NO
0 QTRS
↳1 DependencyPairsProof (⇔, 5 ms)
↳2 QDP
↳3 DependencyGraphProof (⇔, 0 ms)
↳4 AND
↳5 QDP
↳6 UsableRulesProof (⇔, 0 ms)
↳7 QDP
↳8 NonTerminationLoopProof (⇒, 489 ms)
↳9 NO
↳10 QDP
↳11 UsableRulesProof (⇔, 0 ms)
↳12 QDP
↳13 QDPSizeChangeProof (⇔, 0 ms)
↳14 YES
↳15 QDP
↳16 UsableRulesProof (⇔, 0 ms)
↳17 QDP
↳18 QDPSizeChangeProof (⇔, 0 ms)
↳19 YES
↳20 QDP
↳21 UsableRulesProof (⇔, 0 ms)
↳22 QDP
↳23 QDPSizeChangeProof (⇔, 0 ms)
↳24 YES
↳25 QDP
↳26 UsableRulesProof (⇔, 0 ms)
↳27 QDP
Begin(b(b(x))) → Wait(Right1(x))
Begin(b(x)) → Wait(Right2(x))
Begin(a(x)) → Wait(Right3(x))
Right1(b(End(x))) → Left(a(a(End(x))))
Right2(b(b(End(x)))) → Left(a(a(End(x))))
Right3(a(End(x))) → Left(b(a(b(End(x)))))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Ab(Left(x)) → Left(b(x))
Aa(Left(x)) → Left(a(x))
Wait(Left(x)) → Begin(x)
b(b(b(x))) → a(a(x))
a(a(x)) → b(a(b(x)))
BEGIN(b(b(x))) → WAIT(Right1(x))
BEGIN(b(b(x))) → RIGHT1(x)
BEGIN(b(x)) → WAIT(Right2(x))
BEGIN(b(x)) → RIGHT2(x)
BEGIN(a(x)) → WAIT(Right3(x))
BEGIN(a(x)) → RIGHT3(x)
RIGHT1(b(End(x))) → A(a(End(x)))
RIGHT1(b(End(x))) → A(End(x))
RIGHT2(b(b(End(x)))) → A(a(End(x)))
RIGHT2(b(b(End(x)))) → A(End(x))
RIGHT3(a(End(x))) → B(a(b(End(x))))
RIGHT3(a(End(x))) → A(b(End(x)))
RIGHT3(a(End(x))) → B(End(x))
RIGHT1(b(x)) → AB(Right1(x))
RIGHT1(b(x)) → RIGHT1(x)
RIGHT2(b(x)) → AB(Right2(x))
RIGHT2(b(x)) → RIGHT2(x)
RIGHT3(b(x)) → AB(Right3(x))
RIGHT3(b(x)) → RIGHT3(x)
RIGHT1(a(x)) → AA(Right1(x))
RIGHT1(a(x)) → RIGHT1(x)
RIGHT2(a(x)) → AA(Right2(x))
RIGHT2(a(x)) → RIGHT2(x)
RIGHT3(a(x)) → AA(Right3(x))
RIGHT3(a(x)) → RIGHT3(x)
AB(Left(x)) → B(x)
AA(Left(x)) → A(x)
WAIT(Left(x)) → BEGIN(x)
B(b(b(x))) → A(a(x))
B(b(b(x))) → A(x)
A(a(x)) → B(a(b(x)))
A(a(x)) → A(b(x))
A(a(x)) → B(x)
Begin(b(b(x))) → Wait(Right1(x))
Begin(b(x)) → Wait(Right2(x))
Begin(a(x)) → Wait(Right3(x))
Right1(b(End(x))) → Left(a(a(End(x))))
Right2(b(b(End(x)))) → Left(a(a(End(x))))
Right3(a(End(x))) → Left(b(a(b(End(x)))))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Ab(Left(x)) → Left(b(x))
Aa(Left(x)) → Left(a(x))
Wait(Left(x)) → Begin(x)
b(b(b(x))) → a(a(x))
a(a(x)) → b(a(b(x)))
A(a(x)) → B(a(b(x)))
B(b(b(x))) → A(a(x))
A(a(x)) → A(b(x))
A(a(x)) → B(x)
B(b(b(x))) → A(x)
Begin(b(b(x))) → Wait(Right1(x))
Begin(b(x)) → Wait(Right2(x))
Begin(a(x)) → Wait(Right3(x))
Right1(b(End(x))) → Left(a(a(End(x))))
Right2(b(b(End(x)))) → Left(a(a(End(x))))
Right3(a(End(x))) → Left(b(a(b(End(x)))))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Ab(Left(x)) → Left(b(x))
Aa(Left(x)) → Left(a(x))
Wait(Left(x)) → Begin(x)
b(b(b(x))) → a(a(x))
a(a(x)) → b(a(b(x)))
A(a(x)) → B(a(b(x)))
B(b(b(x))) → A(a(x))
A(a(x)) → A(b(x))
A(a(x)) → B(x)
B(b(b(x))) → A(x)
