SRseq(x)) SRseq(x)
Tlseq(SRseq(x)) SRlseq(SRseq(x))
Tlseq(SRseq(x)) SRseq(SRlseq(x))
Tlseq(Answer) Answer
remain.

1.1.1.1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
Tllet#(SRlbeta(x)) Tllet#(x)
Tllet#(SRcp(x)) Tllet#(x)
Tllet#(SRllet(x)) Tllet#(x)
Tllet#(SRlapp(x)) Tllet#(x)
Tllet#(SRlapp(x)) Tlapp#(Tllet(x))
Tllet#(SRlcase(x)) Tllet#(x)
Tllet#(SRlcase(x)) Tlcase#(Tllet(x))
Tllet#(SRlseq(x)) Tllet#(x)
Tllet#(SRlseq(x)) Tlseq#(Tllet(x))
Tllet#(SRcase(x)) Tllet#(x)
Tllet#(SRseq(x)) Tllet#(x)
Tlapp#(SRlbeta(x)) Tlapp#(x)
Tlapp#(SRcp(x)) Tlapp#(x)
Tlapp#(SRllet(x)) Tlapp#(x)
Tlapp#(SRlapp(x)) Tlapp#(x)
Tlapp#(SRlcase(x)) Tlapp#(x)
Tlapp#(SRlseq(x)) Tlapp#(x)
Tlapp#(SRcase(x)) Tlapp#(x)
Tlapp#(SRseq(x)) Tlapp#(x)
Tlcase#(SRlbeta(x)) Tlcase#(x)
Tlcase#(SRcp(x)) Tlcase#(x)
Tlcase#(SRllet(x)) Tlcase#(x)
Tlcase#(SRlapp(x)) Tlcase#(x)
Tlcase#(SRlcase(x)) Tlcase#(x)
Tlcase#(SRlseq(x)) Tlcase#(x)
Tlcase#(SRcase(x)) Tlcase#(x)
Tlcase#(SRseq(x)) Tlcase#(x)
Tlseq#(SRlbeta(x)) Tlseq#(x)
Tlseq#(SRcp(x)) Tlseq#(x)
Tlseq#(SRllet(x)) Tlseq#(x)
Tlseq#(SRlapp(x)) Tlseq#(x)
Tlseq#(SRlcase(x)) Tlseq#(x)
Tlseq#(SRlseq(x)) Tlseq#(x)
Tlseq#(SRcase(x)) Tlseq#(x)
Tlseq#(SRseq(x)) Tlseq#(x)

1.1.1.1.1 Dependency Graph Processor

The dependency pairs are split into 4 components.