YES
0 QTRS
↳1 QTRSRRRProof (⇔, 110 ms)
↳2 QTRS
↳3 Overlay + Local Confluence (⇔, 37 ms)
↳4 QTRS
↳5 DependencyPairsProof (⇔, 48 ms)
↳6 QDP
↳7 DependencyGraphProof (⇔, 0 ms)
↳8 AND
↳9 QDP
↳10 UsableRulesProof (⇔, 0 ms)
↳11 QDP
↳12 QReductionProof (⇔, 0 ms)
↳13 QDP
↳14 QDPSizeChangeProof (⇔, 0 ms)
↳15 YES
↳16 QDP
↳17 UsableRulesProof (⇔, 0 ms)
↳18 QDP
↳19 QReductionProof (⇔, 0 ms)
↳20 QDP
↳21 QDPSizeChangeProof (⇔, 0 ms)
↳22 YES
↳23 QDP
↳24 UsableRulesProof (⇔, 0 ms)
↳25 QDP
↳26 QReductionProof (⇔, 0 ms)
↳27 QDP
↳28 QDPSizeChangeProof (⇔, 0 ms)
↳29 YES
↳30 QDP
↳31 UsableRulesProof (⇔, 0 ms)
↳32 QDP
↳33 QReductionProof (⇔, 0 ms)
↳34 QDP
↳35 QDPSizeChangeProof (⇔, 0 ms)
↳36 YES
↳37 QDP
↳38 UsableRulesProof (⇔, 0 ms)
↳39 QDP
↳40 QReductionProof (⇔, 0 ms)
↳41 QDP
↳42 QDPSizeChangeProof (⇔, 0 ms)
↳43 YES
↳44 QDP
↳45 UsableRulesProof (⇔, 0 ms)
↳46 QDP
↳47 QReductionProof (⇔, 0 ms)
↳48 QDP
↳49 QDPSizeChangeProof (⇔, 0 ms)
↳50 YES
Begin(a(x)) → Wait(Right1(x))
Begin(b(x)) → Wait(Right2(x))
Begin(c(x)) → Wait(Right3(x))
Begin(d(x)) → Wait(Right4(x))
Begin(f(x)) → Wait(Right5(x))
Begin(g(x)) → Wait(Right6(x))
Right1(a(End(x))) → Left(b(c(End(x))))
Right2(b(End(x))) → Left(c(d(End(x))))
Right3(c(End(x))) → Left(d(f(End(x))))
Right4(d(End(x))) → Left(f(f(f(End(x)))))
Right5(f(End(x))) → Left(g(a(End(x))))
Right6(g(End(x))) → Left(a(End(x)))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right4(a(x)) → Aa(Right4(x))
Right5(a(x)) → Aa(Right5(x))
Right6(a(x)) → Aa(Right6(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right4(b(x)) → Ab(Right4(x))
Right5(b(x)) → Ab(Right5(x))
Right6(b(x)) → Ab(Right6(x))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Right4(c(x)) → Ac(Right4(x))
Right5(c(x)) → Ac(Right5(x))
Right6(c(x)) → Ac(Right6(x))
Right1(d(x)) → Ad(Right1(x))
Right2(d(x)) → Ad(Right2(x))
Right3(d(x)) → Ad(Right3(x))
Right4(d(x)) → Ad(Right4(x))
Right5(d(x)) → Ad(Right5(x))
Right6(d(x)) → Ad(Right6(x))
Right1(f(x)) → Af(Right1(x))
Right2(f(x)) → Af(Right2(x))
Right3(f(x)) → Af(Right3(x))
Right4(f(x)) → Af(Right4(x))
Right5(f(x)) → Af(Right5(x))
Right6(f(x)) → Af(Right6(x))
Right1(g(x)) → Ag(Right1(x))
Right2(g(x)) → Ag(Right2(x))
Right3(g(x)) → Ag(Right3(x))
Right4(g(x)) → Ag(Right4(x))
Right5(g(x)) → Ag(Right5(x))
Right6(g(x)) → Ag(Right6(x))
Aa(Left(x)) → Left(a(x))
Ab(Left(x)) → Left(b(x))
Ac(Left(x)) → Left(c(x))
Ad(Left(x)) → Left(d(x))
Af(Left(x)) → Left(f(x))
Ag(Left(x)) → Left(g(x))
Wait(Left(x)) → Begin(x)
a(a(x)) → b(c(x))
b(b(x)) → c(d(x))
b(x) → a(x)
c(c(x)) → d(f(x))
d(d(x)) → f(f(f(x)))
d(x) → b(x)
f(f(x)) → g(a(x))
g(g(x)) → a(x)
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(Aa(x1)) = 465 + x1
POL(Ab(x1)) = 486 + x1
POL(Ac(x1)) = 441 + x1
POL(Ad(x1)) = 528 + x1
POL(Af(x1)) = 351 + x1
POL(Ag(x1)) = 234 + x1
POL(Begin(x1)) = x1
POL(End(x1)) = x1
POL(Left(x1)) = x1
POL(Right1(x1)) = 463 + x1
POL(Right2(x1)) = 484 + x1
POL(Right3(x1)) = 439 + x1
POL(Right4(x1)) = 526 + x1
POL(Right5(x1)) = 349 + x1
POL(Right6(x1)) = 232 + x1
POL(Wait(x1)) = 1 + x1
POL(a(x1)) = 465 + x1
POL(b(x1)) = 486 + x1
POL(c(x1)) = 441 + x1
POL(d(x1)) = 528 + x1
POL(f(x1)) = 351 + x1
POL(g(x1)) = 234 + x1
Begin(a(x)) → Wait(Right1(x))
Begin(b(x)) → Wait(Right2(x))
Begin(c(x)) → Wait(Right3(x))
Begin(d(x)) → Wait(Right4(x))
Begin(f(x)) → Wait(Right5(x))
Begin(g(x)) → Wait(Right6(x))
Right1(a(End(x))) → Left(b(c(End(x))))
Right2(b(End(x))) → Left(c(d(End(x))))
Right3(c(End(x))) → Left(d(f(End(x))))
Right4(d(End(x))) → Left(f(f(f(End(x)))))
Right5(f(End(x))) → Left(g(a(End(x))))
Right6(g(End(x))) → Left(a(End(x)))
Wait(Left(x)) → Begin(x)
a(a(x)) → b(c(x))
b(b(x)) → c(d(x))
b(x) → a(x)
c(c(x)) → d(f(x))
d(d(x)) → f(f(f(x)))
d(x) → b(x)
f(f(x)) → g(a(x))
g(g(x)) → a(x)
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right4(a(x)) → Aa(Right4(x))
Right5(a(x)) → Aa(Right5(x))
Right6(a(x)) → Aa(Right6(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right4(b(x)) → Ab(Right4(x))
Right5(b(x)) → Ab(Right5(x))
Right6(b(x)) → Ab(Right6(x))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Right4(c(x)) → Ac(Right4(x))
Right5(c(x)) → Ac(Right5(x))
Right6(c(x)) → Ac(Right6(x))
Right1(d(x)) → Ad(Right1(x))
Right2(d(x)) → Ad(Right2(x))
Right3(d(x)) → Ad(Right3(x))
Right4(d(x)) → Ad(Right4(x))
Right5(d(x)) → Ad(Right5(x))
Right6(d(x)) → Ad(Right6(x))
Right1(f(x)) → Af(Right1(x))
Right2(f(x)) → Af(Right2(x))
Right3(f(x)) → Af(Right3(x))
Right4(f(x)) → Af(Right4(x))
Right5(f(x)) → Af(Right5(x))
Right6(f(x)) → Af(Right6(x))
Right1(g(x)) → Ag(Right1(x))
Right2(g(x)) → Ag(Right2(x))
Right3(g(x)) → Ag(Right3(x))
Right4(g(x)) → Ag(Right4(x))
Right5(g(x)) → Ag(Right5(x))
Right6(g(x)) → Ag(Right6(x))
Aa(Left(x)) → Left(a(x))
Ab(Left(x)) → Left(b(x))
Ac(Left(x)) → Left(c(x))
Ad(Left(x)) → Left(d(x))
Af(Left(x)) → Left(f(x))
Ag(Left(x)) → Left(g(x))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right4(a(x)) → Aa(Right4(x))
Right5(a(x)) → Aa(Right5(x))
Right6(a(x)) → Aa(Right6(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right4(b(x)) → Ab(Right4(x))
Right5(b(x)) → Ab(Right5(x))
Right6(b(x)) → Ab(Right6(x))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Right4(c(x)) → Ac(Right4(x))
Right5(c(x)) → Ac(Right5(x))
Right6(c(x)) → Ac(Right6(x))
Right1(d(x)) → Ad(Right1(x))
Right2(d(x)) → Ad(Right2(x))
Right3(d(x)) → Ad(Right3(x))
Right4(d(x)) → Ad(Right4(x))
Right5(d(x)) → Ad(Right5(x))
Right6(d(x)) → Ad(Right6(x))
Right1(f(x)) → Af(Right1(x))
Right2(f(x)) → Af(Right2(x))
Right3(f(x)) → Af(Right3(x))
