YES
0 QTRS
↳1 QTRSRRRProof (⇔, 64 ms)
↳2 QTRS
↳3 QTRSRRRProof (⇔, 6 ms)
↳4 QTRS
↳5 DependencyPairsProof (⇔, 10 ms)
↳6 QDP
↳7 DependencyGraphProof (⇔, 0 ms)
↳8 AND
↳9 QDP
↳10 UsableRulesProof (⇔, 0 ms)
↳11 QDP
↳12 MRRProof (⇔, 10 ms)
↳13 QDP
↳14 PisEmptyProof (⇔, 0 ms)
↳15 YES
↳16 QDP
↳17 UsableRulesProof (⇔, 1 ms)
↳18 QDP
↳19 QDPSizeChangeProof (⇔, 0 ms)
↳20 YES
↳21 QDP
↳22 UsableRulesProof (⇔, 1 ms)
↳23 QDP
↳24 QDPSizeChangeProof (⇔, 0 ms)
↳25 YES
↳26 QDP
↳27 UsableRulesProof (⇔, 2 ms)
↳28 QDP
↳29 QDPSizeChangeProof (⇔, 0 ms)
↳30 YES
↳31 QDP
↳32 UsableRulesProof (⇔, 0 ms)
↳33 QDP
↳34 QDPSizeChangeProof (⇔, 0 ms)
↳35 YES
↳36 QDP
↳37 UsableRulesProof (⇔, 1 ms)
↳38 QDP
↳39 QDPSizeChangeProof (⇔, 0 ms)
↳40 YES
↳41 QDP
↳42 UsableRulesProof (⇔, 0 ms)
↳43 QDP
↳44 QDPSizeChangeProof (⇔, 0 ms)
↳45 YES
↳46 QDP
↳47 UsableRulesProof (⇔, 0 ms)
↳48 QDP
↳49 QDPOrderProof (⇔, 22 ms)
↳50 QDP
↳51 DependencyGraphProof (⇔, 0 ms)
↳52 TRUE
Begin(b(b(x))) → Wait(Right1(x))
Begin(b(x)) → Wait(Right2(x))
Begin(b(x)) → Wait(Right3(x))
Begin(d(x)) → Wait(Right4(x))
Begin(g(g(x))) → Wait(Right5(x))
Begin(g(x)) → Wait(Right6(x))
Right1(b(End(x))) → Left(c(d(c(End(x)))))
Right2(b(b(End(x)))) → Left(c(d(c(End(x)))))
Right3(b(End(x))) → Left(a(g(g(End(x)))))
Right4(c(End(x))) → Left(g(g(End(x))))
Right5(g(End(x))) → Left(b(b(End(x))))
Right6(g(g(End(x)))) → Left(b(b(End(x))))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right4(a(x)) → Aa(Right4(x))
Right5(a(x)) → Aa(Right5(x))
Right6(a(x)) → Aa(Right6(x))
Right1(g(x)) → Ag(Right1(x))
Right2(g(x)) → Ag(Right2(x))
Right3(g(x)) → Ag(Right3(x))
Right4(g(x)) → Ag(Right4(x))
Right5(g(x)) → Ag(Right5(x))
Right6(g(x)) → Ag(Right6(x))
Right1(d(x)) → Ad(Right1(x))
Right2(d(x)) → Ad(Right2(x))
Right3(d(x)) → Ad(Right3(x))
Right4(d(x)) → Ad(Right4(x))
Right5(d(x)) → Ad(Right5(x))
Right6(d(x)) → Ad(Right6(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right4(b(x)) → Ab(Right4(x))
Right5(b(x)) → Ab(Right5(x))
Right6(b(x)) → Ab(Right6(x))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Right4(c(x)) → Ac(Right4(x))
Right5(c(x)) → Ac(Right5(x))
Right6(c(x)) → Ac(Right6(x))
Aa(Left(x)) → Left(a(x))
Ag(Left(x)) → Left(g(x))
Ad(Left(x)) → Left(d(x))
Ab(Left(x)) → Left(b(x))
Ac(Left(x)) → Left(c(x))
Wait(Left(x)) → Begin(x)
a(x) → g(d(x))
b(b(b(x))) → c(d(c(x)))
b(b(x)) → a(g(g(x)))
c(d(x)) → g(g(x))
g(g(g(x))) → b(b(x))
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(Aa(x1)) = 12 + x1
POL(Ab(x1)) = 18 + x1
POL(Ac(x1)) = 26 + x1
POL(Ad(x1)) = x1
POL(Ag(x1)) = 12 + x1
POL(Begin(x1)) = 1 + x1
POL(End(x1)) = x1
POL(Left(x1)) = 1 + x1
POL(Right1(x1)) = 37 + x1
POL(Right2(x1)) = 18 + x1
POL(Right3(x1)) = 19 + x1
POL(Right4(x1)) = x1
POL(Right5(x1)) = 25 + x1
POL(Right6(x1)) = 13 + x1
POL(Wait(x1)) = x1
POL(a(x1)) = 12 + x1
POL(b(x1)) = 18 + x1
POL(c(x1)) = 26 + x1
POL(d(x1)) = x1
POL(g(x1)) = 12 + x1
Begin(b(x)) → Wait(Right2(x))
Begin(d(x)) → Wait(Right4(x))
Right1(b(End(x))) → Left(c(d(c(End(x)))))
Right2(b(b(End(x)))) → Left(c(d(c(End(x)))))
