YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
a(b(x0)) |
→ |
b(r(x0)) |
r(a(x0)) |
→ |
d(r(x0)) |
r(x0) |
→ |
d(x0) |
d(a(x0)) |
→ |
a(a(d(x0))) |
d(x0) |
→ |
a(x0) |
Proof
1 Dependency Pair Transformation
The following set of initial dependency pairs has been identified.
a#(b(x0)) |
→ |
r#(x0) |
r#(a(x0)) |
→ |
r#(x0) |
r#(a(x0)) |
→ |
d#(r(x0)) |
r#(x0) |
→ |
d#(x0) |
d#(a(x0)) |
→ |
d#(x0) |
d#(a(x0)) |
→ |
a#(d(x0)) |
d#(a(x0)) |
→ |
a#(a(d(x0))) |
d#(x0) |
→ |
a#(x0) |
1.1 Reduction Pair Processor with Usable Rules
Using the linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1
over the arctic semiring over the integers
[a#(x1)] |
= |
·
x1 +
|
[a(x1)] |
= |
·
x1 +
|
[d(x1)] |
= |
·
x1 +
|
[r#(x1)] |
= |
·
x1 +
|
[b(x1)] |
= |
·
x1 +
|
[d#(x1)] |
= |
·
x1 +
|
[r(x1)] |
= |
·
x1 +
|
together with the usable
rules
a(b(x0)) |
→ |
b(r(x0)) |
r(a(x0)) |
→ |
d(r(x0)) |
r(x0) |
→ |
d(x0) |
d(a(x0)) |
→ |
a(a(d(x0))) |
d(x0) |
→ |
a(x0) |
(w.r.t. the implicit argument filter of the reduction pair),
the
pairs
r#(a(x0)) |
→ |
r#(x0) |
r#(a(x0)) |
→ |
d#(r(x0)) |
r#(x0) |
→ |
d#(x0) |
d#(a(x0)) |
→ |
d#(x0) |
d#(a(x0)) |
→ |
a#(d(x0)) |
d#(a(x0)) |
→ |
a#(a(d(x0))) |
d#(x0) |
→ |
a#(x0) |
remain.
1.1.1 Dependency Graph Processor
The dependency pairs are split into 1
component.