YES
0 QTRS
↳1 QTRS Reverse (⇔, 0 ms)
↳2 QTRS
↳3 FlatCCProof (⇔, 0 ms)
↳4 QTRS
↳5 RootLabelingProof (⇔, 0 ms)
↳6 QTRS
↳7 QTRSRRRProof (⇔, 45 ms)
↳8 QTRS
↳9 DependencyPairsProof (⇔, 22 ms)
↳10 QDP
↳11 DependencyGraphProof (⇔, 0 ms)
↳12 AND
↳13 QDP
↳14 UsableRulesProof (⇔, 0 ms)
↳15 QDP
↳16 QDPSizeChangeProof (⇔, 0 ms)
↳17 YES
↳18 QDP
↳19 UsableRulesProof (⇔, 0 ms)
↳20 QDP
↳21 QDPSizeChangeProof (⇔, 0 ms)
↳22 YES
↳23 QDP
↳24 UsableRulesProof (⇔, 0 ms)
↳25 QDP
↳26 QDPSizeChangeProof (⇔, 0 ms)
↳27 YES
↳28 QDP
↳29 UsableRulesProof (⇔, 0 ms)
↳30 QDP
↳31 QDPSizeChangeProof (⇔, 0 ms)
↳32 YES
↳33 QDP
↳34 UsableRulesProof (⇔, 0 ms)
↳35 QDP
↳36 QDPSizeChangeProof (⇔, 0 ms)
↳37 YES
↳38 QDP
↳39 QDPOrderProof (⇔, 58 ms)
↳40 QDP
↳41 UsableRulesProof (⇔, 0 ms)
↳42 QDP
↳43 QDPSizeChangeProof (⇔, 0 ms)
↳44 YES
a(b(c(x))) → c(c(b(b(a(a(x))))))
a(x) → x
b(x) → x
c(x) → x
c(b(a(x))) → a(a(b(b(c(c(x))))))
a(x) → x
b(x) → x
c(x) → x
c(c(b(a(x)))) → c(a(a(b(b(c(c(x)))))))
b(c(b(a(x)))) → b(a(a(b(b(c(c(x)))))))
a(c(b(a(x)))) → a(a(a(b(b(c(c(x)))))))
c(a(x)) → c(x)
b(a(x)) → b(x)
a(a(x)) → a(x)
c(b(x)) → c(x)
b(b(x)) → b(x)
a(b(x)) → a(x)
c(c(x)) → c(x)
b(c(x)) → b(x)
a(c(x)) → a(x)
c_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{c_1}(x)))))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(x)))))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{a_1}(x)))))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{c_1}(x)))))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(x)))))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{a_1}(x)))))))
a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → a_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{c_1}(x)))))))
a_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → a_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(x)))))))
a_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → a_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{a_1}(x)))))))
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
b_{a_1}(a_{c_1}(x)) → b_{c_1}(x)
b_{a_1}(a_{b_1}(x)) → b_{b_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
c_{b_1}(b_{c_1}(x)) → c_{c_1}(x)
c_{b_1}(b_{b_1}(x)) → c_{b_1}(x)
c_{b_1}(b_{a_1}(x)) → c_{a_1}(x)
b_{b_1}(b_{c_1}(x)) → b_{c_1}(x)
b_{b_1}(b_{b_1}(x)) → b_{b_1}(x)
b_{b_1}(b_{a_1}(x)) → b_{a_1}(x)
a_{b_1}(b_{c_1}(x)) → a_{c_1}(x)
a_{b_1}(b_{b_1}(x)) → a_{b_1}(x)
a_{b_1}(b_{a_1}(x)) → a_{a_1}(x)
c_{c_1}(c_{c_1}(x)) → c_{c_1}(x)
c_{c_1}(c_{b_1}(x)) → c_{b_1}(x)
c_{c_1}(c_{a_1}(x)) → c_{a_1}(x)
b_{c_1}(c_{c_1}(x)) → b_{c_1}(x)
b_{c_1}(c_{b_1}(x)) → b_{b_1}(x)
b_{c_1}(c_{a_1}(x)) → b_{a_1}(x)
a_{c_1}(c_{c_1}(x)) → a_{c_1}(x)
a_{c_1}(c_{b_1}(x)) → a_{b_1}(x)
a_{c_1}(c_{a_1}(x)) → a_{a_1}(x)
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(a_{a_1}(x1)) = x1
POL(a_{b_1}(x1)) = x1
POL(a_{c_1}(x1)) = 1 + x1
POL(b_{a_1}(x1)) = 2 + x1
POL(b_{b_1}(x1)) = x1
POL(b_{c_1}(x1)) = 2 + x1
POL(c_{a_1}(x1)) = x1
POL(c_{b_1}(x1)) = x1
POL(c_{c_1}(x1)) = x1
c_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{c_1}(x)))))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{c_1}(x)))))))
a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → a_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{c_1}(x)))))))