Right4(c(End(x))) → Left(g(g(End(x))))
b(b(b(x))) → c(d(c(x)))
c(d(x)) → g(g(x))
Begin(b(b(x))) → Wait(Right1(x))
Begin(b(x)) → Wait(Right3(x))
Begin(g(g(x))) → Wait(Right5(x))
Begin(g(x)) → Wait(Right6(x))
Right3(b(End(x))) → Left(a(g(g(End(x)))))
Right5(g(End(x))) → Left(b(b(End(x))))
Right6(g(g(End(x)))) → Left(b(b(End(x))))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right4(a(x)) → Aa(Right4(x))
Right5(a(x)) → Aa(Right5(x))
Right6(a(x)) → Aa(Right6(x))
Right1(g(x)) → Ag(Right1(x))
Right2(g(x)) → Ag(Right2(x))
Right3(g(x)) → Ag(Right3(x))
Right4(g(x)) → Ag(Right4(x))
Right5(g(x)) → Ag(Right5(x))
Right6(g(x)) → Ag(Right6(x))
Right1(d(x)) → Ad(Right1(x))
Right2(d(x)) → Ad(Right2(x))
Right3(d(x)) → Ad(Right3(x))
Right4(d(x)) → Ad(Right4(x))
Right5(d(x)) → Ad(Right5(x))
Right6(d(x)) → Ad(Right6(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right4(b(x)) → Ab(Right4(x))
Right5(b(x)) → Ab(Right5(x))
Right6(b(x)) → Ab(Right6(x))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Right4(c(x)) → Ac(Right4(x))
Right5(c(x)) → Ac(Right5(x))
Right6(c(x)) → Ac(Right6(x))
Aa(Left(x)) → Left(a(x))
Ag(Left(x)) → Left(g(x))
Ad(Left(x)) → Left(d(x))
Ab(Left(x)) → Left(b(x))
Ac(Left(x)) → Left(c(x))
Wait(Left(x)) → Begin(x)
a(x) → g(d(x))
b(b(x)) → a(g(g(x)))
g(g(g(x))) → b(b(x))
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(Aa(x1)) = x1
POL(Ab(x1)) = x1
POL(Ac(x1)) = x1
POL(Ad(x1)) = x1
POL(Ag(x1)) = x1
POL(Begin(x1)) = 1 + x1
POL(End(x1)) = x1
POL(Left(x1)) = 1 + x1
POL(Right1(x1)) = x1
POL(Right2(x1)) = x1
POL(Right3(x1)) = 1 + x1
POL(Right4(x1)) = x1
POL(Right5(x1)) = 1 + x1
POL(Right6(x1)) = 1 + x1
POL(Wait(x1)) = x1
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(c(x1)) = x1
POL(d(x1)) = x1
POL(g(x1)) = x1
Begin(b(b(x))) → Wait(Right1(x))
Begin(b(x)) → Wait(Right3(x))
Begin(g(g(x))) → Wait(Right5(x))
Begin(g(x)) → Wait(Right6(x))
Right3(b(End(x))) → Left(a(g(g(End(x)))))
Right5(g(End(x))) → Left(b(b(End(x))))
Right6(g(g(End(x)))) → Left(b(b(End(x))))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right4(a(x)) → Aa(Right4(x))
Right5(a(x)) → Aa(Right5(x))
Right6(a(x)) → Aa(Right6(x))
Right1(g(x)) → Ag(Right1(x))
Right2(g(x)) → Ag(Right2(x))
Right3(g(x)) → Ag(Right3(x))
Right4(g(x)) → Ag(Right4(x))
Right5(g(x)) → Ag(Right5(x))
Right6(g(x)) → Ag(Right6(x))
Right1(d(x)) → Ad(Right1(x))
Right2(d(x)) → Ad(Right2(x))
Right3(d(x)) → Ad(Right3(x))
Right4(d(x)) → Ad(Right4(x))
Right5(d(x)) → Ad(Right5(x))
Right6(d(x)) → Ad(Right6(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right4(b(x)) → Ab(Right4(x))
Right5(b(x)) → Ab(Right5(x))
Right6(b(x)) → Ab(Right6(x))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Right4(c(x)) → Ac(Right4(x))
Right5(c(x)) → Ac(Right5(x))
Right6(c(x)) → Ac(Right6(x))
Aa(Left(x)) → Left(a(x))
Ag(Left(x)) → Left(g(x))
Ad(Left(x)) → Left(d(x))
Ab(Left(x)) → Left(b(x))
Ac(Left(x)) → Left(c(x))
Wait(Left(x)) → Begin(x)
a(x) → g(d(x))
b(b(x)) → a(g(g(x)))
g(g(g(x))) → b(b(x))
BEGIN(b(x)) → WAIT(Right3(x))
BEGIN(b(x)) → RIGHT3(x)
BEGIN(g(g(x))) → WAIT(Right5(x))
BEGIN(g(g(x))) → RIGHT5(x)
BEGIN(g(x)) → WAIT(Right6(x))
BEGIN(g(x)) → RIGHT6(x)
RIGHT3(b(End(x))) → A(g(g(End(x))))
RIGHT3(b(End(x))) → G(g(End(x)))
RIGHT3(b(End(x))) → G(End(x))
RIGHT5(g(End(x))) → B(b(End(x)))
RIGHT5(g(End(x))) → B(End(x))
RIGHT6(g(g(End(x)))) → B(b(End(x)))
RIGHT6(g(g(End(x)))) → B(End(x))
RIGHT1(a(x)) → AA(Right1(x))
RIGHT1(a(x)) → RIGHT1(x)
RIGHT2(a(x)) → AA(Right2(x))
RIGHT2(a(x)) → RIGHT2(x)
RIGHT3(a(x)) → AA(Right3(x))
RIGHT3(a(x)) → RIGHT3(x)
RIGHT4(a(x)) → AA(Right4(x))
RIGHT4(a(x)) → RIGHT4(x)
RIGHT5(a(x)) → AA(Right5(x))
RIGHT5(a(x)) → RIGHT5(x)
RIGHT6(a(x)) → AA(Right6(x))
RIGHT6(a(x)) → RIGHT6(x)
RIGHT1(g(x)) → AG(Right1(x))
RIGHT1(g(x)) → RIGHT1(x)
RIGHT2(g(x)) → AG(Right2(x))
RIGHT2(g(x)) → RIGHT2(x)
RIGHT3(g(x)) → AG(Right3(x))
RIGHT3(g(x)) → RIGHT3(x)
RIGHT4(g(x)) → AG(Right4(x))
RIGHT4(g(x)) → RIGHT4(x)
RIGHT5(g(x)) → AG(Right5(x))
RIGHT5(g(x)) → RIGHT5(x)
RIGHT6(g(x)) → AG(Right6(x))
RIGHT6(g(x)) → RIGHT6(x)
RIGHT1(d(x)) → AD(Right1(x))
RIGHT1(d(x)) → RIGHT1(x)
RIGHT2(d(x)) → AD(Right2(x))
RIGHT2(d(x)) → RIGHT2(x)
RIGHT3(d(x)) → AD(Right3(x))
RIGHT3(d(x)) → RIGHT3(x)
RIGHT4(d(x)) → AD(Right4(x))
RIGHT4(d(x)) → RIGHT4(x)
RIGHT5(d(x)) → AD(Right5(x))
RIGHT5(d(x)) → RIGHT5(x)
RIGHT6(d(x)) → AD(Right6(x))
RIGHT6(d(x)) → RIGHT6(x)
RIGHT1(b(x)) → AB(Right1(x))
RIGHT1(b(x)) → RIGHT1(x)
RIGHT2(b(x)) → AB(Right2(x))
RIGHT2(b(x)) → RIGHT2(x)
RIGHT3(b(x)) → AB(Right3(x))
RIGHT3(b(x)) → RIGHT3(x)
RIGHT4(b(x)) → AB(Right4(x))
RIGHT4(b(x)) → RIGHT4(x)
RIGHT5(b(x)) → AB(Right5(x))
RIGHT5(b(x)) → RIGHT5(x)
RIGHT6(b(x)) → AB(Right6(x))
RIGHT6(b(x)) → RIGHT6(x)
RIGHT1(c(x)) → AC(Right1(x))
RIGHT1(c(x)) → RIGHT1(x)
RIGHT2(c(x)) → AC(Right2(x))
RIGHT2(c(x)) → RIGHT2(x)
RIGHT3(c(x)) → AC(Right3(x))
RIGHT3(c(x)) → RIGHT3(x)
RIGHT4(c(x)) → AC(Right4(x))
RIGHT4(c(x)) → RIGHT4(x)
RIGHT5(c(x)) → AC(Right5(x))
RIGHT5(c(x)) → RIGHT5(x)
RIGHT6(c(x)) → AC(Right6(x))
RIGHT6(c(x)) → RIGHT6(x)
AA(Left(x)) → A(x)
AG(Left(x)) → G(x)
AB(Left(x)) → B(x)
WAIT(Left(x)) → BEGIN(x)
A(x) → G(d(x))
B(b(x)) → A(g(g(x)))
B(b(x)) → G(g(x))
B(b(x)) → G(x)
G(g(g(x))) → B(b(x))
G(g(g(x))) → B(x)
Begin(b(x)) → Wait(Right3(x))
Begin(g(g(x))) → Wait(Right5(x))
Begin(g(x)) → Wait(Right6(x))
Right3(b(End(x))) → Left(a(g(g(End(x)))))
Right5(g(End(x))) → Left(b(b(End(x))))
Right6(g(g(End(x)))) → Left(b(b(End(x))))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right4(a(x)) → Aa(Right4(x))
Right5(a(x)) → Aa(Right5(x))
Right6(a(x)) → Aa(Right6(x))
Right1(g(x)) → Ag(Right1(x))
Right2(g(x)) → Ag(Right2(x))
Right3(g(x)) → Ag(Right3(x))
Right4(g(x)) → Ag(Right4(x))
Right5(g(x)) → Ag(Right5(x))
Right6(g(x)) → Ag(Right6(x))
Right1(d(x)) → Ad(Right1(x))
Right2(d(x)) → Ad(Right2(x))
Right3(d(x)) → Ad(Right3(x))
Right4(d(x)) → Ad(Right4(x))
Right5(d(x)) → Ad(Right5(x))
Right6(d(x)) → Ad(Right6(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right4(b(x)) → Ab(Right4(x))
Right5(b(x)) → Ab(Right5(x))
Right6(b(x)) → Ab(Right6(x))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Right4(c(x)) → Ac(Right4(x))
Right5(c(x)) → Ac(Right5(x))
Right6(c(x)) → Ac(Right6(x))
Aa(Left(x)) → Left(a(x))
Ag(Left(x)) → Left(g(x))
Ad(Left(x)) → Left(d(x))
Ab(Left(x)) → Left(b(x))
Ac(Left(x)) → Left(c(x))
Wait(Left(x)) → Begin(x)
a(x) → g(d(x))
b(b(x)) → a(g(g(x)))
g(g(g(x))) → b(b(x))
B(b(x)) → G(g(x))
G(g(g(x))) → B(b(x))
B(b(x)) → G(x)
G(g(g(x))) → B(x)
Begin(b(x)) → Wait(Right3(x))
Begin(g(g(x))) → Wait(Right5(x))
Begin(g(x)) → Wait(Right6(x))
Right3(b(End(x))) → Left(a(g(g(End(x)))))
Right5(g(End(x))) → Left(b(b(End(x))))
Right6(g(g(End(x)))) → Left(b(b(End(x))))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right4(a(x)) → Aa(Right4(x))
Right5(a(x)) → Aa(Right5(x))
Right6(a(x)) → Aa(Right6(x))
Right1(g(x)) → Ag(Right1(x))
Right2(g(x)) → Ag(Right2(x))
Right3(g(x)) → Ag(Right3(x))
Right4(g(x)) → Ag(Right4(x))
Right5(g(x)) → Ag(Right5(x))
Right6(g(x)) → Ag(Right6(x))
Right1(d(x)) → Ad(Right1(x))
Right2(d(x)) → Ad(Right2(x))
Right3(d(x)) → Ad(Right3(x))
Right4(d(x)) → Ad(Right4(x))
Right5(d(x)) → Ad(Right5(x))
Right6(d(x)) → Ad(Right6(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right4(b(x)) → Ab(Right4(x))
Right5(b(x)) → Ab(Right5(x))
Right6(b(x)) → Ab(Right6(x))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Right4(c(x)) → Ac(Right4(x))
Right5(c(x)) → Ac(Right5(x))
Right6(c(x)) → Ac(Right6(x))
Aa(Left(x)) → Left(a(x))
Ag(Left(x)) → Left(g(x))
Ad(Left(x)) → Left(d(x))
Ab(Left(x)) → Left(b(x))
Ac(Left(x)) → Left(c(x))
Wait(Left(x)) → Begin(x)
a(x) → g(d(x))
b(b(x)) → a(g(g(x)))
g(g(g(x))) → b(b(x))
B(b(x)) → G(g(x))
G(g(g(x))) → B(b(x))
B(b(x)) → G(x)
G(g(g(x))) → B(x)
b(b(x)) → a(g(g(x)))
g(g(g(x))) → b(b(x))
a(x) → g(d(x))
B(b(x)) → G(g(x))
G(g(g(x))) → B(b(x))
B(b(x)) → G(x)
G(g(g(x))) → B(x)
POL(B(x1)) = 2·x1
POL(G(x1)) = 2·x1
POL(a(x1)) = 2 + x1
POL(b(x1)) = 3 + x1
POL(d(x1)) = x1
POL(g(x1)) = 2 + x1
b(b(x)) → a(g(g(x)))
g(g(g(x))) → b(b(x))
a(x) → g(d(x))
RIGHT4(g(x)) → RIGHT4(x)
RIGHT4(a(x)) → RIGHT4(x)
RIGHT4(d(x)) → RIGHT4(x)
RIGHT4(b(x)) → RIGHT4(x)
RIGHT4(c(x)) → RIGHT4(x)
Begin(b(x)) → Wait(Right3(x))
Begin(g(g(x))) → Wait(Right5(x))
Begin(g(x)) → Wait(Right6(x))
Right3(b(End(x))) → Left(a(g(g(End(x)))))
Right5(g(End(x))) → Left(b(b(End(x))))
Right6(g(g(End(x)))) → Left(b(b(End(x))))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right4(a(x)) → Aa(Right4(x))
Right5(a(x)) → Aa(Right5(x))
Right6(a(x)) → Aa(Right6(x))
Right1(g(x)) → Ag(Right1(x))
Right2(g(x)) → Ag(Right2(x))
Right3(g(x)) → Ag(Right3(x))
Right4(g(x)) → Ag(Right4(x))
Right5(g(x)) → Ag(Right5(x))
Right6(g(x)) → Ag(Right6(x))
Right1(d(x)) → Ad(Right1(x))
Right2(d(x)) → Ad(Right2(x))
Right3(d(x)) → Ad(Right3(x))
Right4(d(x)) → Ad(Right4(x))
Right5(d(x)) → Ad(Right5(x))
Right6(d(x)) → Ad(Right6(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right4(b(x)) → Ab(Right4(x))
Right5(b(x)) → Ab(Right5(x))
Right6(b(x)) → Ab(Right6(x))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Right4(c(x)) → Ac(Right4(x))
Right5(c(x)) → Ac(Right5(x))
Right6(c(x)) → Ac(Right6(x))
Aa(Left(x)) → Left(a(x))
Ag(Left(x)) → Left(g(x))
Ad(Left(x)) → Left(d(x))
Ab(Left(x)) → Left(b(x))
Ac(Left(x)) → Left(c(x))
Wait(Left(x)) → Begin(x)
a(x) → g(d(x))
b(b(x)) → a(g(g(x)))
g(g(g(x))) → b(b(x))
RIGHT4(g(x)) → RIGHT4(x)
RIGHT4(a(x)) → RIGHT4(x)
RIGHT4(d(x)) → RIGHT4(x)
RIGHT4(b(x)) → RIGHT4(x)
RIGHT4(c(x)) → RIGHT4(x)
From the DPs we obtained the following set of size-change graphs:
RIGHT2(g(x)) → RIGHT2(x)
RIGHT2(a(x)) → RIGHT2(x)
RIGHT2(d(x)) → RIGHT2(x)
RIGHT2(b(x)) → RIGHT2(x)
RIGHT2(c(x)) → RIGHT2(x)
Begin(b(x)) → Wait(Right3(x))
Begin(g(g(x))) → Wait(Right5(x))
Begin(g(x)) → Wait(Right6(x))
Right3(b(End(x))) → Left(a(g(g(End(x)))))
Right5(g(End(x))) → Left(b(b(End(x))))
Right6(g(g(End(x)))) → Left(b(b(End(x))))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right4(a(x)) → Aa(Right4(x))
Right5(a(x)) → Aa(Right5(x))
Right6(a(x)) → Aa(Right6(x))
Right1(g(x)) → Ag(Right1(x))
Right2(g(x)) → Ag(Right2(x))
Right3(g(x)) → Ag(Right3(x))
Right4(g(x)) → Ag(Right4(x))
Right5(g(x)) → Ag(Right5(x))
Right6(g(x)) → Ag(Right6(x))
Right1(d(x)) → Ad(Right1(x))
Right2(d(x)) → Ad(Right2(x))
Right3(d(x)) → Ad(Right3(x))
Right4(d(x)) → Ad(Right4(x))
Right5(d(x)) → Ad(Right5(x))
Right6(d(x)) → Ad(Right6(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right4(b(x)) → Ab(Right4(x))
Right5(b(x)) → Ab(Right5(x))
Right6(b(x)) → Ab(Right6(x))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Right4(c(x)) → Ac(Right4(x))
Right5(c(x)) → Ac(Right5(x))
Right6(c(x)) → Ac(Right6(x))
Aa(Left(x)) → Left(a(x))
Ag(Left(x)) → Left(g(x))
Ad(Left(x)) → Left(d(x))
Ab(Left(x)) → Left(b(x))
Ac(Left(x)) → Left(c(x))
Wait(Left(x)) → Begin(x)
a(x) → g(d(x))
b(b(x)) → a(g(g(x)))
g(g(g(x))) → b(b(x))
RIGHT2(g(x)) → RIGHT2(x)
RIGHT2(a(x)) → RIGHT2(x)
RIGHT2(d(x)) → RIGHT2(x)
RIGHT2(b(x)) → RIGHT2(x)
RIGHT2(c(x)) → RIGHT2(x)
From the DPs we obtained the following set of size-change graphs:
RIGHT1(g(x)) → RIGHT1(x)
RIGHT1(a(x)) → RIGHT1(x)
RIGHT1(d(x)) → RIGHT1(x)
RIGHT1(b(x)) → RIGHT1(x)
RIGHT1(c(x)) → RIGHT1(x)
Begin(b(x)) → Wait(Right3(x))
Begin(g(g(x))) → Wait(Right5(x))
Begin(g(x)) → Wait(Right6(x))
Right3(b(End(x))) → Left(a(g(g(End(x)))))
Right5(g(End(x))) → Left(b(b(End(x))))
Right6(g(g(End(x)))) → Left(b(b(End(x))))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right4(a(x)) → Aa(Right4(x))
Right5(a(x)) → Aa(Right5(x))
Right6(a(x)) → Aa(Right6(x))
Right1(g(x)) → Ag(Right1(x))
Right2(g(x)) → Ag(Right2(x))
Right3(g(x)) → Ag(Right3(x))
Right4(g(x)) → Ag(Right4(x))
Right5(g(x)) → Ag(Right5(x))
Right6(g(x)) → Ag(Right6(x))
Right1(d(x)) → Ad(Right1(x))
Right2(d(x)) → Ad(Right2(x))
Right3(d(x)) → Ad(Right3(x))
Right4(d(x)) → Ad(Right4(x))
Right5(d(x)) → Ad(Right5(x))
Right6(d(x)) → Ad(Right6(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right4(b(x)) → Ab(Right4(x))
Right5(b(x)) → Ab(Right5(x))
Right6(b(x)) → Ab(Right6(x))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Right4(c(x)) → Ac(Right4(x))
Right5(c(x)) → Ac(Right5(x))
Right6(c(x)) → Ac(Right6(x))
Aa(Left(x)) → Left(a(x))
Ag(Left(x)) → Left(g(x))
Ad(Left(x)) → Left(d(x))
Ab(Left(x)) → Left(b(x))
Ac(Left(x)) → Left(c(x))
Wait(Left(x)) → Begin(x)
a(x) → g(d(x))
b(b(x)) → a(g(g(x)))
g(g(g(x))) → b(b(x))
RIGHT1(g(x)) → RIGHT1(x)
RIGHT1(a(x)) → RIGHT1(x)
RIGHT1(d(x)) → RIGHT1(x)
RIGHT1(b(x)) → RIGHT1(x)
RIGHT1(c(x)) → RIGHT1(x)
From the DPs we obtained the following set of size-change graphs:
RIGHT6(g(x)) → RIGHT6(x)
RIGHT6(a(x)) → RIGHT6(x)
RIGHT6(d(x)) → RIGHT6(x)
RIGHT6(b(x)) → RIGHT6(x)
RIGHT6(c(x)) → RIGHT6(x)
Begin(b(x)) → Wait(Right3(x))
Begin(g(g(x))) → Wait(Right5(x))
Begin(g(x)) → Wait(Right6(x))
Right3(b(End(x))) → Left(a(g(g(End(x)))))
Right5(g(End(x))) → Left(b(b(End(x))))
Right6(g(g(End(x)))) → Left(b(b(End(x))))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right4(a(x)) → Aa(Right4(x))
Right5(a(x)) → Aa(Right5(x))
Right6(a(x)) → Aa(Right6(x))
Right1(g(x)) → Ag(Right1(x))
Right2(g(x)) → Ag(Right2(x))
Right3(g(x)) → Ag(Right3(x))
Right4(g(x)) → Ag(Right4(x))
Right5(g(x)) → Ag(Right5(x))
Right6(g(x)) → Ag(Right6(x))
Right1(d(x)) → Ad(Right1(x))
Right2(d(x)) → Ad(Right2(x))
Right3(d(x)) → Ad(Right3(x))
Right4(d(x)) → Ad(Right4(x))
Right5(d(x)) → Ad(Right5(x))
Right6(d(x)) → Ad(Right6(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right4(b(x)) → Ab(Right4(x))
Right5(b(x)) → Ab(Right5(x))
Right6(b(x)) → Ab(Right6(x))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Right4(c(x)) → Ac(Right4(x))
Right5(c(x)) → Ac(Right5(x))
Right6(c(x)) → Ac(Right6(x))
Aa(Left(x)) → Left(a(x))
Ag(Left(x)) → Left(g(x))
Ad(Left(x)) → Left(d(x))
Ab(Left(x)) → Left(b(x))
Ac(Left(x)) → Left(c(x))
Wait(Left(x)) → Begin(x)
a(x) → g(d(x))
b(b(x)) → a(g(g(x)))
g(g(g(x))) → b(b(x))
RIGHT6(g(x)) → RIGHT6(x)
RIGHT6(a(x)) → RIGHT6(x)
RIGHT6(d(x)) → RIGHT6(x)
RIGHT6(b(x)) → RIGHT6(x)
RIGHT6(c(x)) → RIGHT6(x)
From the DPs we obtained the following set of size-change graphs:
RIGHT5(g(x)) → RIGHT5(x)
RIGHT5(a(x)) → RIGHT5(x)
RIGHT5(d(x)) → RIGHT5(x)
RIGHT5(b(x)) → RIGHT5(x)
RIGHT5(c(x)) → RIGHT5(x)
Begin(b(x)) → Wait(Right3(x))
Begin(g(g(x))) → Wait(Right5(x))
Begin(g(x)) → Wait(Right6(x))
Right3(b(End(x))) → Left(a(g(g(End(x)))))
Right5(g(End(x))) → Left(b(b(End(x))))
Right6(g(g(End(x)))) → Left(b(b(End(x))))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right4(a(x)) → Aa(Right4(x))
Right5(a(x)) → Aa(Right5(x))
Right6(a(x)) → Aa(Right6(x))
Right1(g(x)) → Ag(Right1(x))
Right2(g(x)) → Ag(Right2(x))
Right3(g(x)) → Ag(Right3(x))
Right4(g(x)) → Ag(Right4(x))
Right5(g(x)) → Ag(Right5(x))
Right6(g(x)) → Ag(Right6(x))
Right1(d(x)) → Ad(Right1(x))
Right2(d(x)) → Ad(Right2(x))
Right3(d(x)) → Ad(Right3(x))
Right4(d(x)) → Ad(Right4(x))
Right5(d(x)) → Ad(Right5(x))
Right6(d(x)) → Ad(Right6(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right4(b(x)) → Ab(Right4(x))
Right5(b(x)) → Ab(Right5(x))
Right6(b(x)) → Ab(Right6(x))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Right4(c(x)) → Ac(Right4(x))
Right5(c(x)) → Ac(Right5(x))
Right6(c(x)) → Ac(Right6(x))
