NO Termination w.r.t. Q proof of /home/cern_httpd/provide/research/cycsrs/tpdb/TPDB-d9b80194f163/SRS_Standard/Zantema_04/z124.srs-torpacyc2out-split.srs

(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

Begin(a(x)) → Wait(Right1(x))
Begin(y(x)) → Wait(Right2(x))
Begin(q2(a(x))) → Wait(Right3(x))
Begin(a(x)) → Wait(Right4(x))
Begin(q2(y(x))) → Wait(Right5(x))
Begin(y(x)) → Wait(Right6(x))
Begin(q2(a(x))) → Wait(Right7(x))
Begin(a(x)) → Wait(Right8(x))
Begin(q2(y(x))) → Wait(Right9(x))
Begin(y(x)) → Wait(Right10(x))
Begin(y(x)) → Wait(Right11(x))
Right1(q1(End(x))) → Left(a(q1(End(x))))
Right2(q1(End(x))) → Left(y(q1(End(x))))
Right3(a(End(x))) → Left(q2(a(a(End(x)))))
Right4(a(q2(End(x)))) → Left(q2(a(a(End(x)))))
Right5(a(End(x))) → Left(q2(a(y(End(x)))))
Right6(a(q2(End(x)))) → Left(q2(a(y(End(x)))))
Right7(y(End(x))) → Left(q2(y(a(End(x)))))
Right8(y(q2(End(x)))) → Left(q2(y(a(End(x)))))
Right9(y(End(x))) → Left(q2(y(y(End(x)))))
Right10(y(q2(End(x)))) → Left(q2(y(y(End(x)))))
Right11(q3(End(x))) → Left(y(q3(End(x))))
Right1(q1(x)) → Aq1(Right1(x))
Right2(q1(x)) → Aq1(Right2(x))
Right3(q1(x)) → Aq1(Right3(x))
Right4(q1(x)) → Aq1(Right4(x))
Right5(q1(x)) → Aq1(Right5(x))
Right6(q1(x)) → Aq1(Right6(x))
Right7(q1(x)) → Aq1(Right7(x))
Right8(q1(x)) → Aq1(Right8(x))
Right9(q1(x)) → Aq1(Right9(x))
Right10(q1(x)) → Aq1(Right10(x))
Right11(q1(x)) → Aq1(Right11(x))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right4(a(x)) → Aa(Right4(x))
Right5(a(x)) → Aa(Right5(x))
Right6(a(x)) → Aa(Right6(x))
Right7(a(x)) → Aa(Right7(x))
Right8(a(x)) → Aa(Right8(x))
Right9(a(x)) → Aa(Right9(x))
Right10(a(x)) → Aa(Right10(x))
Right11(a(x)) → Aa(Right11(x))
Right1(y(x)) → Ay(Right1(x))
Right2(y(x)) → Ay(Right2(x))
Right3(y(x)) → Ay(Right3(x))
Right4(y(x)) → Ay(Right4(x))
Right5(y(x)) → Ay(Right5(x))
Right6(y(x)) → Ay(Right6(x))
Right7(y(x)) → Ay(Right7(x))
Right8(y(x)) → Ay(Right8(x))
Right9(y(x)) → Ay(Right9(x))
Right10(y(x)) → Ay(Right10(x))
Right11(y(x)) → Ay(Right11(x))
Right1(q2(x)) → Aq2(Right1(x))
Right2(q2(x)) → Aq2(Right2(x))
Right3(q2(x)) → Aq2(Right3(x))
Right4(q2(x)) → Aq2(Right4(x))
Right5(q2(x)) → Aq2(Right5(x))
Right6(q2(x)) → Aq2(Right6(x))
Right7(q2(x)) → Aq2(Right7(x))
Right8(q2(x)) → Aq2(Right8(x))
Right9(q2(x)) → Aq2(Right9(x))
Right10(q2(x)) → Aq2(Right10(x))
Right11(q2(x)) → Aq2(Right11(x))
Right1(q3(x)) → Aq3(Right1(x))
Right2(q3(x)) → Aq3(Right2(x))
Right3(q3(x)) → Aq3(Right3(x))
Right4(q3(x)) → Aq3(Right4(x))
Right5(q3(x)) → Aq3(Right5(x))
Right6(q3(x)) → Aq3(Right6(x))
Right7(q3(x)) → Aq3(Right7(x))
Right8(q3(x)) → Aq3(Right8(x))
Right9(q3(x)) → Aq3(Right9(x))
Right10(q3(x)) → Aq3(Right10(x))
Right11(q3(x)) → Aq3(Right11(x))
Aq1(Left(x)) → Left(q1(x))
Aa(Left(x)) → Left(a(x))
Ay(Left(x)) → Left(y(x))
Aq2(Left(x)) → Left(q2(x))
Aq3(Left(x)) → Left(q3(x))
Wait(Left(x)) → Begin(x)
q1(a(x)) → a(q1(x))
q1(y(x)) → y(q1(x))
a(q2(a(x))) → q2(a(a(x)))
a(q2(y(x))) → q2(a(y(x)))
y(q2(a(x))) → q2(y(a(x)))
y(q2(y(x))) → q2(y(y(x)))
q3(y(x)) → y(q3(x))

Q is empty.

(1) NonTerminationProof (COMPLETE transformation)

We used the non-termination processor [OPPELT08] to show that the SRS problem is infinite.

Found the self-embedding DerivationStructure:
Wait Left y q3 EndWait Left y q3 End

Wait Left y q3 EndWait Left y q3 End
by OverlapClosure OC 2
Wait Left yWait Right11
by OverlapClosure OC 2
Wait LeftBegin
by original rule (OC 1)
Begin yWait Right11
by original rule (OC 1)
Right11 q3 EndLeft y q3 End
by original rule (OC 1)

(2) NO