YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
a(b(x0)) |
→ |
b(d(x0)) |
a(c(x0)) |
→ |
d(d(d(x0))) |
b(d(x0)) |
→ |
a(c(b(x0))) |
c(f(x0)) |
→ |
d(d(c(x0))) |
d(d(x0)) |
→ |
f(x0) |
f(f(x0)) |
→ |
a(x0) |
Proof
1 Rule Removal
Using the
linear polynomial interpretation over the naturals
[f(x1)] |
= |
1 ·
x1 + 2 |
[a(x1)] |
= |
1 ·
x1 + 4 |
[c(x1)] |
= |
1 ·
x1 + 0 |
[b(x1)] |
= |
4 ·
x1 + 0 |
[d(x1)] |
= |
1 ·
x1 + 1 |
the
rules
a(b(x0)) |
→ |
b(d(x0)) |
b(d(x0)) |
→ |
a(c(b(x0))) |
c(f(x0)) |
→ |
d(d(c(x0))) |
d(d(x0)) |
→ |
f(x0) |
f(f(x0)) |
→ |
a(x0) |
remain.
1.1 Rule Removal
Using the
linear polynomial interpretation over the arctic semiring over the integers
[f(x1)] |
= |
4 ·
x1 +
-∞
|
[a(x1)] |
= |
2 ·
x1 +
-∞
|
[c(x1)] |
= |
0 ·
x1 +
-∞
|
[b(x1)] |
= |
0 ·
x1 +
-∞
|
[d(x1)] |
= |
2 ·
x1 +
-∞
|
the
rules
a(b(x0)) |
→ |
b(d(x0)) |
b(d(x0)) |
→ |
a(c(b(x0))) |
c(f(x0)) |
→ |
d(d(c(x0))) |
d(d(x0)) |
→ |
f(x0) |
remain.
1.1.1 String Reversal
Since only unary symbols occur, one can reverse all terms and obtains the TRS
b(a(x0)) |
→ |
d(b(x0)) |
d(b(x0)) |
→ |
b(c(a(x0))) |
f(c(x0)) |
→ |
c(d(d(x0))) |
d(d(x0)) |
→ |
f(x0) |
1.1.1.1 Bounds
The given TRS is
match-bounded by 1.
This is shown by the following automaton.
-
final states:
{10, 7, 4, 1}
-
transitions:
10 |
→ |
8 |
18 |
→ |
1 |
3 |
→ |
29 |
34 |
→ |
9 |
20 |
→ |
9 |
1 |
→ |
3 |
6 |
→ |
31 |
2 |
→ |
15 |
2 |
→ |
19 |
4 |
→ |
8 |
7 |
→ |
9 |
7 |
→ |
10 |
7 |
→ |
20 |
30 |
→ |
3 |
30 |
→ |
1 |
17 |
→ |
23 |
24 |
→ |
16 |
d0(8) |
→ |
9 |
d0(3) |
→ |
1 |
d0(2) |
→ |
8 |
b1(33) |
→ |
34 |
b1(17) |
→ |
18 |
c0(9) |
→ |
7 |
c0(5) |
→ |
6 |
a0(2) |
→ |
5 |
c1(16) |
→ |
17 |
c1(32) |
→ |
33 |
f0(2) |
→ |
10 |
b0(2) |
→ |
3 |
b0(6) |
→ |
4 |
a1(15) |
→ |
16 |
a1(23) |
→ |
24 |
a1(31) |
→ |
32 |
f1(19) |
→ |
20 |
f1(29) |
→ |
30 |
f50
|
→ |
2 |