YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
c(c(c(a(x0)))) |
→ |
d(d(x0)) |
d(b(x0)) |
→ |
c(c(x0)) |
b(c(x0)) |
→ |
b(a(c(x0))) |
c(x0) |
→ |
a(a(x0)) |
d(x0) |
→ |
b(c(x0)) |
Proof
1 Rule Removal
Using the
linear polynomial interpretation over the arctic semiring over the integers
[c(x1)] |
= |
2 ·
x1 +
-∞
|
[b(x1)] |
= |
1 ·
x1 +
-∞
|
[a(x1)] |
= |
0 ·
x1 +
-∞
|
[d(x1)] |
= |
3 ·
x1 +
-∞
|
the
rules
c(c(c(a(x0)))) |
→ |
d(d(x0)) |
d(b(x0)) |
→ |
c(c(x0)) |
b(c(x0)) |
→ |
b(a(c(x0))) |
d(x0) |
→ |
b(c(x0)) |
remain.
1.1 String Reversal
Since only unary symbols occur, one can reverse all terms and obtains the TRS
a(c(c(c(x0)))) |
→ |
d(d(x0)) |
b(d(x0)) |
→ |
c(c(x0)) |
c(b(x0)) |
→ |
c(a(b(x0))) |
d(x0) |
→ |
c(b(x0)) |
1.1.1 Dependency Pair Transformation
The following set of initial dependency pairs has been identified.
a#(c(c(c(x0)))) |
→ |
d#(x0) |
a#(c(c(c(x0)))) |
→ |
d#(d(x0)) |
b#(d(x0)) |
→ |
c#(x0) |
b#(d(x0)) |
→ |
c#(c(x0)) |
c#(b(x0)) |
→ |
a#(b(x0)) |
c#(b(x0)) |
→ |
c#(a(b(x0))) |
d#(x0) |
→ |
b#(x0) |
d#(x0) |
→ |
c#(b(x0)) |
1.1.1.1 Dependency Graph Processor
The dependency pairs are split into 1
component.