YES Termination Proof

Termination Proof

by ttt2 (version ttt2 1.15)

Input

The rewrite relation of the following TRS is considered.

Begin(b(b(x0))) Wait(Right1(x0))
Begin(b(x0)) Wait(Right2(x0))
Begin(b(x0)) Wait(Right3(x0))
Begin(d(x0)) Wait(Right4(x0))
Begin(g(g(x0))) Wait(Right5(x0))
Begin(g(x0)) Wait(Right6(x0))
Right1(b(End(x0))) Left(c(d(c(End(x0)))))
Right2(b(b(End(x0)))) Left(c(d(c(End(x0)))))
Right3(b(End(x0))) Left(a(g(g(End(x0)))))
Right4(c(End(x0))) Left(g(g(End(x0))))
Right5(g(End(x0))) Left(b(b(End(x0))))
Right6(g(g(End(x0)))) Left(b(b(End(x0))))
Right1(a(x0)) Aa(Right1(x0))
Right2(a(x0)) Aa(Right2(x0))
Right3(a(x0)) Aa(Right3(x0))
Right4(a(x0)) Aa(Right4(x0))
Right5(a(x0)) Aa(Right5(x0))
Right6(a(x0)) Aa(Right6(x0))
Right1(g(x0)) Ag(Right1(x0))
Right2(g(x0)) Ag(Right2(x0))
Right3(g(x0)) Ag(Right3(x0))
Right4(g(x0)) Ag(Right4(x0))
Right5(g(x0)) Ag(Right5(x0))
Right6(g(x0)) Ag(Right6(x0))
Right1(d(x0)) Ad(Right1(x0))
Right2(d(x0)) Ad(Right2(x0))
Right3(d(x0)) Ad(Right3(x0))
Right4(d(x0)) Ad(Right4(x0))
Right5(d(x0)) Ad(Right5(x0))
Right6(d(x0)) Ad(Right6(x0))
Right1(b(x0)) Ab(Right1(x0))
Right2(b(x0)) Ab(Right2(x0))
Right3(b(x0)) Ab(Right3(x0))
Right4(b(x0)) Ab(Right4(x0))
Right5(b(x0)) Ab(Right5(x0))
Right6(b(x0)) Ab(Right6(x0))
Right1(c(x0)) Ac(Right1(x0))
Right2(c(x0)) Ac(Right2(x0))
Right3(c(x0)) Ac(Right3(x0))
Right4(c(x0)) Ac(Right4(x0))
Right5(c(x0)) Ac(Right5(x0))
Right6(c(x0)) Ac(Right6(x0))
Aa(Left(x0)) Left(a(x0))
Ag(Left(x0)) Left(g(x0))
Ad(Left(x0)) Left(d(x0))
Ab(Left(x0)) Left(b(x0))
Ac(Left(x0)) Left(c(x0))
Wait(Left(x0)) Begin(x0)
a(x0) g(d(x0))
b(b(b(x0))) c(d(c(x0)))
b(b(x0)) a(g(g(x0)))
c(d(x0)) g(g(x0))
g(g(g(x0))) b(b(x0))

