YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
b(a(a(x0))) |
→ |
a(b(c(x0))) |
c(a(x0)) |
→ |
a(c(x0)) |
b(c(a(x0))) |
→ |
a(b(c(x0))) |
c(b(x0)) |
→ |
d(x0) |
d(x0) |
→ |
b(a(x0)) |
a(d(x0)) |
→ |
d(a(x0)) |
a(a(x0)) |
→ |
a(b(a(x0))) |
Proof
1 Dependency Pair Transformation
The following set of initial dependency pairs has been identified.
b#(a(a(x0))) |
→ |
c#(x0) |
b#(a(a(x0))) |
→ |
b#(c(x0)) |
b#(a(a(x0))) |
→ |
a#(b(c(x0))) |
c#(a(x0)) |
→ |
c#(x0) |
c#(a(x0)) |
→ |
a#(c(x0)) |
b#(c(a(x0))) |
→ |
c#(x0) |
b#(c(a(x0))) |
→ |
b#(c(x0)) |
b#(c(a(x0))) |
→ |
a#(b(c(x0))) |
c#(b(x0)) |
→ |
d#(x0) |
d#(x0) |
→ |
a#(x0) |
d#(x0) |
→ |
b#(a(x0)) |
a#(d(x0)) |
→ |
a#(x0) |
a#(d(x0)) |
→ |
d#(a(x0)) |
a#(a(x0)) |
→ |
b#(a(x0)) |
a#(a(x0)) |
→ |
a#(b(a(x0))) |
1.1 Reduction Pair Processor with Usable Rules
Using the linear polynomial interpretation over the arctic semiring over the integers
[b#(x1)] |
= |
0 ·
x1 +
-∞
|
[b(x1)] |
= |
0 ·
x1 +
-∞
|
[d(x1)] |
= |
1 ·
x1 +
-∞
|
[c#(x1)] |
= |
1 ·
x1 +
-∞
|
[a(x1)] |
= |
1 ·
x1 +
-∞
|
[d#(x1)] |
= |
1 ·
x1 +
-∞
|
[a#(x1)] |
= |
1 ·
x1 +
-∞
|
[c(x1)] |
= |
1 ·
x1 +
-∞
|
together with the usable
rules
b(a(a(x0))) |
→ |
a(b(c(x0))) |
c(a(x0)) |
→ |
a(c(x0)) |
b(c(a(x0))) |
→ |
a(b(c(x0))) |
c(b(x0)) |
→ |
d(x0) |
d(x0) |
→ |
b(a(x0)) |
a(d(x0)) |
→ |
d(a(x0)) |
a(a(x0)) |
→ |
a(b(a(x0))) |
(w.r.t. the implicit argument filter of the reduction pair),
the
pairs
b#(a(a(x0))) |
→ |
a#(b(c(x0))) |
c#(a(x0)) |
→ |
a#(c(x0)) |
b#(c(a(x0))) |
→ |
a#(b(c(x0))) |
c#(b(x0)) |
→ |
d#(x0) |
d#(x0) |
→ |
a#(x0) |
d#(x0) |
→ |
b#(a(x0)) |
a#(d(x0)) |
→ |
d#(a(x0)) |
a#(a(x0)) |
→ |
a#(b(a(x0))) |
remain.
1.1.1 Dependency Graph Processor
The dependency pairs are split into 2
components.