(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
Begin(c(c(a(x)))) → Wait(Right1(x))
Begin(c(a(x))) → Wait(Right2(x))
Begin(a(x)) → Wait(Right3(x))
Begin(b(x)) → Wait(Right4(x))
Begin(c(x)) → Wait(Right5(x))
Right1(c(End(x))) → Left(d(d(End(x))))
Right2(c(c(End(x)))) → Left(d(d(End(x))))
Right3(c(c(c(End(x))))) → Left(d(d(End(x))))
Right4(d(End(x))) → Left(c(c(End(x))))
Right5(b(End(x))) → Left(b(a(c(End(x)))))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Right4(c(x)) → Ac(Right4(x))
Right5(c(x)) → Ac(Right5(x))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right4(a(x)) → Aa(Right4(x))
Right5(a(x)) → Aa(Right5(x))
Right1(d(x)) → Ad(Right1(x))
Right2(d(x)) → Ad(Right2(x))
Right3(d(x)) → Ad(Right3(x))
Right4(d(x)) → Ad(Right4(x))
Right5(d(x)) → Ad(Right5(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right4(b(x)) → Ab(Right4(x))
Right5(b(x)) → Ab(Right5(x))
Ac(Left(x)) → Left(c(x))
Aa(Left(x)) → Left(a(x))
Ad(Left(x)) → Left(d(x))
Ab(Left(x)) → Left(b(x))
Wait(Left(x)) → Begin(x)
c(c(c(a(x)))) → d(d(x))
d(b(x)) → c(c(x))
b(c(x)) → b(a(c(x)))
d(x) → b(c(x))
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
BEGIN(c(c(a(x)))) → WAIT(Right1(x))
BEGIN(c(c(a(x)))) → RIGHT1(x)
BEGIN(c(a(x))) → WAIT(Right2(x))
BEGIN(c(a(x))) → RIGHT2(x)
BEGIN(a(x)) → WAIT(Right3(x))
BEGIN(a(x)) → RIGHT3(x)
BEGIN(b(x)) → WAIT(Right4(x))
BEGIN(b(x)) → RIGHT4(x)
BEGIN(c(x)) → WAIT(Right5(x))
BEGIN(c(x)) → RIGHT5(x)
RIGHT1(c(End(x))) → D(d(End(x)))
RIGHT1(c(End(x))) → D(End(x))
RIGHT2(c(c(End(x)))) → D(d(End(x)))
RIGHT2(c(c(End(x)))) → D(End(x))
RIGHT3(c(c(c(End(x))))) → D(d(End(x)))
RIGHT3(c(c(c(End(x))))) → D(End(x))
RIGHT4(d(End(x))) → C(c(End(x)))
RIGHT4(d(End(x))) → C(End(x))
RIGHT5(b(End(x))) → B(a(c(End(x))))
RIGHT5(b(End(x))) → C(End(x))
RIGHT1(c(x)) → AC(Right1(x))
RIGHT1(c(x)) → RIGHT1(x)
RIGHT2(c(x)) → AC(Right2(x))
RIGHT2(c(x)) → RIGHT2(x)
RIGHT3(c(x)) → AC(Right3(x))
RIGHT3(c(x)) → RIGHT3(x)
RIGHT4(c(x)) → AC(Right4(x))
RIGHT4(c(x)) → RIGHT4(x)
RIGHT5(c(x)) → AC(Right5(x))
RIGHT5(c(x)) → RIGHT5(x)
RIGHT1(a(x)) → AA(Right1(x))
RIGHT1(a(x)) → RIGHT1(x)
RIGHT2(a(x)) → AA(Right2(x))
RIGHT2(a(x)) → RIGHT2(x)
RIGHT3(a(x)) → AA(Right3(x))
RIGHT3(a(x)) → RIGHT3(x)
RIGHT4(a(x)) → AA(Right4(x))
RIGHT4(a(x)) → RIGHT4(x)
RIGHT5(a(x)) → AA(Right5(x))
RIGHT5(a(x)) → RIGHT5(x)
RIGHT1(d(x)) → AD(Right1(x))
RIGHT1(d(x)) → RIGHT1(x)
RIGHT2(d(x)) → AD(Right2(x))
RIGHT2(d(x)) → RIGHT2(x)
RIGHT3(d(x)) → AD(Right3(x))
RIGHT3(d(x)) → RIGHT3(x)
RIGHT4(d(x)) → AD(Right4(x))
RIGHT4(d(x)) → RIGHT4(x)
RIGHT5(d(x)) → AD(Right5(x))
RIGHT5(d(x)) → RIGHT5(x)
RIGHT1(b(x)) → AB(Right1(x))
RIGHT1(b(x)) → RIGHT1(x)
RIGHT2(b(x)) → AB(Right2(x))
RIGHT2(b(x)) → RIGHT2(x)
RIGHT3(b(x)) → AB(Right3(x))
RIGHT3(b(x)) → RIGHT3(x)
RIGHT4(b(x)) → AB(Right4(x))
RIGHT4(b(x)) → RIGHT4(x)
RIGHT5(b(x)) → AB(Right5(x))
RIGHT5(b(x)) → RIGHT5(x)
AC(Left(x)) → C(x)
AD(Left(x)) → D(x)
AB(Left(x)) → B(x)
WAIT(Left(x)) → BEGIN(x)
C(c(c(a(x)))) → D(d(x))