Proof

1 Rule Removal

Using the linear polynomial interpretation over the arctic semiring over the integers
[Ab(x1)] = 3 · x1 + -∞
[Right2(x1)] = 4 · x1 + -∞
[Aa(x1)] = 2 · x1 + -∞
[g(x1)] = 2 · x1 + -∞
[Begin(x1)] = 2 · x1 + -∞
[Wait(x1)] = 0 · x1 + -∞
[Ag(x1)] = 2 · x1 + -∞
[Ac(x1)] = 4 · x1 + -∞
[Ad(x1)] = 0 · x1 + -∞
[Right3(x1)] = 5 · x1 + -∞
[Right6(x1)] = 4 · x1 + -∞
[b(x1)] = 3 · x1 + -∞
[Right4(x1)] = 2 · x1 + -∞
[a(x1)] = 2 · x1 + -∞
[c(x1)] = 4 · x1 + -∞
[End(x1)] = 1 · x1 + -∞
[Right5(x1)] = 6 · x1 + -∞
[Left(x1)] = 2 · x1 + -∞
[d(x1)] = 0 · x1 + -∞
[Right1(x1)] = 8 · x1 + -∞
the rules
Begin(b(b(x0))) Wait(Right1(x0))
Begin(b(x0)) Wait(Right3(x0))
Begin(d(x0)) Wait(Right4(x0))
Begin(g(g(x0))) Wait(Right5(x0))
Begin(g(x0)) Wait(Right6(x0))
Right2(b(b(End(x0)))) Left(c(d(c(End(x0)))))
Right3(b(End(x0))) Left(a(g(g(End(x0)))))
Right4(c(End(x0))) Left(g(g(End(x0))))
Right5(g(End(x0))) Left(b(b(End(x0))))
Right6(g(g(End(x0)))) Left(b(b(End(x0))))
Right1(a(x0)) Aa(Right1(x0))
Right2(a(x0)) Aa(Right2(x0))
Right3(a(x0)) Aa(Right3(x0))
Right4(a(x0)) Aa(Right4(x0))
Right5(a(x0)) Aa(Right5(x0))
Right6(a(x0)) Aa(Right6(x0))
Right1(g(x0)) Ag(Right1(x0))
Right2(g(x0)) Ag(Right2(x0))
Right3(g(x0)) Ag(Right3(x0))
Right4(g(x0)) Ag(Right4(x0))
Right5(g(x0)) Ag(Right5(x0))
Right6(g(x0)) Ag(Right6(x0))
Right1(d(x0)) Ad(Right1(x0))
Right2(d(x0)) Ad(Right2(x0))
Right3(d(x0)) Ad(Right3(x0))
Right4(d(x0)) Ad(Right4(x0))
Right5(d(x0)) Ad(Right5(x0))
Right6(d(x0)) Ad(Right6(x0))
Right1(b(x0)) Ab(Right1(x0))
Right2(b(x0)) Ab(Right2(x0))
Right3(b(x0)) Ab(Right3(x0))
Right4(b(x0)) Ab(Right4(x0))
Right5(b(x0)) Ab(Right5(x0))
Right6(b(x0)) Ab(Right6(x0))
Right1(c(x0)) Ac(Right1(x0))
Right2(c(x0)) Ac(Right2(x0))
Right3(c(x0)) Ac(Right3(x0))
Right4(c(x0)) Ac(Right4(x0))
Right5(c(x0)) Ac(Right5(x0))
Right6(c(x0)) Ac(Right6(x0))
Aa(Left(x0)) Left(a(x0))
Ag(Left(x0)) Left(g(x0))
Ad(Left(x0)) Left(d(x0))
Ab(Left(x0)) Left(b(x0))
Ac(Left(x0)) Left(c(x0))
Wait(Left(x0)) Begin(x0)
a(x0) g(d(x0))
b(b(x0)) a(g(g(x0)))
c(d(x0)) g(g(x0))
g(g(g(x0))) b(b(x0))
remain.

1.1 Rule Removal

Using the linear polynomial interpretation over the arctic semiring over the integers
[Ab(x1)] = 0 · x1 + -∞
[Right2(x1)] = 10 · x1 + -∞
[Aa(x1)] = 0 · x1 + -∞
[g(x1)] = 0 · x1 + -∞
[Begin(x1)] = 0 · x1 + -∞
[Wait(x1)] = 0 · x1 + -∞
[Ag(x1)] = 0 · x1 + -∞
[Ac(x1)] = 5 · x1 + -∞
[Ad(x1)] = 0 · x1 + -∞
[Right3(x1)] = 0 · x1 + -∞
[Right6(x1)] = 0 · x1 + -∞
[b(x1)] = 0 · x1 + -∞
[Right4(x1)] = 0 · x1 + -∞
[a(x1)] = 0 · x1 + -∞
[c(x1)] = 5 · x1 + -∞
[End(x1)] = 0 · x1 + -∞
[Right5(x1)] = 0 · x1 + -∞
[Left(x1)] = 0 · x1 + -∞
[d(x1)] = 0 · x1 + -∞
[Right1(x1)] = 0 · x1 + -∞
the rules
Begin(b(b(x0))) Wait(Right1(x0))
Begin(b(x0)) Wait(Right3(x0))
Begin(d(x0)) Wait(Right4(x0))
Begin(g(g(x0))) Wait(Right5(x0))
Begin(g(x0)) Wait(Right6(x0))
Right2(b(b(End(x0)))) Left(c(d(c(End(x0)))))
Right3(b(End(x0))) Left(a(g(g(End(x0)))))
Right5(g(End(x0))) Left(b(b(End(x0))))
Right6(g(g(End(x0)))) Left(b(b(End(x0))))
Right1(a(x0)) Aa(Right1(x0))
Right2(a(x0)) Aa(Right2(x0))
Right3(a(x0)) Aa(Right3(x0))
Right4(a(x0)) Aa(Right4(x0))
Right5(a(x0)) Aa(Right5(x0))
Right6(a(x0)) Aa(Right6(x0))
Right1(g(x0)) Ag(Right1(x0))
Right2(g(x0)) Ag(Right2(x0))
Right3(g(x0)) Ag(Right3(x0))
Right4(g(x0)) Ag(Right4(x0))
Right5(g(x0)) Ag(Right5(x0))
Right6(g(x0)) Ag(Right6(x0))
Right1(d(x0)) Ad(Right1(x0))
Right2(d(x0)) Ad(Right2(x0))
Right3(d(x0)) Ad(Right3(x0))
Right4(d(x0)) Ad(Right4(x0))
Right5(d(x0)) Ad(Right5(x0))
Right6(d(x0)) Ad(Right6(x0))
Right1(b(x0)) Ab(Right1(x0))
Right2(b(x0)) Ab(Right2(x0))
Right3(b(x0)) Ab(Right3(x0))
Right4(b(x0)) Ab(Right4(x0))
Right5(b(x0)) Ab(Right5(x0))
Right6(b(x0)) Ab(Right6(x0))
Right1(c(x0)) Ac(Right1(x0))
Right2(c(x0)) Ac(Right2(x0))
Right3(c(x0)) Ac(Right3(x0))
Right4(c(x0)) Ac(Right4(x0))
Right5(c(x0)) Ac(Right5(x0))
Right6(c(x0)) Ac(Right6(x0))
Aa(Left(x0)) Left(a(x0))
Ag(Left(x0)) Left(g(x0))
Ad(Left(x0)) Left(d(x0))
Ab(Left(x0)) Left(b(x0))
Ac(Left(x0)) Left(c(x0))
Wait(Left(x0)) Begin(x0)
a(x0) g(d(x0))
b(b(x0)) a(g(g(x0)))
g(g(g(x0))) b(b(x0))
remain.