a(a(x)) → b(a(b(x)))
b(b(b(x))) → a(a(x))
RIGHT3(a(x)) → RIGHT3(x)
RIGHT3(b(x)) → RIGHT3(x)
Begin(b(b(x))) → Wait(Right1(x))
Begin(b(x)) → Wait(Right2(x))
Begin(a(x)) → Wait(Right3(x))
Right1(b(End(x))) → Left(a(a(End(x))))
Right2(b(b(End(x)))) → Left(a(a(End(x))))
Right3(a(End(x))) → Left(b(a(b(End(x)))))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Ab(Left(x)) → Left(b(x))
Aa(Left(x)) → Left(a(x))
Wait(Left(x)) → Begin(x)
b(b(b(x))) → a(a(x))
a(a(x)) → b(a(b(x)))
RIGHT3(a(x)) → RIGHT3(x)
RIGHT3(b(x)) → RIGHT3(x)
From the DPs we obtained the following set of size-change graphs:
RIGHT2(a(x)) → RIGHT2(x)
RIGHT2(b(x)) → RIGHT2(x)
Begin(b(b(x))) → Wait(Right1(x))
Begin(b(x)) → Wait(Right2(x))
Begin(a(x)) → Wait(Right3(x))
Right1(b(End(x))) → Left(a(a(End(x))))
Right2(b(b(End(x)))) → Left(a(a(End(x))))
Right3(a(End(x))) → Left(b(a(b(End(x)))))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Ab(Left(x)) → Left(b(x))
Aa(Left(x)) → Left(a(x))
Wait(Left(x)) → Begin(x)
b(b(b(x))) → a(a(x))
a(a(x)) → b(a(b(x)))
RIGHT2(a(x)) → RIGHT2(x)
RIGHT2(b(x)) → RIGHT2(x)
From the DPs we obtained the following set of size-change graphs:
RIGHT1(a(x)) → RIGHT1(x)
RIGHT1(b(x)) → RIGHT1(x)
Begin(b(b(x))) → Wait(Right1(x))
Begin(b(x)) → Wait(Right2(x))
Begin(a(x)) → Wait(Right3(x))
Right1(b(End(x))) → Left(a(a(End(x))))
Right2(b(b(End(x)))) → Left(a(a(End(x))))
Right3(a(End(x))) → Left(b(a(b(End(x)))))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Ab(Left(x)) → Left(b(x))
Aa(Left(x)) → Left(a(x))
Wait(Left(x)) → Begin(x)
b(b(b(x))) → a(a(x))
a(a(x)) → b(a(b(x)))
RIGHT1(a(x)) → RIGHT1(x)
RIGHT1(b(x)) → RIGHT1(x)
From the DPs we obtained the following set of size-change graphs:
WAIT(Left(x)) → BEGIN(x)
BEGIN(b(b(x))) → WAIT(Right1(x))
BEGIN(b(x)) → WAIT(Right2(x))
BEGIN(a(x)) → WAIT(Right3(x))
Begin(b(b(x))) → Wait(Right1(x))
Begin(b(x)) → Wait(Right2(x))
Begin(a(x)) → Wait(Right3(x))
Right1(b(End(x))) → Left(a(a(End(x))))
Right2(b(b(End(x)))) → Left(a(a(End(x))))
Right3(a(End(x))) → Left(b(a(b(End(x)))))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Ab(Left(x)) → Left(b(x))
Aa(Left(x)) → Left(a(x))
Wait(Left(x)) → Begin(x)
b(b(b(x))) → a(a(x))
a(a(x)) → b(a(b(x)))
WAIT(Left(x)) → BEGIN(x)
BEGIN(b(b(x))) → WAIT(Right1(x))
BEGIN(b(x)) → WAIT(Right2(x))
BEGIN(a(x)) → WAIT(Right3(x))
Right3(a(End(x))) → Left(b(a(b(End(x)))))
Right3(b(x)) → Ab(Right3(x))
Right3(a(x)) → Aa(Right3(x))
Aa(Left(x)) → Left(a(x))
a(a(x)) → b(a(b(x)))
b(b(b(x))) → a(a(x))
Ab(Left(x)) → Left(b(x))
Right2(b(b(End(x)))) → Left(a(a(End(x))))
Right2(b(x)) → Ab(Right2(x))
Right2(a(x)) → Aa(Right2(x))
Right1(b(End(x))) → Left(a(a(End(x))))
Right1(b(x)) → Ab(Right1(x))
Right1(a(x)) → Aa(Right1(x))