YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
a(x0) |
→ |
b(x0) |
a(a(x0)) |
→ |
a(b(a(x0))) |
a(b(x0)) |
→ |
b(b(b(x0))) |
a(a(a(x0))) |
→ |
a(a(b(a(a(x0))))) |
a(a(b(x0))) |
→ |
a(b(b(a(b(x0))))) |
a(b(a(x0))) |
→ |
b(a(b(b(a(x0))))) |
a(b(b(x0))) |
→ |
b(b(b(b(b(x0))))) |
b(a(x0)) |
→ |
b(b(b(x0))) |
a(b(a(x0))) |
→ |
a(b(b(a(b(x0))))) |
b(a(a(x0))) |
→ |
b(a(b(b(a(x0))))) |
b(b(a(x0))) |
→ |
b(b(b(b(b(x0))))) |
Proof
1 String Reversal
Since only unary symbols occur, one can reverse all terms and obtains the TRS
a(x0) |
→ |
b(x0) |
a(a(x0)) |
→ |
a(b(a(x0))) |
b(a(x0)) |
→ |
b(b(b(x0))) |
a(a(a(x0))) |
→ |
a(a(b(a(a(x0))))) |
b(a(a(x0))) |
→ |
b(a(b(b(a(x0))))) |
a(b(a(x0))) |
→ |
a(b(b(a(b(x0))))) |
b(b(a(x0))) |
→ |
b(b(b(b(b(x0))))) |
a(b(x0)) |
→ |
b(b(b(x0))) |
a(b(a(x0))) |
→ |
b(a(b(b(a(x0))))) |
a(a(b(x0))) |
→ |
a(b(b(a(b(x0))))) |
a(b(b(x0))) |
→ |
b(b(b(b(b(x0))))) |
1.1 Rule Removal
Using the
linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1
over the naturals
[b(x1)] |
= |
·
x1 +
|
[a(x1)] |
= |
·
x1 +
|
the
rules
a(x0) |
→ |
b(x0) |
b(a(x0)) |
→ |
b(b(b(x0))) |
a(b(a(x0))) |
→ |
a(b(b(a(b(x0))))) |
b(b(a(x0))) |
→ |
b(b(b(b(b(x0))))) |
a(b(x0)) |
→ |
b(b(b(x0))) |
a(b(a(x0))) |
→ |
b(a(b(b(a(x0))))) |
a(b(b(x0))) |
→ |
b(b(b(b(b(x0))))) |
remain.
1.1.1 Rule Removal
Using the
linear polynomial interpretation over the arctic semiring over the integers
[b(x1)] |
= |
0 ·
x1 +
-∞
|
[a(x1)] |
= |
1 ·
x1 +
-∞
|
the
rules
a(b(a(x0))) |
→ |
a(b(b(a(b(x0))))) |
a(b(a(x0))) |
→ |
b(a(b(b(a(x0))))) |
remain.
1.1.1.1 String Reversal
Since only unary symbols occur, one can reverse all terms and obtains the TRS
a(b(a(x0))) |
→ |
b(a(b(b(a(x0))))) |
a(b(a(x0))) |
→ |
a(b(b(a(b(x0))))) |
1.1.1.1.1 Bounds
The given TRS is
match-bounded by 0.
This is shown by the following automaton.
-
final states:
{7, 1}
-
transitions:
1 |
→ |
9 |
1 |
→ |
3 |
7 |
→ |
9 |
7 |
→ |
3 |
a0(5) |
→ |
6 |
a0(8) |
→ |
9 |
a0(2) |
→ |
3 |
a0(11) |
→ |
7 |
b0(3) |
→ |
4 |
b0(9) |
→ |
10 |
b0(4) |
→ |
5 |
b0(2) |
→ |
8 |
b0(6) |
→ |
1 |
b0(10) |
→ |
11 |
f20
|
→ |
2 |