C(c(c(a(x)))) → D(x)
D(b(x)) → C(c(x))
D(b(x)) → C(x)
B(c(x)) → B(a(c(x)))
D(x) → B(c(x))
D(x) → C(x)
The TRS R consists of the following rules:
Begin(c(c(a(x)))) → Wait(Right1(x))
Begin(c(a(x))) → Wait(Right2(x))
Begin(a(x)) → Wait(Right3(x))
Begin(b(x)) → Wait(Right4(x))
Begin(c(x)) → Wait(Right5(x))
Right1(c(End(x))) → Left(d(d(End(x))))
Right2(c(c(End(x)))) → Left(d(d(End(x))))
Right3(c(c(c(End(x))))) → Left(d(d(End(x))))
Right4(d(End(x))) → Left(c(c(End(x))))
Right5(b(End(x))) → Left(b(a(c(End(x)))))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Right4(c(x)) → Ac(Right4(x))
Right5(c(x)) → Ac(Right5(x))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right4(a(x)) → Aa(Right4(x))
Right5(a(x)) → Aa(Right5(x))
Right1(d(x)) → Ad(Right1(x))
Right2(d(x)) → Ad(Right2(x))
Right3(d(x)) → Ad(Right3(x))
Right4(d(x)) → Ad(Right4(x))
Right5(d(x)) → Ad(Right5(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right4(b(x)) → Ab(Right4(x))
Right5(b(x)) → Ab(Right5(x))
Ac(Left(x)) → Left(c(x))
Aa(Left(x)) → Left(a(x))
Ad(Left(x)) → Left(d(x))
Ab(Left(x)) → Left(b(x))
Wait(Left(x)) → Begin(x)
c(c(c(a(x)))) → d(d(x))
d(b(x)) → c(c(x))
b(c(x)) → b(a(c(x)))
d(x) → b(c(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 7 SCCs with 40 less nodes.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
D(b(x)) → C(c(x))
C(c(c(a(x)))) → D(d(x))
D(b(x)) → C(x)
C(c(c(a(x)))) → D(x)
D(x) → C(x)
The TRS R consists of the following rules:
Begin(c(c(a(x)))) → Wait(Right1(x))
Begin(c(a(x))) → Wait(Right2(x))
Begin(a(x)) → Wait(Right3(x))
Begin(b(x)) → Wait(Right4(x))
Begin(c(x)) → Wait(Right5(x))
Right1(c(End(x))) → Left(d(d(End(x))))
Right2(c(c(End(x)))) → Left(d(d(End(x))))
Right3(c(c(c(End(x))))) → Left(d(d(End(x))))
Right4(d(End(x))) → Left(c(c(End(x))))
Right5(b(End(x))) → Left(b(a(c(End(x)))))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Right4(c(x)) → Ac(Right4(x))
Right5(c(x)) → Ac(Right5(x))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right4(a(x)) → Aa(Right4(x))
Right5(a(x)) → Aa(Right5(x))
Right1(d(x)) → Ad(Right1(x))
Right2(d(x)) → Ad(Right2(x))
Right3(d(x)) → Ad(Right3(x))
Right4(d(x)) → Ad(Right4(x))
Right5(d(x)) → Ad(Right5(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right4(b(x)) → Ab(Right4(x))
Right5(b(x)) → Ab(Right5(x))
Ac(Left(x)) → Left(c(x))
Aa(Left(x)) → Left(a(x))
Ad(Left(x)) → Left(d(x))
Ab(Left(x)) → Left(b(x))
Wait(Left(x)) → Begin(x)
c(c(c(a(x)))) → d(d(x))
d(b(x)) → c(c(x))
b(c(x)) → b(a(c(x)))
d(x) → b(c(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
D(b(x)) → C(c(x))
C(c(c(a(x)))) → D(d(x))
D(b(x)) → C(x)
C(c(c(a(x)))) → D(x)
D(x) → C(x)
The TRS R consists of the following rules:
d(b(x)) → c(c(x))
c(c(c(a(x)))) → d(d(x))
d(x) → b(c(x))
b(c(x)) → b(a(c(x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
D(b(x)) → C(x)
C(c(c(a(x)))) → D(x)
D(x) → C(x)
Used ordering: Polynomial interpretation [POLO]:
POL(C(x1)) = 1 + x1
POL(D(x1)) = 2 + x1
