Termination Proof

by AProVE (version ba869e7b28377cd372aedcb96abeb62c4ad6aaa5 rene 20130719 unpublished dirty )

Input

The rewrite relation of the following TRS is considered.

Tcpx(SRlbeta(x)) SRlbeta(Tcpx(x))
Tcpx(SRcp(x)) SRcp(Tcpx(x))
Tcpx(SRcp(x)) SRcp(x)
Tcpx(SRllet(x)) SRllet(Tcpx(x))
Tcpx(SRlapp(x)) SRlapp(Tcpx(x))
Tcpx(SRlcase(x)) SRlcase(Tcpx(x))
Tcpx(SRlseq(x)) SRlseq(Tcpx(x))
Tcpx(SRcase(x)) SRcase(Tcpx(x))
Tcpx(SRcase(x)) SRcase(x)
Tcpx(SRseq(x)) SRseq(Tcpx(x))
Tcpx(SRseq(x)) SRseq(x)
Tcpx(Answer) Answer
Tcpx(SRcp(x)) SRcp(Tcpx(Tcpx(x)))
SRlll(x) SRlseq(x)
SRlll(x) SRlapp(x)
SRlll(x) SRllet(x)
SRlll(x) SRlcase(x)
The evaluation strategy is innermost.

Proof

1 Rule Removal

Using the linear polynomial interpretation over the naturals
[Tcpx(x1)] = 1 · x1
[SRlbeta(x1)] = 1 · x1
[SRcp(x1)] = 1 · x1
[SRllet(x1)] = 1 · x1
[SRlapp(x1)] = 1 · x1
[SRlcase(x1)] = 1 · x1
[SRlseq(x1)] = 1 · x1
[SRcase(x1)] = 1 · x1
[SRseq(x1)] = 1 · x1
[Answer] = 0
[SRlll(x1)] = 1 · x1 + 1
the rules
Tcpx(SRlbeta(x)) SRlbeta(Tcpx(x))
Tcpx(SRcp(x)) SRcp(Tcpx(x))
Tcpx(SRcp(x)) SRcp(x)
Tcpx(SRllet(x)) SRllet(Tcpx(x))
Tcpx(SRlapp(x)) SRlapp(Tcpx(x))
Tcpx(SRlcase(x)) SRlcase(Tcpx(x))
Tcpx(SRlseq(x)) SRlseq(Tcpx(x))
Tcpx(SRcase(x)) SRcase(Tcpx(x))
Tcpx(SRcase(x)) SRcase(x)
Tcpx(SRseq(x)) SRseq(Tcpx(x))
Tcpx(SRseq(x)) SRseq(x)
Tcpx(Answer) Answer
Tcpx(SRcp(x)) SRcp(Tcpx(Tcpx(x)))
remain.

1.1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
Tcpx#(SRlbeta(x)) Tcpx#(x)
Tcpx#(SRcp(x)) Tcpx#(x)
Tcpx#(SRllet(x)) Tcpx#(x)
Tcpx#(SRlapp(x)) Tcpx#(x)
Tcpx#(SRlcase(x)) Tcpx#(x)
Tcpx#(SRlseq(x)) Tcpx#(x)
Tcpx#(SRcase(x)) Tcpx#(x)
Tcpx#(SRseq(x)) Tcpx#(x)
Tcpx#(SRcp(x)) Tcpx#(Tcpx(x))

1.1.1 Innermost Lhss Removal Processor

We restrict the innermost strategy to the following left hand sides.

Tcpx(SRlbeta(x0))
Tcpx(SRcp(x0))
Tcpx(SRllet(x0))
Tcpx(SRlapp(x0))
Tcpx(SRlcase(x0))
Tcpx(SRlseq(x0))
Tcpx(SRcase(x0))
Tcpx(SRseq(x0))
Tcpx(Answer)

1.1.1.1 Reduction Pair Processor

Using the linear polynomial interpretation over the naturals
[Tcpx#(x1)] = 1 · x1
[SRlbeta(x1)] = 1 + 1 · x1
[SRcp(x1)] = 1 · x1
[SRllet(x1)] = 1 + 1 · x1
[SRlapp(x1)] = 1 + 1 · x1
[SRlcase(x1)] = 1 + 1 · x1
[SRlseq(x1)] = 1 + 1 · x1
[SRcase(x1)] = 1 + 1 · x1
[SRseq(x1)] = 1 + 1 · x1
[Tcpx(x1)] = 1 · x1
[Answer] = 1
the pairs
Tcpx#(SRcp(x)) Tcpx#(x)
Tcpx#(SRcp(x)) Tcpx#(Tcpx(x))
remain.

1.1.1.1.1 Reduction Pair Processor

Using the linear polynomial interpretation over the naturals
[Tcpx#(x1)] = 1 · x1
[SRcp(x1)] = 1 + 1 · x1
[Tcpx(x1)] = 1 · x1
[SRlbeta(x1)] = 1 + 1 · x1
[SRllet(x1)] = 1 + 1 · x1
[SRlapp(x1)] = 1 + 1 · x1
[SRlcase(x1)] = 1 + 1 · x1
[SRlseq(x1)] = 1 + 1 · x1
[SRcase(x1)] = 1 + 1 · x1
[SRseq(x1)] = 1 + 1 · x1
[Answer] = 1
all pairs could be removed.

1.1.1.1.1.1 P is empty

There are no pairs anymore.