a_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → a_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(x)))))))
a_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → a_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{a_1}(x)))))))
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
b_{a_1}(a_{c_1}(x)) → b_{c_1}(x)
b_{a_1}(a_{b_1}(x)) → b_{b_1}(x)
c_{b_1}(b_{c_1}(x)) → c_{c_1}(x)
c_{b_1}(b_{a_1}(x)) → c_{a_1}(x)
a_{b_1}(b_{c_1}(x)) → a_{c_1}(x)
a_{b_1}(b_{a_1}(x)) → a_{a_1}(x)
b_{c_1}(c_{b_1}(x)) → b_{b_1}(x)
a_{c_1}(c_{b_1}(x)) → a_{b_1}(x)
a_{c_1}(c_{a_1}(x)) → a_{a_1}(x)
c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(x)))))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{a_1}(x)))))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(x)))))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{a_1}(x)))))))
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
c_{b_1}(b_{b_1}(x)) → c_{b_1}(x)
b_{b_1}(b_{c_1}(x)) → b_{c_1}(x)
b_{b_1}(b_{b_1}(x)) → b_{b_1}(x)
b_{b_1}(b_{a_1}(x)) → b_{a_1}(x)
a_{b_1}(b_{b_1}(x)) → a_{b_1}(x)
c_{c_1}(c_{c_1}(x)) → c_{c_1}(x)
c_{c_1}(c_{b_1}(x)) → c_{b_1}(x)
c_{c_1}(c_{a_1}(x)) → c_{a_1}(x)
b_{c_1}(c_{c_1}(x)) → b_{c_1}(x)
b_{c_1}(c_{a_1}(x)) → b_{a_1}(x)
a_{c_1}(c_{c_1}(x)) → a_{c_1}(x)
C_{C_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → C_{A_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(x)))))))
C_{C_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → A_{A_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(x))))))
C_{C_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → A_{B_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(x)))))
C_{C_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → B_{B_1}(b_{c_1}(c_{c_1}(c_{b_1}(x))))
C_{C_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → B_{C_1}(c_{c_1}(c_{b_1}(x)))
C_{C_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → C_{C_1}(c_{b_1}(x))
C_{C_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → C_{B_1}(x)
C_{C_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → C_{A_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{a_1}(x)))))))
C_{C_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → A_{A_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{a_1}(x))))))
C_{C_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → A_{B_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{a_1}(x)))))
C_{C_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → B_{B_1}(b_{c_1}(c_{c_1}(c_{a_1}(x))))
C_{C_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → B_{C_1}(c_{c_1}(c_{a_1}(x)))
C_{C_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → C_{C_1}(c_{a_1}(x))
C_{C_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → C_{A_1}(x)
B_{C_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → B_{A_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(x)))))))
B_{C_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → A_{A_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(x))))))
B_{C_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → A_{B_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(x)))))
B_{C_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → B_{B_1}(b_{c_1}(c_{c_1}(c_{b_1}(x))))
B_{C_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → B_{C_1}(c_{c_1}(c_{b_1}(x)))