POL(a(x1)) = x1
POL(b(x1)) = 1 + x1
POL(c(x1)) = 2 + x1
POL(d(x1)) = 3 + x1
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
D(b(x)) → C(c(x))
C(c(c(a(x)))) → D(d(x))
The TRS R consists of the following rules:
d(b(x)) → c(c(x))
c(c(c(a(x)))) → d(d(x))
d(x) → b(c(x))
b(c(x)) → b(a(c(x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(10) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
D(b(x)) → C(c(x))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(b(x1)) = | | + | / | -I | 0A | 0A | \ |
| | 0A | -I | 1A | | |
\ | -I | 0A | 0A | / |
| · | x1 |
POL(c(x1)) = | | + | / | 0A | -I | 0A | \ |
| | -I | -I | 0A | | |
\ | 0A | -I | 0A | / |
| · | x1 |
POL(a(x1)) = | | + | / | 1A | 1A | 1A | \ |
| | 0A | 0A | 0A | | |
\ | -I | 0A | -I | / |
| · | x1 |
POL(d(x1)) = | | + | / | 0A | 0A | 0A | \ |
| | 1A | 0A | 1A | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
c(c(c(a(x)))) → d(d(x))
d(b(x)) → c(c(x))
d(x) → b(c(x))
b(c(x)) → b(a(c(x)))
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
C(c(c(a(x)))) → D(d(x))
The TRS R consists of the following rules:
d(b(x)) → c(c(x))
c(c(c(a(x)))) → d(d(x))
d(x) → b(c(x))
b(c(x)) → b(a(c(x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(12) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(13) TRUE
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
RIGHT5(a(x)) → RIGHT5(x)
RIGHT5(c(x)) → RIGHT5(x)
RIGHT5(d(x)) → RIGHT5(x)
RIGHT5(b(x)) → RIGHT5(x)
The TRS R consists of the following rules:
Begin(c(c(a(x)))) → Wait(Right1(x))
Begin(c(a(x))) → Wait(Right2(x))
Begin(a(x)) → Wait(Right3(x))
Begin(b(x)) → Wait(Right4(x))
Begin(c(x)) → Wait(Right5(x))
Right1(c(End(x))) → Left(d(d(End(x))))
Right2(c(c(End(x)))) → Left(d(d(End(x))))
Right3(c(c(c(End(x))))) → Left(d(d(End(x))))
Right4(d(End(x))) → Left(c(c(End(x))))
Right5(b(End(x))) → Left(b(a(c(End(x)))))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Right4(c(x)) → Ac(Right4(x))
Right5(c(x)) → Ac(Right5(x))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right4(a(x)) → Aa(Right4(x))
Right5(a(x)) → Aa(Right5(x))
Right1(d(x)) → Ad(Right1(x))
Right2(d(x)) → Ad(Right2(x))
Right3(d(x)) → Ad(Right3(x))
Right4(d(x)) → Ad(Right4(x))
Right5(d(x)) → Ad(Right5(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right4(b(x)) → Ab(Right4(x))
Right5(b(x)) → Ab(Right5(x))
Ac(Left(x)) → Left(c(x))
Aa(Left(x)) → Left(a(x))
Ad(Left(x)) → Left(d(x))
Ab(Left(x)) → Left(b(x))
Wait(Left(x)) → Begin(x)
c(c(c(a(x)))) → d(d(x))
d(b(x)) → c(c(x))
b(c(x)) → b(a(c(x)))
d(x) → b(c(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(15) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
RIGHT5(a(x)) → RIGHT5(x)
RIGHT5(c(x)) → RIGHT5(x)
RIGHT5(d(x)) → RIGHT5(x)
RIGHT5(b(x)) → RIGHT5(x)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(17) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- RIGHT5(a(x)) → RIGHT5(x)
The graph contains the following edges 1 > 1
- RIGHT5(c(x)) → RIGHT5(x)
The graph contains the following edges 1 > 1
- RIGHT5(d(x)) → RIGHT5(x)
The graph contains the following edges 1 > 1
- RIGHT5(b(x)) → RIGHT5(x)
The graph contains the following edges 1 > 1
(18) YES
(19) Obligation:
Q DP problem:
The TRS P consists of the following rules:
RIGHT4(a(x)) → RIGHT4(x)
RIGHT4(c(x)) → RIGHT4(x)
RIGHT4(d(x)) → RIGHT4(x)
RIGHT4(b(x)) → RIGHT4(x)
The TRS R consists of the following rules:
Begin(c(c(a(x)))) → Wait(Right1(x))
Begin(c(a(x))) → Wait(Right2(x))
Begin(a(x)) → Wait(Right3(x))
Begin(b(x)) → Wait(Right4(x))
Begin(c(x)) → Wait(Right5(x))
Right1(c(End(x))) → Left(d(d(End(x))))
Right2(c(c(End(x)))) → Left(d(d(End(x))))
Right3(c(c(c(End(x))))) → Left(d(d(End(x))))
Right4(d(End(x))) → Left(c(c(End(x))))
Right5(b(End(x))) → Left(b(a(c(End(x)))))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Right4(c(x)) → Ac(Right4(x))
Right5(c(x)) → Ac(Right5(x))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right4(a(x)) → Aa(Right4(x))
Right5(a(x)) → Aa(Right5(x))
Right1(d(x)) → Ad(Right1(x))
Right2(d(x)) → Ad(Right2(x))
Right3(d(x)) → Ad(Right3(x))
Right4(d(x)) → Ad(Right4(x))
Right5(d(x)) → Ad(Right5(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right4(b(x)) → Ab(Right4(x))
Right5(b(x)) → Ab(Right5(x))
Ac(Left(x)) → Left(c(x))
Aa(Left(x)) → Left(a(x))
Ad(Left(x)) → Left(d(x))
Ab(Left(x)) → Left(b(x))
Wait(Left(x)) → Begin(x)
c(c(c(a(x)))) → d(d(x))
d(b(x)) → c(c(x))
b(c(x)) → b(a(c(x)))
d(x) → b(c(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(20) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(21) Obligation:
Q DP problem:
The TRS P consists of the following rules:
RIGHT4(a(x)) → RIGHT4(x)
RIGHT4(c(x)) → RIGHT4(x)
RIGHT4(d(x)) → RIGHT4(x)
RIGHT4(b(x)) → RIGHT4(x)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(22) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- RIGHT4(a(x)) → RIGHT4(x)
The graph contains the following edges 1 > 1
- RIGHT4(c(x)) → RIGHT4(x)
The graph contains the following edges 1 > 1
- RIGHT4(d(x)) → RIGHT4(x)
The graph contains the following edges 1 > 1
- RIGHT4(b(x)) → RIGHT4(x)
The graph contains the following edges 1 > 1
(23) YES
(24) Obligation:
Q DP problem:
The TRS P consists of the following rules:
RIGHT3(a(x)) → RIGHT3(x)
RIGHT3(c(x)) → RIGHT3(x)
RIGHT3(d(x)) → RIGHT3(x)
RIGHT3(b(x)) → RIGHT3(x)
The TRS R consists of the following rules:
Begin(c(c(a(x)))) → Wait(Right1(x))
Begin(c(a(x))) → Wait(Right2(x))
Begin(a(x)) → Wait(Right3(x))
Begin(b(x)) → Wait(Right4(x))
Begin(c(x)) → Wait(Right5(x))
Right1(c(End(x))) → Left(d(d(End(x))))
Right2(c(c(End(x)))) → Left(d(d(End(x))))
Right3(c(c(c(End(x))))) → Left(d(d(End(x))))
Right4(d(End(x))) → Left(c(c(End(x))))
Right5(b(End(x))) → Left(b(a(c(End(x)))))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Right4(c(x)) → Ac(Right4(x))
Right5(c(x)) → Ac(Right5(x))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right4(a(x)) → Aa(Right4(x))
Right5(a(x)) → Aa(Right5(x))
Right1(d(x)) → Ad(Right1(x))