1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[Ab(x1)] = 1 · x1 + 0
[Right2(x1)] = 11 · x1 + 0
[Aa(x1)] = 1 · x1 + 0
[g(x1)] = 1 · x1 + 0
[Begin(x1)] = 8 · x1 + 6
[Wait(x1)] = 1 · x1 + 0
[Ag(x1)] = 1 · x1 + 0
[Ac(x1)] = 1 · x1 + 0
[Ad(x1)] = 1 · x1 + 0
[Right3(x1)] = 8 · x1 + 6
[Right6(x1)] = 8 · x1 + 6
[b(x1)] = 1 · x1 + 0
[Right4(x1)] = 4 · x1 + 0
[a(x1)] = 1 · x1 + 0
[c(x1)] = 1 · x1 + 0
[End(x1)] = 1 · x1 + 2
[Right5(x1)] = 8 · x1 + 6
[Left(x1)] = 8 · x1 + 6
[d(x1)] = 1 · x1 + 0
[Right1(x1)] = 2 · x1 + 0
the rules
Begin(b(x0)) Wait(Right3(x0))
Begin(g(g(x0))) Wait(Right5(x0))
Begin(g(x0)) Wait(Right6(x0))
Right2(b(b(End(x0)))) Left(c(d(c(End(x0)))))
Right3(b(End(x0))) Left(a(g(g(End(x0)))))
Right5(g(End(x0))) Left(b(b(End(x0))))
Right6(g(g(End(x0)))) Left(b(b(End(x0))))
Right1(a(x0)) Aa(Right1(x0))
Right2(a(x0)) Aa(Right2(x0))
Right3(a(x0)) Aa(Right3(x0))
Right4(a(x0)) Aa(Right4(x0))
Right5(a(x0)) Aa(Right5(x0))
Right6(a(x0)) Aa(Right6(x0))
Right1(g(x0)) Ag(Right1(x0))
Right2(g(x0)) Ag(Right2(x0))
Right3(g(x0)) Ag(Right3(x0))
Right4(g(x0)) Ag(Right4(x0))
Right5(g(x0)) Ag(Right5(x0))
Right6(g(x0)) Ag(Right6(x0))
Right1(d(x0)) Ad(Right1(x0))
Right2(d(x0)) Ad(Right2(x0))
Right3(d(x0)) Ad(Right3(x0))
Right4(d(x0)) Ad(Right4(x0))
Right5(d(x0)) Ad(Right5(x0))
Right6(d(x0)) Ad(Right6(x0))
Right1(b(x0)) Ab(Right1(x0))
Right2(b(x0)) Ab(Right2(x0))
Right3(b(x0)) Ab(Right3(x0))
Right4(b(x0)) Ab(Right4(x0))
Right5(b(x0)) Ab(Right5(x0))
Right6(b(x0)) Ab(Right6(x0))
Right1(c(x0)) Ac(Right1(x0))
Right2(c(x0)) Ac(Right2(x0))
Right3(c(x0)) Ac(Right3(x0))
Right4(c(x0)) Ac(Right4(x0))
Right5(c(x0)) Ac(Right5(x0))
Right6(c(x0)) Ac(Right6(x0))
Aa(Left(x0)) Left(a(x0))
Ag(Left(x0)) Left(g(x0))
Ad(Left(x0)) Left(d(x0))
Ab(Left(x0)) Left(b(x0))
Ac(Left(x0)) Left(c(x0))
Wait(Left(x0)) Begin(x0)
a(x0) g(d(x0))
b(b(x0)) a(g(g(x0)))
g(g(g(x0))) b(b(x0))
remain.