B_{C_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → C_{C_1}(c_{b_1}(x))
B_{C_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → C_{B_1}(x)
B_{C_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → B_{A_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{a_1}(x)))))))
B_{C_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → A_{A_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{a_1}(x))))))
B_{C_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → A_{B_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{a_1}(x)))))
B_{C_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → B_{B_1}(b_{c_1}(c_{c_1}(c_{a_1}(x))))
B_{C_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → B_{C_1}(c_{c_1}(c_{a_1}(x)))
B_{C_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → C_{C_1}(c_{a_1}(x))
B_{C_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → C_{A_1}(x)
C_{A_1}(a_{b_1}(x)) → C_{B_1}(x)
C_{A_1}(a_{a_1}(x)) → C_{A_1}(x)
B_{A_1}(a_{a_1}(x)) → B_{A_1}(x)
C_{B_1}(b_{b_1}(x)) → C_{B_1}(x)
A_{B_1}(b_{b_1}(x)) → A_{B_1}(x)
B_{C_1}(c_{c_1}(x)) → B_{C_1}(x)
B_{C_1}(c_{a_1}(x)) → B_{A_1}(x)
A_{C_1}(c_{c_1}(x)) → A_{C_1}(x)
c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(x)))))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{a_1}(x)))))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(x)))))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{a_1}(x)))))))
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
c_{b_1}(b_{b_1}(x)) → c_{b_1}(x)
b_{b_1}(b_{c_1}(x)) → b_{c_1}(x)
b_{b_1}(b_{b_1}(x)) → b_{b_1}(x)
b_{b_1}(b_{a_1}(x)) → b_{a_1}(x)
a_{b_1}(b_{b_1}(x)) → a_{b_1}(x)
c_{c_1}(c_{c_1}(x)) → c_{c_1}(x)
c_{c_1}(c_{b_1}(x)) → c_{b_1}(x)
c_{c_1}(c_{a_1}(x)) → c_{a_1}(x)
b_{c_1}(c_{c_1}(x)) → b_{c_1}(x)
b_{c_1}(c_{a_1}(x)) → b_{a_1}(x)
a_{c_1}(c_{c_1}(x)) → a_{c_1}(x)
A_{C_1}(c_{c_1}(x)) → A_{C_1}(x)
c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(x)))))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{a_1}(x)))))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(x)))))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{a_1}(x)))))))
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
c_{b_1}(b_{b_1}(x)) → c_{b_1}(x)
b_{b_1}(b_{c_1}(x)) → b_{c_1}(x)
b_{b_1}(b_{b_1}(x)) → b_{b_1}(x)
b_{b_1}(b_{a_1}(x)) → b_{a_1}(x)
a_{b_1}(b_{b_1}(x)) → a_{b_1}(x)
c_{c_1}(c_{c_1}(x)) → c_{c_1}(x)
c_{c_1}(c_{b_1}(x)) → c_{b_1}(x)
c_{c_1}(c_{a_1}(x)) → c_{a_1}(x)
b_{c_1}(c_{c_1}(x)) → b_{c_1}(x)
b_{c_1}(c_{a_1}(x)) → b_{a_1}(x)
a_{c_1}(c_{c_1}(x)) → a_{c_1}(x)
A_{C_1}(c_{c_1}(x)) → A_{C_1}(x)
From the DPs we obtained the following set of size-change graphs:
A_{B_1}(b_{b_1}(x)) → A_{B_1}(x)
c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(x)))))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{a_1}(x)))))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(x)))))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{a_1}(x)))))))
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
c_{b_1}(b_{b_1}(x)) → c_{b_1}(x)
b_{b_1}(b_{c_1}(x)) → b_{c_1}(x)
b_{b_1}(b_{b_1}(x)) → b_{b_1}(x)
b_{b_1}(b_{a_1}(x)) → b_{a_1}(x)
a_{b_1}(b_{b_1}(x)) → a_{b_1}(x)
c_{c_1}(c_{c_1}(x)) → c_{c_1}(x)
c_{c_1}(c_{b_1}(x)) → c_{b_1}(x)
c_{c_1}(c_{a_1}(x)) → c_{a_1}(x)