Right2(d(x)) → Ad(Right2(x))
Right3(d(x)) → Ad(Right3(x))
Right4(d(x)) → Ad(Right4(x))
Right5(d(x)) → Ad(Right5(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right4(b(x)) → Ab(Right4(x))
Right5(b(x)) → Ab(Right5(x))
Ac(Left(x)) → Left(c(x))
Aa(Left(x)) → Left(a(x))
Ad(Left(x)) → Left(d(x))
Ab(Left(x)) → Left(b(x))
Wait(Left(x)) → Begin(x)
c(c(c(a(x)))) → d(d(x))
d(b(x)) → c(c(x))
b(c(x)) → b(a(c(x)))
d(x) → b(c(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(25) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(26) Obligation:
Q DP problem:
The TRS P consists of the following rules:
RIGHT3(a(x)) → RIGHT3(x)
RIGHT3(c(x)) → RIGHT3(x)
RIGHT3(d(x)) → RIGHT3(x)
RIGHT3(b(x)) → RIGHT3(x)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(27) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- RIGHT3(a(x)) → RIGHT3(x)
The graph contains the following edges 1 > 1
- RIGHT3(c(x)) → RIGHT3(x)
The graph contains the following edges 1 > 1
- RIGHT3(d(x)) → RIGHT3(x)
The graph contains the following edges 1 > 1
- RIGHT3(b(x)) → RIGHT3(x)
The graph contains the following edges 1 > 1
(28) YES
(29) Obligation:
Q DP problem:
The TRS P consists of the following rules:
RIGHT2(a(x)) → RIGHT2(x)
RIGHT2(c(x)) → RIGHT2(x)
RIGHT2(d(x)) → RIGHT2(x)
RIGHT2(b(x)) → RIGHT2(x)
The TRS R consists of the following rules:
Begin(c(c(a(x)))) → Wait(Right1(x))
Begin(c(a(x))) → Wait(Right2(x))
Begin(a(x)) → Wait(Right3(x))
Begin(b(x)) → Wait(Right4(x))
Begin(c(x)) → Wait(Right5(x))
Right1(c(End(x))) → Left(d(d(End(x))))
Right2(c(c(End(x)))) → Left(d(d(End(x))))
Right3(c(c(c(End(x))))) → Left(d(d(End(x))))
Right4(d(End(x))) → Left(c(c(End(x))))
Right5(b(End(x))) → Left(b(a(c(End(x)))))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Right4(c(x)) → Ac(Right4(x))
Right5(c(x)) → Ac(Right5(x))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right4(a(x)) → Aa(Right4(x))
Right5(a(x)) → Aa(Right5(x))
Right1(d(x)) → Ad(Right1(x))
Right2(d(x)) → Ad(Right2(x))
Right3(d(x)) → Ad(Right3(x))
Right4(d(x)) → Ad(Right4(x))
Right5(d(x)) → Ad(Right5(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right4(b(x)) → Ab(Right4(x))
Right5(b(x)) → Ab(Right5(x))
Ac(Left(x)) → Left(c(x))
Aa(Left(x)) → Left(a(x))
Ad(Left(x)) → Left(d(x))
Ab(Left(x)) → Left(b(x))
Wait(Left(x)) → Begin(x)
c(c(c(a(x)))) → d(d(x))
d(b(x)) → c(c(x))
b(c(x)) → b(a(c(x)))
d(x) → b(c(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(30) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(31) Obligation:
Q DP problem:
The TRS P consists of the following rules:
RIGHT2(a(x)) → RIGHT2(x)
RIGHT2(c(x)) → RIGHT2(x)
RIGHT2(d(x)) → RIGHT2(x)
RIGHT2(b(x)) → RIGHT2(x)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(32) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- RIGHT2(a(x)) → RIGHT2(x)
The graph contains the following edges 1 > 1
- RIGHT2(c(x)) → RIGHT2(x)
The graph contains the following edges 1 > 1
- RIGHT2(d(x)) → RIGHT2(x)
The graph contains the following edges 1 > 1