1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the arctic semiring over the integers
[Ab(x1)] = 0 · x1 + -∞
[Right2(x1)] = 3 · x1 + -∞
[Aa(x1)] = 0 · x1 + -∞
[g(x1)] = 0 · x1 + -∞
[Begin(x1)] = 0 · x1 + -∞
[Wait(x1)] = 0 · x1 + -∞
[Ag(x1)] = 0 · x1 + -∞
[Ac(x1)] = 1 · x1 + -∞
[Ad(x1)] = 0 · x1 + -∞
[Right3(x1)] = 0 · x1 + -∞
[Right6(x1)] = 0 · x1 + -∞
[b(x1)] = 0 · x1 + -∞
[Right4(x1)] = 0 · x1 + -∞
[a(x1)] = 0 · x1 + -∞
[c(x1)] = 1 · x1 + -∞
[End(x1)] = 3 · x1 + -∞
[Right5(x1)] = 0 · x1 + -∞
[Left(x1)] = 0 · x1 + -∞
[d(x1)] = 0 · x1 + -∞
[Right1(x1)] = 0 · x1 + -∞
the rules
Begin(b(x0)) Wait(Right3(x0))
Begin(g(g(x0))) Wait(Right5(x0))
Begin(g(x0)) Wait(Right6(x0))
Right3(b(End(x0))) Left(a(g(g(End(x0)))))
Right5(g(End(x0))) Left(b(b(End(x0))))
Right6(g(g(End(x0)))) Left(b(b(End(x0))))
Right1(a(x0)) Aa(Right1(x0))
Right2(a(x0)) Aa(Right2(x0))
Right3(a(x0)) Aa(Right3(x0))
Right4(a(x0)) Aa(Right4(x0))
Right5(a(x0)) Aa(Right5(x0))
Right6(a(x0)) Aa(Right6(x0))
Right1(g(x0)) Ag(Right1(x0))
Right2(g(x0)) Ag(Right2(x0))
Right3(g(x0)) Ag(Right3(x0))
Right4(g(x0)) Ag(Right4(x0))
Right5(g(x0)) Ag(Right5(x0))
Right6(g(x0)) Ag(Right6(x0))
Right1(d(x0)) Ad(Right1(x0))
Right2(d(x0)) Ad(Right2(x0))
Right3(d(x0)) Ad(Right3(x0))
Right4(d(x0)) Ad(Right4(x0))
Right5(d(x0)) Ad(Right5(x0))
Right6(d(x0)) Ad(Right6(x0))
Right1(b(x0)) Ab(Right1(x0))
Right2(b(x0)) Ab(Right2(x0))
Right3(b(x0)) Ab(Right3(x0))
Right4(b(x0)) Ab(Right4(x0))
Right5(b(x0)) Ab(Right5(x0))
Right6(b(x0)) Ab(Right6(x0))
Right1(c(x0)) Ac(Right1(x0))
Right2(c(x0)) Ac(Right2(x0))
Right3(c(x0)) Ac(Right3(x0))
Right4(c(x0)) Ac(Right4(x0))
Right5(c(x0)) Ac(Right5(x0))
Right6(c(x0)) Ac(Right6(x0))
Aa(Left(x0)) Left(a(x0))
Ag(Left(x0)) Left(g(x0))
Ad(Left(x0)) Left(d(x0))
Ab(Left(x0)) Left(b(x0))
Ac(Left(x0)) Left(c(x0))
Wait(Left(x0)) Begin(x0)
a(x0) g(d(x0))
b(b(x0)) a(g(g(x0)))
g(g(g(x0))) b(b(x0))
remain.

1.1.1.1.1 String Reversal

Since only unary symbols occur, one can reverse all terms and obtains the TRS
b(Begin(x0)) Right3(Wait(x0))
g(g(Begin(x0))) Right5(Wait(x0))
g(Begin(x0)) Right6(Wait(x0))
End(b(Right3(x0))) End(g(g(a(Left(x0)))))
End(g(Right5(x0))) End(b(b(Left(x0))))
End(g(g(Right6(x0)))) End(b(b(Left(x0))))
a(Right1(x0)) Right1(Aa(x0))
a(Right2(x0)) Right2(Aa(x0))
a(Right3(x0)) Right3(Aa(x0))
a(Right4(x0)) Right4(Aa(x0))
a(Right5(x0)) Right5(Aa(x0))
a(Right6(x0)) Right6(Aa(x0))
g(Right1(x0)) Right1(Ag(x0))
g(Right2(x0)) Right2(Ag(x0))
g(Right3(x0)) Right3(Ag(x0))
g(Right4(x0)) Right4(Ag(x0))
g(Right5(x0)) Right5(Ag(x0))
g(Right6(x0)) Right6(Ag(x0))
d(Right1(x0)) Right1(Ad(x0))
d(Right2(x0)) Right2(Ad(x0))
d(Right3(x0)) Right3(Ad(x0))
d(Right4(x0)) Right4(Ad(x0))
d(Right5(x0)) Right5(Ad(x0))
d(Right6(x0)) Right6(Ad(x0))
b(Right1(x0)) Right1(Ab(x0))
b(Right2(x0)) Right2(Ab(x0))
b(Right3(x0)) Right3(Ab(x0))
b(Right4(x0)) Right4(Ab(x0))
b(Right5(x0)) Right5(Ab(x0))
b(Right6(x0)) Right6(Ab(x0))
c(Right1(x0)) Right1(Ac(x0))
c(Right2(x0)) Right2(Ac(x0))
c(Right3(x0)) Right3(Ac(x0))
c(Right4(x0)) Right4(Ac(x0))
c(Right5(x0)) Right5(Ac(x0))
c(Right6(x0)) Right6(Ac(x0))
Left(Aa(x0)) a(Left(x0))
Left(Ag(x0)) g(Left(x0))
Left(Ad(x0)) d(Left(x0))
Left(Ab(x0)) b(Left(x0))
Left(Ac(x0)) c(Left(x0))
Left(Wait(x0)) Begin(x0)
a(x0) d(g(x0))
b(b(x0)) g(g(a(x0)))
g(g(g(x0))) b(b(x0))

1.1.1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[Ab(x1)] = 1 · x1 + 0
[Right2(x1)] = 4 · x1 + 0
[Aa(x1)] = 1 · x1 + 0
[g(x1)] = 1 · x1 + 0
[Begin(x1)] = 2 · x1 + 0
[Wait(x1)] = 1 · x1 + 0
[Ag(x1)] = 1 · x1 + 0
[Ac(x1)] = 2 · x1 + 0
[Ad(x1)] = 1 · x1 + 0
[Right3(x1)] = 2 · x1 + 0
[Right6(x1)] = 2 · x1 + 0
[b(x1)] = 1 · x1 + 0
[Right4(x1)] = 1 · x1 + 0
[a(x1)] = 1 · x1 + 0
[c(x1)] = 2 · x1 + 0
[End(x1)] = 1 · x1 + 0
[Right5(x1)] = 2 · x1 + 0
[Left(x1)] = 2 · x1 + 0
[d(x1)] = 1 · x1 + 0
[Right1(x1)] = 4 · x1 + 8
the rules
b(Begin(x0)) Right3(Wait(x0))
g(g(Begin(x0))) Right5(Wait(x0))
g(Begin(x0)) Right6(Wait(x0))
End(b(Right3(x0))) End(g(g(a(Left(x0)))))
End(g(Right5(x0))) End(b(b(Left(x0))))
End(g(g(Right6(x0)))) End(b(b(Left(x0))))
a(Right1(x0)) Right1(Aa(x0))
a(Right2(x0)) Right2(Aa(x0))
a(Right3(x0)) Right3(Aa(x0))
a(Right4(x0)) Right4(Aa(x0))
a(Right5(x0)) Right5(Aa(x0))
a(Right6(x0)) Right6(Aa(x0))
g(Right1(x0)) Right1(Ag(x0))
g(Right2(x0)) Right2(Ag(x0))
g(Right3(x0)) Right3(Ag(x0))
g(Right4(x0)) Right4(Ag(x0))
g(Right5(x0)) Right5(Ag(x0))
g(Right6(x0)) Right6(Ag(x0))
d(Right1(x0)) Right1(Ad(x0))
d(Right2(x0)) Right2(Ad(x0))
d(Right3(x0)) Right3(Ad(x0))
d(Right4(x0)) Right4(Ad(x0))
d(Right5(x0)) Right5(Ad(x0))
d(Right6(x0)) Right6(Ad(x0))
b(Right1(x0)) Right1(Ab(x0))
b(Right2(x0)) Right2(Ab(x0))
b(Right3(x0)) Right3(Ab(x0))
b(Right4(x0)) Right4(Ab(x0))
b(Right5(x0)) Right5(Ab(x0))
b(Right6(x0)) Right6(Ab(x0))
c(Right2(x0)) Right2(Ac(x0))
c(Right3(x0)) Right3(Ac(x0))
c(Right4(x0)) Right4(Ac(x0))
c(Right5(x0)) Right5(Ac(x0))
c(Right6(x0)) Right6(Ac(x0))
Left(Aa(x0)) a(Left(x0))
Left(Ag(x0)) g(Left(x0))
Left(Ad(x0)) d(Left(x0))
Left(Ab(x0)) b(Left(x0))
Left(Ac(x0)) c(Left(x0))
Left(Wait(x0)) Begin(x0)
a(x0) d(g(x0))
b(b(x0)) g(g(a(x0)))
g(g(g(x0))) b(b(x0))
remain.

1.1.1.1.1.1.1 String Reversal

Since only unary symbols occur, one can reverse all terms and obtains the TRS
Begin(b(x0)) Wait(Right3(x0))
Begin(g(g(x0))) Wait(Right5(x0))
Begin(g(x0)) Wait(Right6(x0))
Right3(b(End(x0))) Left(a(g(g(End(x0)))))
Right5(g(End(x0))) Left(b(b(End(x0))))
Right6(g(g(End(x0)))) Left(b(b(End(x0))))
Right1(a(x0)) Aa(Right1(x0))
Right2(a(x0)) Aa(Right2(x0))
Right3(a(x0)) Aa(Right3(x0))
Right4(a(x0)) Aa(Right4(x0))
Right5(a(x0)) Aa(Right5(x0))
Right6(a(x0)) Aa(Right6(x0))
Right1(g(x0)) Ag(Right1(x0))
Right2(g(x0)) Ag(Right2(x0))
Right3(g(x0)) Ag(Right3(x0))
Right4(g(x0)) Ag(Right4(x0))
Right5(g(x0)) Ag(Right5(x0))
Right6(g(x0)) Ag(Right6(x0))
Right1(d(x0)) Ad(Right1(x0))
Right2(d(x0)) Ad(Right2(x0))
Right3(d(x0)) Ad(Right3(x0))
Right4(d(x0)) Ad(Right4(x0))
Right5(d(x0)) Ad(Right5(x0))
Right6(d(x0)) Ad(Right6(x0))
Right1(b(x0)) Ab(Right1(x0))
Right2(b(x0)) Ab(Right2(x0))
Right3(b(x0)) Ab(Right3(x0))
Right4(b(x0)) Ab(Right4(x0))
Right5(b(x0)) Ab(Right5(x0))
Right6(b(x0)) Ab(Right6(x0))
Right2(c(x0)) Ac(Right2(x0))
Right3(c(x0)) Ac(Right3(x0))
Right4(c(x0)) Ac(Right4(x0))
Right5(c(x0)) Ac(Right5(x0))
Right6(c(x0)) Ac(Right6(x0))
Aa(Left(x0)) Left(a(x0))
Ag(Left(x0)) Left(g(x0))
Ad(Left(x0)) Left(d(x0))
Ab(Left(x0)) Left(b(x0))
Ac(Left(x0)) Left(c(x0))
Wait(Left(x0)) Begin(x0)
a(x0) g(d(x0))
b(b(x0)) a(g(g(x0)))
g(g(g(x0))) b(b(x0))

1.1.1.1.1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[Ab(x1)] = 1 · x1 + 0
[Right2(x1)] = 2 · x1 + 2
[Aa(x1)] = 1 · x1 + 0
[g(x1)] = 1 · x1 + 0
[Begin(x1)] = 4 · x1 + 0
[Wait(x1)] = 2 · x1 + 0
[Ag(x1)] = 1 · x1 + 0
[Ac(x1)] = 1 · x1 + 2
[Ad(x1)] = 1 · x1 + 0
[Right3(x1)] = 2 · x1 + 0
[Right6(x1)] = 2 · x1 + 0
[b(x1)] = 1 · x1 + 0
[Right4(x1)] = 3 · x1 + 0
[a(x1)] = 1 · x1 + 0
[c(x1)] = 1 · x1 + 1
[End(x1)] = 1 · x1 + 0
[Right5(x1)] = 2 · x1 + 0
[Left(x1)] = 2 · x1 + 0
[d(x1)] = 1 · x1 + 0
[Right1(x1)] = 1 · x1 + 0
the rules
Begin(b(x0)) Wait(Right3(x0))
Begin(g(g(x0))) Wait(Right5(x0))
Begin(g(x0)) Wait(Right6(x0))
Right3(b(End(x0))) Left(a(g(g(End(x0)))))
Right5(g(End(x0))) Left(b(b(End(x0))))
Right6(g(g(End(x0)))) Left(b(b(End(x0))))
Right1(a(x0)) Aa(Right1(x0))
Right2(a(x0)) Aa(Right2(x0))
Right3(a(x0)) Aa(Right3(x0))
Right4(a(x0)) Aa(Right4(x0))
Right5(a(x0)) Aa(Right5(x0))
Right6(a(x0)) Aa(Right6(x0))
Right1(g(x0)) Ag(Right1(x0))
Right2(g(x0)) Ag(Right2(x0))
Right3(g(x0)) Ag(Right3(x0))
Right4(g(x0)) Ag(Right4(x0))
Right5(g(x0)) Ag(Right5(x0))
Right6(g(x0)) Ag(Right6(x0))
Right1(d(x0)) Ad(Right1(x0))
Right2(d(x0)) Ad(Right2(x0))
Right3(d(x0)) Ad(Right3(x0))
Right4(d(x0)) Ad(Right4(x0))
Right5(d(x0)) Ad(Right5(x0))
Right6(d(x0)) Ad(Right6(x0))
Right1(b(x0)) Ab(Right1(x0))
Right2(b(x0)) Ab(Right2(x0))
Right3(b(x0)) Ab(Right3(x0))
Right4(b(x0)) Ab(Right4(x0))
Right5(b(x0)) Ab(Right5(x0))
Right6(b(x0)) Ab(Right6(x0))
Right2(c(x0)) Ac(Right2(x0))
Right3(c(x0)) Ac(Right3(x0))
Right5(c(x0)) Ac(Right5(x0))
Right6(c(x0)) Ac(Right6(x0))
Aa(Left(x0)) Left(a(x0))
Ag(Left(x0)) Left(g(x0))
Ad(Left(x0)) Left(d(x0))
Ab(Left(x0)) Left(b(x0))
Ac(Left(x0)) Left(c(x0))
Wait(Left(x0)) Begin(x0)
a(x0) g(d(x0))
b(b(x0)) a(g(g(x0)))
g(g(g(x0))) b(b(x0))
remain.

1.1.1.1.1.1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[Ab(x1)] = 1 · x1 + 0
[Right2(x1)] = 6 · x1 + 6
[Aa(x1)] = 1 · x1 + 0
[g(x1)] = 1 · x1 + 0
[Begin(x1)] = 4 · x1 + 0
[Wait(x1)] = 2 · x1 + 0
[Ag(x1)] = 1 · x1 + 0
[Ac(x1)] = 1 · x1 + 4
[Ad(x1)] = 1 · x1 + 0
[Right3(x1)] = 2 · x1 + 0
[Right6(x1)] = 2 · x1 + 0
[b(x1)] = 1 · x1 + 0
[Right4(x1)] = 2 · x1 + 0
[a(x1)] = 1 · x1 + 0
[c(x1)] = 1 · x1 + 2
[End(x1)] = 2 · x1 + 0
[Right5(x1)] = 2 · x1 + 0
[Left(x1)] = 2 · x1 + 0
[d(x1)] = 1 · x1 + 0
[Right1(x1)] = 2 · x1 + 0
the rules
Begin(b(x0)) Wait(Right3(x0))
Begin(g(g(x0))) Wait(Right5(x0))
Begin(g(x0)) Wait(Right6(x0))
Right3(b(End(x0))) Left(a(g(g(End(x0)))))
Right5(g(End(x0))) Left(b(b(End(x0))))
Right6(g(g(End(x0)))) Left(b(b(End(x0))))
Right1(a(x0)) Aa(Right1(x0))
Right2(a(x0)) Aa(Right2(x0))
Right3(a(x0)) Aa(Right3(x0))
Right4(a(x0)) Aa(Right4(x0))
Right5(a(x0)) Aa(Right5(x0))
Right6(a(x0)) Aa(Right6(x0))
Right1(g(x0)) Ag(Right1(x0))
Right2(g(x0)) Ag(Right2(x0))
Right3(g(x0)) Ag(Right3(x0))
Right4(g(x0)) Ag(Right4(x0))
Right5(g(x0)) Ag(Right5(x0))
Right6(g(x0)) Ag(Right6(x0))
Right1(d(x0)) Ad(Right1(x0))
Right2(d(x0)) Ad(Right2(x0))
Right3(d(x0)) Ad(Right3(x0))
Right4(d(x0)) Ad(Right4(x0))
Right5(d(x0)) Ad(Right5(x0))
Right6(d(x0)) Ad(Right6(x0))
Right1(b(x0)) Ab(Right1(x0))
Right2(b(x0)) Ab(Right2(x0))
Right3(b(x0)) Ab(Right3(x0))
Right4(b(x0)) Ab(Right4(x0))
Right5(b(x0)) Ab(Right5(x0))
Right6(b(x0)) Ab(Right6(x0))
Right3(c(x0)) Ac(Right3(x0))
Right5(c(x0)) Ac(Right5(x0))
Right6(c(x0)) Ac(Right6(x0))
Aa(Left(x0)) Left(a(x0))
Ag(Left(x0)) Left(g(x0))
Ad(Left(x0)) Left(d(x0))
Ab(Left(x0)) Left(b(x0))
Ac(Left(x0)) Left(c(x0))
Wait(Left(x0)) Begin(x0)
a(x0) g(d(x0))
b(b(x0)) a(g(g(x0)))
g(g(g(x0))) b(b(x0))
remain.

1.1.1.1.1.1.1.1.1.1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
Begin#(b(x0)) Right3#(x0)
Begin#(b(x0)) Wait#(Right3(x0))
Begin#(g(g(x0))) Right5#(x0)
Begin#(g(g(x0))) Wait#(Right5(x0))
Begin#(g(x0)) Right6#(x0)
Begin#(g(x0)) Wait#(Right6(x0))
Right3#(b(End(x0))) g#(End(x0))
Right3#(b(End(x0))) g#(g(End(x0)))
Right3#(b(End(x0))) a#(g(g(End(x0))))
Right5#(g(End(x0))) b#(End(x0))
Right5#(g(End(x0))) b#(b(End(x0)))
Right6#(g(g(End(x0)))) b#(End(x0))
Right6#(g(g(End(x0)))) b#(b(End(x0)))
Right1#(a(x0)) Right1#(x0)
Right1#(a(x0)) Aa#(Right1(x0))
Right2#(a(x0)) Right2#(x0)
Right2#(a(x0)) Aa#(Right2(x0))
Right3#(a(x0)) Right3#(x0)
Right3#(a(x0)) Aa#(Right3(x0))
Right4#(a(x0)) Right4#(x0)
Right4#(a(x0)) Aa#(Right4(x0))
Right5#(a(x0)) Right5#(x0)
Right5#(a(x0)) Aa#(Right5(x0))
Right6#(a(x0)) Right6#(x0)
Right6#(a(x0)) Aa#(Right6(x0))
Right1#(g(x0)) Right1#(x0)
Right1#(g(x0)) Ag#(Right1(x0))
Right2#(g(x0)) Right2#(x0)
Right2#(g(x0)) Ag#(Right2(x0))
Right3#(g(x0)) Right3#(x0)
Right3#(g(x0)) Ag#(Right3(x0))
Right4#(g(x0)) Right4#(x0)
Right4#(g(x0)) Ag#(Right4(x0))
Right5#(g(x0)) Right5#(x0)
Right5#(g(x0)) Ag#(Right5(x0))
Right6#(g(x0)) Right6#(x0)
Right6#(g(x0)) Ag#(Right6(x0))
Right1#(d(x0)) Right1#(x0)
Right1#(d(x0)) Ad#(Right1(x0))
Right2#(d(x0)) Right2#(x0)
Right2#(d(x0)) Ad#(Right2(x0))
Right3#(d(x0)) Right3#(x0)
Right3#(d(x0)) Ad#(Right3(x0))
Right4#(d(x0)) Right4#(x0)
Right4#(d(x0)) Ad#(Right4(x0))
Right5#(d(x0)) Right5#(x0)
Right5#(d(x0)) Ad#(Right5(x0))
Right6#(d(x0)) Right6#(x0)
Right6#(d(x0)) Ad#(Right6(x0))
Right1#(b(x0)) Right1#(x0)
Right1#(b(x0)) Ab#(Right1(x0))
Right2#(b(x0)) Right2#(x0)
Right2#(b(x0)) Ab#(Right2(x0))
Right3#(b(x0)) Right3#(x0)
Right3#(b(x0)) Ab#(Right3(x0))
Right4#(b(x0)) Right4#(x0)
Right4#(b(x0)) Ab#(Right4(x0))
Right5#(b(x0)) Right5#(x0)
Right5#(b(x0)) Ab#(Right5(x0))
Right6#(b(x0)) Right6#(x0)
Right6#(b(x0)) Ab#(Right6(x0))
Right3#(c(x0)) Right3#(x0)
Right3#(c(x0)) Ac#(Right3(x0))
Right5#(c(x0)) Right5#(x0)
Right5#(c(x0)) Ac#(Right5(x0))
Right6#(c(x0)) Right6#(x0)
Right6#(c(x0)) Ac#(Right6(x0))
Aa#(Left(x0)) a#(x0)
Ag#(Left(x0)) g#(x0)
Ab#(Left(x0)) b#(x0)
Wait#(Left(x0)) Begin#(x0)
a#(x0) g#(d(x0))
b#(b(x0)) g#(x0)
b#(b(x0)) g#(g(x0))
b#(b(x0)) a#(g(g(x0)))
g#(g(g(x0))) b#(x0)
g#(g(g(x0))) b#(b(x0))

1.1.1.1.1.1.1.1.1.1.1 Dependency Graph Processor

The dependency pairs are split into 8 components.