b_{c_1}(c_{c_1}(x)) → b_{c_1}(x)
b_{c_1}(c_{a_1}(x)) → b_{a_1}(x)
a_{c_1}(c_{c_1}(x)) → a_{c_1}(x)
A_{B_1}(b_{b_1}(x)) → A_{B_1}(x)
From the DPs we obtained the following set of size-change graphs:
C_{B_1}(b_{b_1}(x)) → C_{B_1}(x)
c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(x)))))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{a_1}(x)))))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(x)))))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{a_1}(x)))))))
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
c_{b_1}(b_{b_1}(x)) → c_{b_1}(x)
b_{b_1}(b_{c_1}(x)) → b_{c_1}(x)
b_{b_1}(b_{b_1}(x)) → b_{b_1}(x)
b_{b_1}(b_{a_1}(x)) → b_{a_1}(x)
a_{b_1}(b_{b_1}(x)) → a_{b_1}(x)
c_{c_1}(c_{c_1}(x)) → c_{c_1}(x)
c_{c_1}(c_{b_1}(x)) → c_{b_1}(x)
c_{c_1}(c_{a_1}(x)) → c_{a_1}(x)
b_{c_1}(c_{c_1}(x)) → b_{c_1}(x)
b_{c_1}(c_{a_1}(x)) → b_{a_1}(x)
a_{c_1}(c_{c_1}(x)) → a_{c_1}(x)
C_{B_1}(b_{b_1}(x)) → C_{B_1}(x)
From the DPs we obtained the following set of size-change graphs:
B_{A_1}(a_{a_1}(x)) → B_{A_1}(x)
c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(x)))))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{a_1}(x)))))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(x)))))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{a_1}(x)))))))
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
c_{b_1}(b_{b_1}(x)) → c_{b_1}(x)
b_{b_1}(b_{c_1}(x)) → b_{c_1}(x)
b_{b_1}(b_{b_1}(x)) → b_{b_1}(x)
b_{b_1}(b_{a_1}(x)) → b_{a_1}(x)
a_{b_1}(b_{b_1}(x)) → a_{b_1}(x)
c_{c_1}(c_{c_1}(x)) → c_{c_1}(x)
c_{c_1}(c_{b_1}(x)) → c_{b_1}(x)
c_{c_1}(c_{a_1}(x)) → c_{a_1}(x)
b_{c_1}(c_{c_1}(x)) → b_{c_1}(x)
b_{c_1}(c_{a_1}(x)) → b_{a_1}(x)
a_{c_1}(c_{c_1}(x)) → a_{c_1}(x)
B_{A_1}(a_{a_1}(x)) → B_{A_1}(x)
From the DPs we obtained the following set of size-change graphs:
C_{A_1}(a_{a_1}(x)) → C_{A_1}(x)
c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(x)))))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{a_1}(x)))))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(x)))))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{a_1}(x)))))))
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
c_{b_1}(b_{b_1}(x)) → c_{b_1}(x)
b_{b_1}(b_{c_1}(x)) → b_{c_1}(x)
b_{b_1}(b_{b_1}(x)) → b_{b_1}(x)
b_{b_1}(b_{a_1}(x)) → b_{a_1}(x)
a_{b_1}(b_{b_1}(x)) → a_{b_1}(x)
c_{c_1}(c_{c_1}(x)) → c_{c_1}(x)
c_{c_1}(c_{b_1}(x)) → c_{b_1}(x)
c_{c_1}(c_{a_1}(x)) → c_{a_1}(x)
b_{c_1}(c_{c_1}(x)) → b_{c_1}(x)
b_{c_1}(c_{a_1}(x)) → b_{a_1}(x)
a_{c_1}(c_{c_1}(x)) → a_{c_1}(x)
C_{A_1}(a_{a_1}(x)) → C_{A_1}(x)
From the DPs we obtained the following set of size-change graphs:
C_{C_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → B_{C_1}(c_{c_1}(c_{b_1}(x)))
B_{C_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → B_{C_1}(c_{c_1}(c_{b_1}(x)))
B_{C_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → C_{C_1}(c_{b_1}(x))
C_{C_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → C_{C_1}(c_{b_1}(x))
C_{C_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → B_{C_1}(c_{c_1}(c_{a_1}(x)))
B_{C_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → B_{C_1}(c_{c_1}(c_{a_1}(x)))
B_{C_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → C_{C_1}(c_{a_1}(x))
C_{C_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → C_{C_1}(c_{a_1}(x))
