YES
0 QTRS
↳1 DependencyPairsProof (⇔, 9 ms)
↳2 QDP
↳3 MRRProof (⇔, 51 ms)
↳4 QDP
↳5 MRRProof (⇔, 0 ms)
↳6 QDP
↳7 DependencyGraphProof (⇔, 0 ms)
↳8 QDP
↳9 QDPOrderProof (⇔, 14 ms)
↳10 QDP
↳11 PisEmptyProof (⇔, 0 ms)
↳12 YES
a(b(x)) → b(d(x))
a(c(x)) → d(d(d(x)))
b(d(x)) → a(c(b(x)))
c(f(x)) → d(d(c(x)))
d(d(x)) → f(x)
f(f(x)) → a(x)
A(b(x)) → B(d(x))
A(b(x)) → D(x)
A(c(x)) → D(d(d(x)))
A(c(x)) → D(d(x))
A(c(x)) → D(x)
B(d(x)) → A(c(b(x)))
B(d(x)) → C(b(x))
B(d(x)) → B(x)
C(f(x)) → D(d(c(x)))
C(f(x)) → D(c(x))
C(f(x)) → C(x)
D(d(x)) → F(x)
F(f(x)) → A(x)
a(b(x)) → b(d(x))
a(c(x)) → d(d(d(x)))
b(d(x)) → a(c(b(x)))
c(f(x)) → d(d(c(x)))
d(d(x)) → f(x)
f(f(x)) → a(x)
A(b(x)) → D(x)
POL(A(x1)) = x1
POL(B(x1)) = 1 + 2·x1
POL(C(x1)) = x1
POL(D(x1)) = x1
POL(F(x1)) = x1
POL(a(x1)) = x1
POL(b(x1)) = 1 + 2·x1
POL(c(x1)) = x1
POL(d(x1)) = x1
POL(f(x1)) = x1
A(b(x)) → B(d(x))
A(c(x)) → D(d(d(x)))
A(c(x)) → D(d(x))
A(c(x)) → D(x)
B(d(x)) → A(c(b(x)))
B(d(x)) → C(b(x))
B(d(x)) → B(x)
C(f(x)) → D(d(c(x)))
C(f(x)) → D(c(x))
C(f(x)) → C(x)
D(d(x)) → F(x)
F(f(x)) → A(x)
a(b(x)) → b(d(x))
a(c(x)) → d(d(d(x)))
b(d(x)) → a(c(b(x)))
c(f(x)) → d(d(c(x)))
d(d(x)) → f(x)
f(f(x)) → a(x)
A(c(x)) → D(d(d(x)))
A(c(x)) → D(d(x))
A(c(x)) → D(x)
B(d(x)) → C(b(x))
B(d(x)) → B(x)
C(f(x)) → D(d(c(x)))
C(f(x)) → D(c(x))
C(f(x)) → C(x)
f(f(x)) → a(x)
POL(A(x1)) = 3 + x1
POL(B(x1)) = 3·x1
POL(C(x1)) = 2 + x1
POL(D(x1)) = x1
POL(F(x1)) = 1 + x1
POL(a(x1)) = 3 + x1
POL(b(x1)) = 3·x1
POL(c(x1)) = x1
POL(d(x1)) = 1 + x1
POL(f(x1)) = 2 + x1
A(b(x)) → B(d(x))
B(d(x)) → A(c(b(x)))
D(d(x)) → F(x)
F(f(x)) → A(x)
a(b(x)) → b(d(x))
a(c(x)) → d(d(d(x)))
b(d(x)) → a(c(b(x)))
c(f(x)) → d(d(c(x)))
d(d(x)) → f(x)
B(d(x)) → A(c(b(x)))
A(b(x)) → B(d(x))
a(b(x)) → b(d(x))
a(c(x)) → d(d(d(x)))
b(d(x)) → a(c(b(x)))
c(f(x)) → d(d(c(x)))
d(d(x)) → f(x)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
B(d(x)) → A(c(b(x)))
A(b(x)) → B(d(x))
POL(A(x1)) = 4·x1
POL(B(x1)) = 5 + 5·x1
POL(a(x1)) = 3
POL(b(x1)) = 4 + x1
POL(c(x1)) = 2
POL(d(x1)) = 2
POL(f(x1)) = 0
c(f(x)) → d(d(c(x)))
d(d(x)) → f(x)
a(b(x)) → b(d(x))
a(c(x)) → d(d(d(x)))
b(d(x)) → a(c(b(x)))
c(f(x)) → d(d(c(x)))
d(d(x)) → f(x)