YES Termination Proof

Termination Proof

by ttt2 (version ttt2 1.15)

Input

The rewrite relation of the following TRS is considered.

Begin(b(a(x0))) Wait(Right1(x0))
Begin(a(x0)) Wait(Right2(x0))
Begin(b(b(x0))) Wait(Right3(x0))
Begin(b(x0)) Wait(Right4(x0))
Right1(a(End(x0))) Left(a(b(b(a(End(x0))))))
Right2(a(b(End(x0)))) Left(a(b(b(a(End(x0))))))
Right3(b(End(x0))) Left(b(b(End(x0))))
Right4(b(b(End(x0)))) Left(b(b(End(x0))))
Right1(a(x0)) Aa(Right1(x0))
Right2(a(x0)) Aa(Right2(x0))
Right3(a(x0)) Aa(Right3(x0))
Right4(a(x0)) Aa(Right4(x0))
Right1(b(x0)) Ab(Right1(x0))
Right2(b(x0)) Ab(Right2(x0))
Right3(b(x0)) Ab(Right3(x0))
Right4(b(x0)) Ab(Right4(x0))
Aa(Left(x0)) Left(a(x0))
Ab(Left(x0)) Left(b(x0))
Wait(Left(x0)) Begin(x0)
a(b(a(x0))) a(b(b(a(x0))))
b(b(b(x0))) b(b(x0))

Proof

1 Rule Removal

Using the linear polynomial interpretation over (3 x 3)-matrices with strict dimension 1 over the naturals
[Wait(x1)] =
1 0 0
0 0 0
0 0 0
· x1 +
0 0 0
1 0 0
0 0 0
[End(x1)] =
1 0 0
1 0 0
1 0 0
· x1 +
0 0 0
1 0 0
1 0 0
[b(x1)] =
1 1 0
0 0 0
0 0 0
· x1 +
0 0 0
0 0 0
0 0 0
[Right1(x1)] =
1 0 0
0 0 0
0 0 0
· x1 +
0 0 0
0 0 0
0 0 0
[Right2(x1)] =
1 0 0
0 0 0
0 1 0
· x1 +
0 0 0
0 0 0
0 0 0
[Aa(x1)] =
1 0 0
0 0 0
0 0 0
· x1 +
0 0 0
0 0 0
0 0 0
[a(x1)] =
1 0 0
0 0 0
0 0 1
· x1 +
0 0 0
0 0 0
0 0 0
[Right4(x1)] =
1 0 0
0 0 0
0 0 0
· x1 +
0 0 0
0 0 0
0 0 0
[Ab(x1)] =
1 0 1
0 0 0
0 0 0
· x1 +
0 0 0
0 0 0
0 0 0
[Left(x1)] =
1 0 0
0 0 0
0 1 0
· x1 +
0 0 0
0 0 0
0 0 0
[Right3(x1)] =
1 0 0
0 0 0
0 1 0
· x1 +
0 0 0
0 0 0
0 0 0
[Begin(x1)] =
1 0 0
0 0 0
0 0 0
· x1 +
0 0 0
1 0 0
0 0 0
the rules
Begin(b(a(x0))) Wait(Right1(x0))
Begin(a(x0)) Wait(Right2(x0))
Begin(b(b(x0))) Wait(Right3(x0))
Begin(b(x0)) Wait(Right4(x0))
Right1(a(End(x0))) Left(a(b(b(a(End(x0))))))
Right3(b(End(x0))) Left(b(b(End(x0))))
Right4(b(b(End(x0)))) Left(b(b(End(x0))))
Right1(a(x0)) Aa(Right1(x0))
Right2(a(x0)) Aa(Right2(x0))
Right3(a(x0)) Aa(Right3(x0))
Right4(a(x0)) Aa(Right4(x0))
Right1(b(x0)) Ab(Right1(x0))
Right2(b(x0)) Ab(Right2(x0))
Right3(b(x0)) Ab(Right3(x0))
Right4(b(x0)) Ab(Right4(x0))
Aa(Left(x0)) Left(a(x0))
Ab(Left(x0)) Left(b(x0))
Wait(Left(x0)) Begin(x0)
a(b(a(x0))) a(b(b(a(x0))))
b(b(b(x0))) b(b(x0))
remain.

1.1 Rule Removal

Using the linear polynomial interpretation over the arctic semiring over the integers
[Wait(x1)] = 0 · x1 + -∞
[End(x1)] = 1 · x1 + -∞
[b(x1)] = 0 · x1 + -∞
[Right1(x1)] = 1 · x1 + -∞
[Right2(x1)] = 0 · x1 + -∞
[Aa(x1)] = 1 · x1 + -∞
[a(x1)] = 1 · x1 + -∞
[Right4(x1)] = 0 · x1 + -∞
[Ab(x1)] = 0 · x1 + -∞
[Left(x1)] = 0 · x1 + -∞
[Right3(x1)] = 0 · x1 + -∞
[Begin(x1)] = 0 · x1 + -∞
the rules
Begin(b(a(x0))) Wait(Right1(x0))
Begin(b(b(x0))) Wait(Right3(x0))
Begin(b(x0)) Wait(Right4(x0))
Right1(a(End(x0))) Left(a(b(b(a(End(x0))))))
Right3(b(End(x0))) Left(b(b(End(x0))))
Right4(b(b(End(x0)))) Left(b(b(End(x0))))
Right1(a(x0)) Aa(Right1(x0))
Right2(a(x0)) Aa(Right2(x0))
Right3(a(x0)) Aa(Right3(x0))
Right4(a(x0)) Aa(Right4(x0))
Right1(b(x0)) Ab(Right1(x0))
Right2(b(x0)) Ab(Right2(x0))
Right3(b(x0)) Ab(Right3(x0))
Right4(b(x0)) Ab(Right4(x0))
Aa(Left(x0)) Left(a(x0))
Ab(Left(x0)) Left(b(x0))
Wait(Left(x0)) Begin(x0)
a(b(a(x0))) a(b(b(a(x0))))
b(b(b(x0))) b(b(x0))
remain.

1.1.1 String Reversal

Since only unary symbols occur, one can reverse all terms and obtains the TRS
a(b(Begin(x0))) Right1(Wait(x0))
b(b(Begin(x0))) Right3(Wait(x0))
b(Begin(x0)) Right4(Wait(x0))
End(a(Right1(x0))) End(a(b(b(a(Left(x0))))))
End(b(Right3(x0))) End(b(b(Left(x0))))
End(b(b(Right4(x0)))) End(b(b(Left(x0))))
a(Right1(x0)) Right1(Aa(x0))
a(Right2(x0)) Right2(Aa(x0))
a(Right3(x0)) Right3(Aa(x0))
a(Right4(x0)) Right4(Aa(x0))
b(Right1(x0)) Right1(Ab(x0))
b(Right2(x0)) Right2(Ab(x0))
b(Right3(x0)) Right3(Ab(x0))
b(Right4(x0)) Right4(Ab(x0))
Left(Aa(x0)) a(Left(x0))
Left(Ab(x0)) b(Left(x0))
Left(Wait(x0)) Begin(x0)
a(b(a(x0))) a(b(b(a(x0))))
b(b(b(x0))) b(b(x0))

1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[Wait(x1)] = 4 · x1 + 5
[End(x1)] = 1 · x1 + 0
[b(x1)] = 1 · x1 + 0
[Right1(x1)] = 4 · x1 + 0
[Right2(x1)] = 1 · x1 + 1
[Aa(x1)] = 4 · x1 + 0
[a(x1)] = 4 · x1 + 0
[Right4(x1)] = 1 · x1 + 0
[Ab(x1)] = 1 · x1 + 0
[Left(x1)] = 1 · x1 + 0
[Right3(x1)] = 1 · x1 + 0
[Begin(x1)] = 4 · x1 + 5
the rules
a(b(Begin(x0))) Right1(Wait(x0))
b(b(Begin(x0))) Right3(Wait(x0))
b(Begin(x0)) Right4(Wait(x0))
End(a(Right1(x0))) End(a(b(b(a(Left(x0))))))
End(b(Right3(x0))) End(b(b(Left(x0))))
End(b(b(Right4(x0)))) End(b(b(Left(x0))))
a(Right1(x0)) Right1(Aa(x0))
a(Right3(x0)) Right3(Aa(x0))
a(Right4(x0)) Right4(Aa(x0))
b(Right1(x0)) Right1(Ab(x0))
b(Right2(x0)) Right2(Ab(x0))
b(Right3(x0)) Right3(Ab(x0))
b(Right4(x0)) Right4(Ab(x0))
Left(Aa(x0)) a(Left(x0))
Left(Ab(x0)) b(Left(x0))
Left(Wait(x0)) Begin(x0)
a(b(a(x0))) a(b(b(a(x0))))
b(b(b(x0))) b(b(x0))
remain.

1.1.1.1.1 String Reversal

Since only unary symbols occur, one can reverse all terms and obtains the TRS
Begin(b(a(x0))) Wait(Right1(x0))
Begin(b(b(x0))) Wait(Right3(x0))
Begin(b(x0)) Wait(Right4(x0))
Right1(a(End(x0))) Left(a(b(b(a(End(x0))))))
Right3(b(End(x0))) Left(b(b(End(x0))))
Right4(b(b(End(x0)))) Left(b(b(End(x0))))
Right1(a(x0)) Aa(Right1(x0))
Right3(a(x0)) Aa(Right3(x0))
Right4(a(x0)) Aa(Right4(x0))
Right1(b(x0)) Ab(Right1(x0))
Right2(b(x0)) Ab(Right2(x0))
Right3(b(x0)) Ab(Right3(x0))
Right4(b(x0)) Ab(Right4(x0))
Aa(Left(x0)) Left(a(x0))
Ab(Left(x0)) Left(b(x0))
Wait(Left(x0)) Begin(x0)
a(b(a(x0))) a(b(b(a(x0))))
b(b(b(x0))) b(b(x0))

