YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
1(1(x0)) |
→ |
4(3(x0)) |
1(2(x0)) |
→ |
2(1(x0)) |
2(2(x0)) |
→ |
1(1(1(x0))) |
3(3(x0)) |
→ |
5(6(x0)) |
3(4(x0)) |
→ |
1(1(x0)) |
4(4(x0)) |
→ |
3(x0) |
5(5(x0)) |
→ |
6(2(x0)) |
5(6(x0)) |
→ |
1(2(x0)) |
6(6(x0)) |
→ |
2(1(x0)) |
Proof
1 String Reversal
Since only unary symbols occur, one can reverse all terms and obtains the TRS
1(1(x0)) |
→ |
3(4(x0)) |
2(1(x0)) |
→ |
1(2(x0)) |
2(2(x0)) |
→ |
1(1(1(x0))) |
3(3(x0)) |
→ |
6(5(x0)) |
4(3(x0)) |
→ |
1(1(x0)) |
4(4(x0)) |
→ |
3(x0) |
5(5(x0)) |
→ |
2(6(x0)) |
6(5(x0)) |
→ |
2(1(x0)) |
6(6(x0)) |
→ |
1(2(x0)) |
1.1 Dependency Pair Transformation
The following set of initial dependency pairs has been identified.
1#(1(x0)) |
→ |
4#(x0) |
1#(1(x0)) |
→ |
3#(4(x0)) |
2#(1(x0)) |
→ |
2#(x0) |
2#(1(x0)) |
→ |
1#(2(x0)) |
2#(2(x0)) |
→ |
1#(x0) |
2#(2(x0)) |
→ |
1#(1(x0)) |
2#(2(x0)) |
→ |
1#(1(1(x0))) |
3#(3(x0)) |
→ |
5#(x0) |
3#(3(x0)) |
→ |
6#(5(x0)) |
4#(3(x0)) |
→ |
1#(x0) |
4#(3(x0)) |
→ |
1#(1(x0)) |
4#(4(x0)) |
→ |
3#(x0) |
5#(5(x0)) |
→ |
6#(x0) |
5#(5(x0)) |
→ |
2#(6(x0)) |
6#(5(x0)) |
→ |
1#(x0) |
6#(5(x0)) |
→ |
2#(1(x0)) |
6#(6(x0)) |
→ |
2#(x0) |
6#(6(x0)) |
→ |
1#(2(x0)) |
1.1.1 Reduction Pair Processor
Using the linear polynomial interpretation over the naturals
[6(x1)] |
= |
1 ·
x1 + 20 |
[3#(x1)] |
= |
1 ·
x1 + 10 |
[3(x1)] |
= |
1 ·
x1 + 21 |
[2(x1)] |
= |
1 ·
x1 + 24 |
[5(x1)] |
= |
1 ·
x1 + 22 |
[5#(x1)] |
= |
1 ·
x1 + 24 |
[1(x1)] |
= |
1 ·
x1 + 16 |
[4#(x1)] |
= |
1 ·
x1 + 0 |
[6#(x1)] |
= |
1 ·
x1 + 9 |
[2#(x1)] |
= |
1 ·
x1 + 13 |
[1#(x1)] |
= |
1 ·
x1 + 5 |
[4(x1)] |
= |
1 ·
x1 + 11 |
the
pairs
1#(1(x0)) |
→ |
3#(4(x0)) |
2#(1(x0)) |
→ |
1#(2(x0)) |
2#(2(x0)) |
→ |
1#(1(1(x0))) |
3#(3(x0)) |
→ |
6#(5(x0)) |
4#(3(x0)) |
→ |
1#(1(x0)) |
6#(6(x0)) |
→ |
1#(2(x0)) |
remain.
1.1.1.1 Dependency Graph Processor
The dependency pairs are split into 1
component.