Aa(Left(x)) → Left(a(x))
Ag(Left(x)) → Left(g(x))
Ad(Left(x)) → Left(d(x))
Ab(Left(x)) → Left(b(x))
Ac(Left(x)) → Left(c(x))
Wait(Left(x)) → Begin(x)
a(x) → g(d(x))
b(b(x)) → a(g(g(x)))
g(g(g(x))) → b(b(x))
RIGHT5(g(x)) → RIGHT5(x)
RIGHT5(a(x)) → RIGHT5(x)
RIGHT5(d(x)) → RIGHT5(x)
RIGHT5(b(x)) → RIGHT5(x)
RIGHT5(c(x)) → RIGHT5(x)
From the DPs we obtained the following set of size-change graphs:
RIGHT3(g(x)) → RIGHT3(x)
RIGHT3(a(x)) → RIGHT3(x)
RIGHT3(d(x)) → RIGHT3(x)
RIGHT3(b(x)) → RIGHT3(x)
RIGHT3(c(x)) → RIGHT3(x)
Begin(b(x)) → Wait(Right3(x))
Begin(g(g(x))) → Wait(Right5(x))
Begin(g(x)) → Wait(Right6(x))
Right3(b(End(x))) → Left(a(g(g(End(x)))))
Right5(g(End(x))) → Left(b(b(End(x))))
Right6(g(g(End(x)))) → Left(b(b(End(x))))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right4(a(x)) → Aa(Right4(x))
Right5(a(x)) → Aa(Right5(x))
Right6(a(x)) → Aa(Right6(x))
Right1(g(x)) → Ag(Right1(x))
Right2(g(x)) → Ag(Right2(x))
Right3(g(x)) → Ag(Right3(x))
Right4(g(x)) → Ag(Right4(x))
Right5(g(x)) → Ag(Right5(x))
Right6(g(x)) → Ag(Right6(x))
Right1(d(x)) → Ad(Right1(x))
Right2(d(x)) → Ad(Right2(x))
Right3(d(x)) → Ad(Right3(x))
Right4(d(x)) → Ad(Right4(x))
Right5(d(x)) → Ad(Right5(x))
Right6(d(x)) → Ad(Right6(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right4(b(x)) → Ab(Right4(x))
Right5(b(x)) → Ab(Right5(x))
Right6(b(x)) → Ab(Right6(x))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Right4(c(x)) → Ac(Right4(x))
Right5(c(x)) → Ac(Right5(x))
Right6(c(x)) → Ac(Right6(x))
Aa(Left(x)) → Left(a(x))
Ag(Left(x)) → Left(g(x))
Ad(Left(x)) → Left(d(x))
Ab(Left(x)) → Left(b(x))
Ac(Left(x)) → Left(c(x))
Wait(Left(x)) → Begin(x)
a(x) → g(d(x))
b(b(x)) → a(g(g(x)))
g(g(g(x))) → b(b(x))
RIGHT3(g(x)) → RIGHT3(x)
RIGHT3(a(x)) → RIGHT3(x)
RIGHT3(d(x)) → RIGHT3(x)
RIGHT3(b(x)) → RIGHT3(x)
RIGHT3(c(x)) → RIGHT3(x)
From the DPs we obtained the following set of size-change graphs:
WAIT(Left(x)) → BEGIN(x)
BEGIN(b(x)) → WAIT(Right3(x))
BEGIN(g(g(x))) → WAIT(Right5(x))
BEGIN(g(x)) → WAIT(Right6(x))
Begin(b(x)) → Wait(Right3(x))
Begin(g(g(x))) → Wait(Right5(x))
Begin(g(x)) → Wait(Right6(x))
Right3(b(End(x))) → Left(a(g(g(End(x)))))
Right5(g(End(x))) → Left(b(b(End(x))))
Right6(g(g(End(x)))) → Left(b(b(End(x))))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right4(a(x)) → Aa(Right4(x))
Right5(a(x)) → Aa(Right5(x))
Right6(a(x)) → Aa(Right6(x))
Right1(g(x)) → Ag(Right1(x))
Right2(g(x)) → Ag(Right2(x))
Right3(g(x)) → Ag(Right3(x))
Right4(g(x)) → Ag(Right4(x))
Right5(g(x)) → Ag(Right5(x))
Right6(g(x)) → Ag(Right6(x))
Right1(d(x)) → Ad(Right1(x))
Right2(d(x)) → Ad(Right2(x))
Right3(d(x)) → Ad(Right3(x))
Right4(d(x)) → Ad(Right4(x))
Right5(d(x)) → Ad(Right5(x))
Right6(d(x)) → Ad(Right6(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right4(b(x)) → Ab(Right4(x))
Right5(b(x)) → Ab(Right5(x))
Right6(b(x)) → Ab(Right6(x))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Right4(c(x)) → Ac(Right4(x))
Right5(c(x)) → Ac(Right5(x))
Right6(c(x)) → Ac(Right6(x))
Aa(Left(x)) → Left(a(x))