B_{C_1}(c_{c_1}(x)) → B_{C_1}(x)
c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(x)))))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{a_1}(x)))))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(x)))))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{a_1}(x)))))))
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
c_{b_1}(b_{b_1}(x)) → c_{b_1}(x)
b_{b_1}(b_{c_1}(x)) → b_{c_1}(x)
b_{b_1}(b_{b_1}(x)) → b_{b_1}(x)
b_{b_1}(b_{a_1}(x)) → b_{a_1}(x)
a_{b_1}(b_{b_1}(x)) → a_{b_1}(x)
c_{c_1}(c_{c_1}(x)) → c_{c_1}(x)
c_{c_1}(c_{b_1}(x)) → c_{b_1}(x)
c_{c_1}(c_{a_1}(x)) → c_{a_1}(x)
b_{c_1}(c_{c_1}(x)) → b_{c_1}(x)
b_{c_1}(c_{a_1}(x)) → b_{a_1}(x)
a_{c_1}(c_{c_1}(x)) → a_{c_1}(x)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
C_{C_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → B_{C_1}(c_{c_1}(c_{b_1}(x)))
B_{C_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → B_{C_1}(c_{c_1}(c_{b_1}(x)))
B_{C_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → C_{C_1}(c_{b_1}(x))
C_{C_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → C_{C_1}(c_{b_1}(x))
C_{C_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → B_{C_1}(c_{c_1}(c_{a_1}(x)))
B_{C_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → B_{C_1}(c_{c_1}(c_{a_1}(x)))
B_{C_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → C_{C_1}(c_{a_1}(x))
C_{C_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → C_{C_1}(c_{a_1}(x))
POL(B_{C_1}(x1)) = x1
POL(C_{C_1}(x1)) = x1
POL(a_{a_1}(x1)) = x1
POL(a_{b_1}(x1)) = x1
POL(a_{c_1}(x1)) = 1 + x1
POL(b_{a_1}(x1)) = 1 + x1
POL(b_{b_1}(x1)) = x1
POL(b_{c_1}(x1)) = 1 + x1
POL(c_{a_1}(x1)) = x1
POL(c_{b_1}(x1)) = x1
POL(c_{c_1}(x1)) = x1
c_{b_1}(b_{b_1}(x)) → c_{b_1}(x)
c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(x)))))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{a_1}(x)))))))
c_{c_1}(c_{c_1}(x)) → c_{c_1}(x)
c_{c_1}(c_{b_1}(x)) → c_{b_1}(x)
c_{c_1}(c_{a_1}(x)) → c_{a_1}(x)
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
b_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(x)))))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{a_1}(x)))))))
b_{c_1}(c_{c_1}(x)) → b_{c_1}(x)
b_{b_1}(b_{c_1}(x)) → b_{c_1}(x)
b_{b_1}(b_{b_1}(x)) → b_{b_1}(x)
b_{c_1}(c_{a_1}(x)) → b_{a_1}(x)
b_{b_1}(b_{a_1}(x)) → b_{a_1}(x)
a_{b_1}(b_{b_1}(x)) → a_{b_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
a_{c_1}(c_{c_1}(x)) → a_{c_1}(x)
B_{C_1}(c_{c_1}(x)) → B_{C_1}(x)
c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(x)))))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{a_1}(x)))))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(x)))))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(c_{c_1}(c_{a_1}(x)))))))
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
c_{b_1}(b_{b_1}(x)) → c_{b_1}(x)
b_{b_1}(b_{c_1}(x)) → b_{c_1}(x)
b_{b_1}(b_{b_1}(x)) → b_{b_1}(x)
b_{b_1}(b_{a_1}(x)) → b_{a_1}(x)
a_{b_1}(b_{b_1}(x)) → a_{b_1}(x)
c_{c_1}(c_{c_1}(x)) → c_{c_1}(x)
c_{c_1}(c_{b_1}(x)) → c_{b_1}(x)
c_{c_1}(c_{a_1}(x)) → c_{a_1}(x)
b_{c_1}(c_{c_1}(x)) → b_{c_1}(x)
b_{c_1}(c_{a_1}(x)) → b_{a_1}(x)
a_{c_1}(c_{c_1}(x)) → a_{c_1}(x)
B_{C_1}(c_{c_1}(x)) → B_{C_1}(x)
From the DPs we obtained the following set of size-change graphs: