YES
0 QTRS
↳1 QTRSRRRProof (⇔, 51 ms)
↳2 QTRS
↳3 DependencyPairsProof (⇔, 2 ms)
↳4 QDP
↳5 DependencyGraphProof (⇔, 0 ms)
↳6 QDP
↳7 QDPOrderProof (⇔, 8 ms)
↳8 QDP
↳9 DependencyGraphProof (⇔, 0 ms)
↳10 TRUE
a(x) → g(d(x))
b(b(b(x))) → c(d(c(x)))
b(b(x)) → a(g(g(x)))
c(d(x)) → g(g(x))
g(g(g(x))) → b(b(x))
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(a(x1)) = 6 + x1
POL(b(x1)) = 9 + x1
POL(c(x1)) = 13 + x1
POL(d(x1)) = x1
POL(g(x1)) = 6 + x1
b(b(b(x))) → c(d(c(x)))
c(d(x)) → g(g(x))
a(x) → g(d(x))
b(b(x)) → a(g(g(x)))
g(g(g(x))) → b(b(x))
A(x) → G(d(x))
B(b(x)) → A(g(g(x)))
B(b(x)) → G(g(x))
B(b(x)) → G(x)
G(g(g(x))) → B(b(x))
G(g(g(x))) → B(x)
a(x) → g(d(x))
b(b(x)) → a(g(g(x)))
g(g(g(x))) → b(b(x))
B(b(x)) → G(g(x))
G(g(g(x))) → B(b(x))
B(b(x)) → G(x)
G(g(g(x))) → B(x)
a(x) → g(d(x))
b(b(x)) → a(g(g(x)))
g(g(g(x))) → b(b(x))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
G(g(g(x))) → B(b(x))
B(b(x)) → G(x)
G(g(g(x))) → B(x)
POL(B(x1)) = 1 + x1
POL(G(x1)) = 1 + x1
POL(a(x1)) = 1
POL(b(x1)) = 1 + x1
POL(d(x1)) = 0
POL(g(x1)) = 1 + x1
g(g(g(x))) → b(b(x))
b(b(x)) → a(g(g(x)))
a(x) → g(d(x))
B(b(x)) → G(g(x))
a(x) → g(d(x))
b(b(x)) → a(g(g(x)))
g(g(g(x))) → b(b(x))