Ag(Left(x)) → Left(g(x))
Ad(Left(x)) → Left(d(x))
Ab(Left(x)) → Left(b(x))
Ac(Left(x)) → Left(c(x))
Wait(Left(x)) → Begin(x)
a(x) → g(d(x))
b(b(x)) → a(g(g(x)))
g(g(g(x))) → b(b(x))
WAIT(Left(x)) → BEGIN(x)
BEGIN(b(x)) → WAIT(Right3(x))
BEGIN(g(g(x))) → WAIT(Right5(x))
BEGIN(g(x)) → WAIT(Right6(x))
Right6(g(g(End(x)))) → Left(b(b(End(x))))
Right6(a(x)) → Aa(Right6(x))
Right6(g(x)) → Ag(Right6(x))
Right6(d(x)) → Ad(Right6(x))
Right6(b(x)) → Ab(Right6(x))
Right6(c(x)) → Ac(Right6(x))
Ac(Left(x)) → Left(c(x))
Ab(Left(x)) → Left(b(x))
b(b(x)) → a(g(g(x)))
g(g(g(x))) → b(b(x))
a(x) → g(d(x))
Ad(Left(x)) → Left(d(x))
Ag(Left(x)) → Left(g(x))
Aa(Left(x)) → Left(a(x))
Right5(g(End(x))) → Left(b(b(End(x))))
Right5(a(x)) → Aa(Right5(x))
Right5(g(x)) → Ag(Right5(x))
Right5(d(x)) → Ad(Right5(x))
Right5(b(x)) → Ab(Right5(x))
Right5(c(x)) → Ac(Right5(x))
Right3(b(End(x))) → Left(a(g(g(End(x)))))
Right3(a(x)) → Aa(Right3(x))
Right3(g(x)) → Ag(Right3(x))
Right3(d(x)) → Ad(Right3(x))
Right3(b(x)) → Ab(Right3(x))
Right3(c(x)) → Ac(Right3(x))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
BEGIN(b(x)) → WAIT(Right3(x))
BEGIN(g(g(x))) → WAIT(Right5(x))
BEGIN(g(x)) → WAIT(Right6(x))
POL(Aa(x1)) = 1
POL(Ab(x1)) = 1 + x1
POL(Ac(x1)) = 0
POL(Ad(x1)) = 0
POL(Ag(x1)) = 1 + x1
POL(BEGIN(x1)) = x1
POL(End(x1)) = x1
POL(Left(x1)) = x1
POL(Right3(x1)) = x1
POL(Right5(x1)) = 1 + x1
POL(Right6(x1)) = x1
POL(WAIT(x1)) = x1
POL(a(x1)) = 1
POL(b(x1)) = 1 + x1
POL(c(x1)) = 0
POL(d(x1)) = 0
POL(g(x1)) = 1 + x1
Right3(b(End(x))) → Left(a(g(g(End(x)))))
Right3(a(x)) → Aa(Right3(x))
Right3(g(x)) → Ag(Right3(x))
Right3(d(x)) → Ad(Right3(x))
Right3(b(x)) → Ab(Right3(x))
Right3(c(x)) → Ac(Right3(x))
Right5(g(End(x))) → Left(b(b(End(x))))
Right5(a(x)) → Aa(Right5(x))
Right5(g(x)) → Ag(Right5(x))
Right5(d(x)) → Ad(Right5(x))
Right5(b(x)) → Ab(Right5(x))
Right5(c(x)) → Ac(Right5(x))
Right6(g(g(End(x)))) → Left(b(b(End(x))))
Right6(a(x)) → Aa(Right6(x))
Right6(g(x)) → Ag(Right6(x))
Right6(d(x)) → Ad(Right6(x))
Right6(b(x)) → Ab(Right6(x))
Right6(c(x)) → Ac(Right6(x))
Ag(Left(x)) → Left(g(x))
Aa(Left(x)) → Left(a(x))
Ad(Left(x)) → Left(d(x))
Ab(Left(x)) → Left(b(x))
Ac(Left(x)) → Left(c(x))
b(b(x)) → a(g(g(x)))
g(g(g(x))) → b(b(x))
a(x) → g(d(x))
WAIT(Left(x)) → BEGIN(x)
Right6(g(g(End(x)))) → Left(b(b(End(x))))
Right6(a(x)) → Aa(Right6(x))
Right6(g(x)) → Ag(Right6(x))
Right6(d(x)) → Ad(Right6(x))
Right6(b(x)) → Ab(Right6(x))
Right6(c(x)) → Ac(Right6(x))
Ac(Left(x)) → Left(c(x))
Ab(Left(x)) → Left(b(x))
b(b(x)) → a(g(g(x)))
g(g(g(x))) → b(b(x))
a(x) → g(d(x))
Ad(Left(x)) → Left(d(x))
Ag(Left(x)) → Left(g(x))
Aa(Left(x)) → Left(a(x))
Right5(g(End(x))) → Left(b(b(End(x))))
Right5(a(x)) → Aa(Right5(x))
Right5(g(x)) → Ag(Right5(x))
Right5(d(x)) → Ad(Right5(x))
Right5(b(x)) → Ab(Right5(x))
Right5(c(x)) → Ac(Right5(x))
Right3(b(End(x))) → Left(a(g(g(End(x)))))
Right3(a(x)) → Aa(Right3(x))
Right3(g(x)) → Ag(Right3(x))
Right3(d(x)) → Ad(Right3(x))
Right3(b(x)) → Ab(Right3(x))
Right3(c(x)) → Ac(Right3(x))