- RIGHT2(b(x)) → RIGHT2(x)
The graph contains the following edges 1 > 1
(33) YES
(34) Obligation:
Q DP problem:
The TRS P consists of the following rules:
RIGHT1(a(x)) → RIGHT1(x)
RIGHT1(c(x)) → RIGHT1(x)
RIGHT1(d(x)) → RIGHT1(x)
RIGHT1(b(x)) → RIGHT1(x)
The TRS R consists of the following rules:
Begin(c(c(a(x)))) → Wait(Right1(x))
Begin(c(a(x))) → Wait(Right2(x))
Begin(a(x)) → Wait(Right3(x))
Begin(b(x)) → Wait(Right4(x))
Begin(c(x)) → Wait(Right5(x))
Right1(c(End(x))) → Left(d(d(End(x))))
Right2(c(c(End(x)))) → Left(d(d(End(x))))
Right3(c(c(c(End(x))))) → Left(d(d(End(x))))
Right4(d(End(x))) → Left(c(c(End(x))))
Right5(b(End(x))) → Left(b(a(c(End(x)))))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Right4(c(x)) → Ac(Right4(x))
Right5(c(x)) → Ac(Right5(x))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right4(a(x)) → Aa(Right4(x))
Right5(a(x)) → Aa(Right5(x))
Right1(d(x)) → Ad(Right1(x))
Right2(d(x)) → Ad(Right2(x))
Right3(d(x)) → Ad(Right3(x))
Right4(d(x)) → Ad(Right4(x))
Right5(d(x)) → Ad(Right5(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right4(b(x)) → Ab(Right4(x))
Right5(b(x)) → Ab(Right5(x))
Ac(Left(x)) → Left(c(x))
Aa(Left(x)) → Left(a(x))
Ad(Left(x)) → Left(d(x))
Ab(Left(x)) → Left(b(x))
Wait(Left(x)) → Begin(x)
c(c(c(a(x)))) → d(d(x))
d(b(x)) → c(c(x))
b(c(x)) → b(a(c(x)))
d(x) → b(c(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(35) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(36) Obligation:
Q DP problem:
The TRS P consists of the following rules:
RIGHT1(a(x)) → RIGHT1(x)
RIGHT1(c(x)) → RIGHT1(x)
RIGHT1(d(x)) → RIGHT1(x)
RIGHT1(b(x)) → RIGHT1(x)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(37) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- RIGHT1(a(x)) → RIGHT1(x)
The graph contains the following edges 1 > 1
- RIGHT1(c(x)) → RIGHT1(x)
The graph contains the following edges 1 > 1
- RIGHT1(d(x)) → RIGHT1(x)
The graph contains the following edges 1 > 1
- RIGHT1(b(x)) → RIGHT1(x)
The graph contains the following edges 1 > 1
(38) YES
(39) Obligation:
Q DP problem:
The TRS P consists of the following rules:
WAIT(Left(x)) → BEGIN(x)
BEGIN(c(c(a(x)))) → WAIT(Right1(x))
BEGIN(c(a(x))) → WAIT(Right2(x))
BEGIN(a(x)) → WAIT(Right3(x))
BEGIN(b(x)) → WAIT(Right4(x))
BEGIN(c(x)) → WAIT(Right5(x))
The TRS R consists of the following rules:
Begin(c(c(a(x)))) → Wait(Right1(x))
Begin(c(a(x))) → Wait(Right2(x))
Begin(a(x)) → Wait(Right3(x))
Begin(b(x)) → Wait(Right4(x))
Begin(c(x)) → Wait(Right5(x))
Right1(c(End(x))) → Left(d(d(End(x))))
Right2(c(c(End(x)))) → Left(d(d(End(x))))
Right3(c(c(c(End(x))))) → Left(d(d(End(x))))
Right4(d(End(x))) → Left(c(c(End(x))))
Right5(b(End(x))) → Left(b(a(c(End(x)))))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Right4(c(x)) → Ac(Right4(x))
Right5(c(x)) → Ac(Right5(x))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right4(a(x)) → Aa(Right4(x))
Right5(a(x)) → Aa(Right5(x))
Right1(d(x)) → Ad(Right1(x))