1.1.1.1.1.1 Rule Removal

Using the linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1 over the naturals
[Wait(x1)] =
2 0
2 0
· x1 +
0 0
2 0
[End(x1)] =
1 1
0 0
· x1 +
0 0
3 0
[b(x1)] =
1 0
0 1
· x1 +
0 0
1 0
[Right1(x1)] =
2 0
2 1
· x1 +
0 0
0 0
[Right2(x1)] =
1 1
0 2
· x1 +
1 0
1 0
[Aa(x1)] =
2 0
0 0
· x1 +
0 0
0 0
[a(x1)] =
2 0
0 0
· x1 +
0 0
1 0
[Right4(x1)] =
1 0
0 0
· x1 +
0 0
0 0
[Ab(x1)] =
1 0
0 0
· x1 +
0 0
0 0
[Left(x1)] =
1 0
0 0
· x1 +
0 0
0 0
[Right3(x1)] =
1 0
2 0
· x1 +
0 0
0 0
[Begin(x1)] =
2 0
2 0
· x1 +
0 0
2 0
the rules
Begin(b(a(x0))) Wait(Right1(x0))
Begin(b(b(x0))) Wait(Right3(x0))
Begin(b(x0)) Wait(Right4(x0))
Right1(a(End(x0))) Left(a(b(b(a(End(x0))))))
Right3(b(End(x0))) Left(b(b(End(x0))))
Right4(b(b(End(x0)))) Left(b(b(End(x0))))
Right1(a(x0)) Aa(Right1(x0))
Right3(a(x0)) Aa(Right3(x0))
Right4(a(x0)) Aa(Right4(x0))
Right1(b(x0)) Ab(Right1(x0))
Right3(b(x0)) Ab(Right3(x0))
Right4(b(x0)) Ab(Right4(x0))
Aa(Left(x0)) Left(a(x0))
Ab(Left(x0)) Left(b(x0))
Wait(Left(x0)) Begin(x0)
a(b(a(x0))) a(b(b(a(x0))))
b(b(b(x0))) b(b(x0))
remain.

1.1.1.1.1.1.1 String Reversal

Since only unary symbols occur, one can reverse all terms and obtains the TRS
a(b(Begin(x0))) Right1(Wait(x0))
b(b(Begin(x0))) Right3(Wait(x0))
b(Begin(x0)) Right4(Wait(x0))
End(a(Right1(x0))) End(a(b(b(a(Left(x0))))))
End(b(Right3(x0))) End(b(b(Left(x0))))
End(b(b(Right4(x0)))) End(b(b(Left(x0))))
a(Right1(x0)) Right1(Aa(x0))
a(Right3(x0)) Right3(Aa(x0))
a(Right4(x0)) Right4(Aa(x0))
b(Right1(x0)) Right1(Ab(x0))
b(Right3(x0)) Right3(Ab(x0))
b(Right4(x0)) Right4(Ab(x0))
Left(Aa(x0)) a(Left(x0))
Left(Ab(x0)) b(Left(x0))
Left(Wait(x0)) Begin(x0)
a(b(a(x0))) a(b(b(a(x0))))
b(b(b(x0))) b(b(x0))

1.1.1.1.1.1.1.1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
End#(a(Right1(x0))) Left#(x0)
End#(a(Right1(x0))) a#(Left(x0))
End#(a(Right1(x0))) b#(a(Left(x0)))
End#(a(Right1(x0))) b#(b(a(Left(x0))))
End#(a(Right1(x0))) a#(b(b(a(Left(x0)))))
End#(a(Right1(x0))) End#(a(b(b(a(Left(x0))))))
End#(b(Right3(x0))) Left#(x0)
End#(b(Right3(x0))) b#(Left(x0))
End#(b(Right3(x0))) b#(b(Left(x0)))
End#(b(Right3(x0))) End#(b(b(Left(x0))))
End#(b(b(Right4(x0)))) Left#(x0)
End#(b(b(Right4(x0)))) b#(Left(x0))
End#(b(b(Right4(x0)))) b#(b(Left(x0)))
End#(b(b(Right4(x0)))) End#(b(b(Left(x0))))
Left#(Aa(x0)) Left#(x0)
Left#(Aa(x0)) a#(Left(x0))
Left#(Ab(x0)) Left#(x0)
Left#(Ab(x0)) b#(Left(x0))
a#(b(a(x0))) b#(b(a(x0)))
a#(b(a(x0))) a#(b(b(a(x0))))

1.1.1.1.1.1.1.1.1 Dependency Graph Processor

The dependency pairs are split into 1 component.