Right2(d(x)) → Ad(Right2(x))
Right3(d(x)) → Ad(Right3(x))
Right4(d(x)) → Ad(Right4(x))
Right5(d(x)) → Ad(Right5(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right4(b(x)) → Ab(Right4(x))
Right5(b(x)) → Ab(Right5(x))
Ac(Left(x)) → Left(c(x))
Aa(Left(x)) → Left(a(x))
Ad(Left(x)) → Left(d(x))
Ab(Left(x)) → Left(b(x))
Wait(Left(x)) → Begin(x)
c(c(c(a(x)))) → d(d(x))
d(b(x)) → c(c(x))
b(c(x)) → b(a(c(x)))
d(x) → b(c(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(40) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(41) Obligation:
Q DP problem:
The TRS P consists of the following rules:
WAIT(Left(x)) → BEGIN(x)
BEGIN(c(c(a(x)))) → WAIT(Right1(x))
BEGIN(c(a(x))) → WAIT(Right2(x))
BEGIN(a(x)) → WAIT(Right3(x))
BEGIN(b(x)) → WAIT(Right4(x))
BEGIN(c(x)) → WAIT(Right5(x))
The TRS R consists of the following rules:
Right5(b(End(x))) → Left(b(a(c(End(x)))))
Right5(c(x)) → Ac(Right5(x))
Right5(a(x)) → Aa(Right5(x))
Right5(d(x)) → Ad(Right5(x))
Right5(b(x)) → Ab(Right5(x))
Ab(Left(x)) → Left(b(x))
b(c(x)) → b(a(c(x)))
d(b(x)) → c(c(x))
c(c(c(a(x)))) → d(d(x))
d(x) → b(c(x))
Ad(Left(x)) → Left(d(x))
Aa(Left(x)) → Left(a(x))
Ac(Left(x)) → Left(c(x))
Right4(d(End(x))) → Left(c(c(End(x))))
Right4(c(x)) → Ac(Right4(x))
Right4(a(x)) → Aa(Right4(x))
Right4(d(x)) → Ad(Right4(x))
Right4(b(x)) → Ab(Right4(x))
Right3(c(c(c(End(x))))) → Left(d(d(End(x))))
Right3(c(x)) → Ac(Right3(x))
Right3(a(x)) → Aa(Right3(x))
Right3(d(x)) → Ad(Right3(x))
Right3(b(x)) → Ab(Right3(x))
Right2(c(c(End(x)))) → Left(d(d(End(x))))
Right2(c(x)) → Ac(Right2(x))
Right2(a(x)) → Aa(Right2(x))
Right2(d(x)) → Ad(Right2(x))
Right2(b(x)) → Ab(Right2(x))
Right1(c(End(x))) → Left(d(d(End(x))))
Right1(c(x)) → Ac(Right1(x))
Right1(a(x)) → Aa(Right1(x))
Right1(d(x)) → Ad(Right1(x))
Right1(b(x)) → Ab(Right1(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(42) NonTerminationLoopProof (COMPLETE transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
BEGIN(
d(
d(
End(
x')))) evaluates to t =
BEGIN(
d(
d(
End(
x'))))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceBEGIN(d(d(End(x')))) →
BEGIN(
d(
b(
c(
End(
x')))))
with rule
d(
x) →
b(
c(
x)) at position [0,0] and matcher [
x /
End(
x')]
BEGIN(d(b(c(End(x'))))) →
BEGIN(
d(
b(
a(
c(
End(
x'))))))
with rule
b(
c(
x)) →
b(
a(
c(
x))) at position [0,0] and matcher [
x /
End(
x')]
BEGIN(d(b(a(c(End(x')))))) →
BEGIN(
c(
c(
a(
c(
End(
x'))))))
with rule
d(
b(
x)) →
c(
c(
x)) at position [0] and matcher [
x /
a(
c(
End(
x')))]
BEGIN(c(c(a(c(End(x')))))) →
WAIT(
Right1(
c(
End(
x'))))
with rule
BEGIN(
c(
c(
a(
x)))) →
WAIT(
Right1(
x)) at position [] and matcher [
x /
c(
End(
x'))]
WAIT(Right1(c(End(x')))) →
WAIT(
Left(
d(
d(
End(
x')))))
with rule
Right1(
c(
End(
x''))) →
Left(
d(
d(
End(
x'')))) at position [0] and matcher [
x'' /
x']
WAIT(Left(d(d(End(x'))))) →
BEGIN(
d(
d(
End(
x'))))
with rule
WAIT(
Left(
x)) →
BEGIN(
x)
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(43) NO