Right4(f(x)) → Af(Right4(x))
Right5(f(x)) → Af(Right5(x))
Right6(f(x)) → Af(Right6(x))
Right1(g(x)) → Ag(Right1(x))
Right2(g(x)) → Ag(Right2(x))
Right3(g(x)) → Ag(Right3(x))
Right4(g(x)) → Ag(Right4(x))
Right5(g(x)) → Ag(Right5(x))
Right6(g(x)) → Ag(Right6(x))
Aa(Left(x)) → Left(a(x))
Ab(Left(x)) → Left(b(x))
Ac(Left(x)) → Left(c(x))
Ad(Left(x)) → Left(d(x))
Af(Left(x)) → Left(f(x))
Ag(Left(x)) → Left(g(x))
Right1(a(x0))
Right2(a(x0))
Right3(a(x0))
Right4(a(x0))
Right5(a(x0))
Right6(a(x0))
Right1(b(x0))
Right2(b(x0))
Right3(b(x0))
Right4(b(x0))
Right5(b(x0))
Right6(b(x0))
Right1(c(x0))
Right2(c(x0))
Right3(c(x0))
Right4(c(x0))
Right5(c(x0))
Right6(c(x0))
Right1(d(x0))
Right2(d(x0))
Right3(d(x0))
Right4(d(x0))
Right5(d(x0))
Right6(d(x0))
Right1(f(x0))
Right2(f(x0))
Right3(f(x0))
Right4(f(x0))
Right5(f(x0))
Right6(f(x0))
Right1(g(x0))
Right2(g(x0))
Right3(g(x0))
Right4(g(x0))
Right5(g(x0))
Right6(g(x0))
Aa(Left(x0))
Ab(Left(x0))
Ac(Left(x0))
Ad(Left(x0))
Af(Left(x0))
Ag(Left(x0))
RIGHT1(a(x)) → AA(Right1(x))
RIGHT1(a(x)) → RIGHT1(x)
RIGHT2(a(x)) → AA(Right2(x))
RIGHT2(a(x)) → RIGHT2(x)
RIGHT3(a(x)) → AA(Right3(x))
RIGHT3(a(x)) → RIGHT3(x)
RIGHT4(a(x)) → AA(Right4(x))
RIGHT4(a(x)) → RIGHT4(x)
RIGHT5(a(x)) → AA(Right5(x))
RIGHT5(a(x)) → RIGHT5(x)
RIGHT6(a(x)) → AA(Right6(x))
RIGHT6(a(x)) → RIGHT6(x)
RIGHT1(b(x)) → AB(Right1(x))
RIGHT1(b(x)) → RIGHT1(x)
RIGHT2(b(x)) → AB(Right2(x))
RIGHT2(b(x)) → RIGHT2(x)
RIGHT3(b(x)) → AB(Right3(x))
RIGHT3(b(x)) → RIGHT3(x)
RIGHT4(b(x)) → AB(Right4(x))
RIGHT4(b(x)) → RIGHT4(x)
RIGHT5(b(x)) → AB(Right5(x))
RIGHT5(b(x)) → RIGHT5(x)
RIGHT6(b(x)) → AB(Right6(x))
RIGHT6(b(x)) → RIGHT6(x)
RIGHT1(c(x)) → AC(Right1(x))
RIGHT1(c(x)) → RIGHT1(x)
RIGHT2(c(x)) → AC(Right2(x))
RIGHT2(c(x)) → RIGHT2(x)
RIGHT3(c(x)) → AC(Right3(x))
RIGHT3(c(x)) → RIGHT3(x)
RIGHT4(c(x)) → AC(Right4(x))
RIGHT4(c(x)) → RIGHT4(x)
RIGHT5(c(x)) → AC(Right5(x))
RIGHT5(c(x)) → RIGHT5(x)
RIGHT6(c(x)) → AC(Right6(x))
RIGHT6(c(x)) → RIGHT6(x)
RIGHT1(d(x)) → AD(Right1(x))
RIGHT1(d(x)) → RIGHT1(x)
RIGHT2(d(x)) → AD(Right2(x))
RIGHT2(d(x)) → RIGHT2(x)
RIGHT3(d(x)) → AD(Right3(x))
RIGHT3(d(x)) → RIGHT3(x)
RIGHT4(d(x)) → AD(Right4(x))
RIGHT4(d(x)) → RIGHT4(x)
RIGHT5(d(x)) → AD(Right5(x))
RIGHT5(d(x)) → RIGHT5(x)
RIGHT6(d(x)) → AD(Right6(x))
RIGHT6(d(x)) → RIGHT6(x)
RIGHT1(f(x)) → AF(Right1(x))
RIGHT1(f(x)) → RIGHT1(x)
RIGHT2(f(x)) → AF(Right2(x))
RIGHT2(f(x)) → RIGHT2(x)
RIGHT3(f(x)) → AF(Right3(x))
RIGHT3(f(x)) → RIGHT3(x)
RIGHT4(f(x)) → AF(Right4(x))
RIGHT4(f(x)) → RIGHT4(x)
RIGHT5(f(x)) → AF(Right5(x))
RIGHT5(f(x)) → RIGHT5(x)
RIGHT6(f(x)) → AF(Right6(x))
RIGHT6(f(x)) → RIGHT6(x)
RIGHT1(g(x)) → AG(Right1(x))
RIGHT1(g(x)) → RIGHT1(x)
RIGHT2(g(x)) → AG(Right2(x))
RIGHT2(g(x)) → RIGHT2(x)
RIGHT3(g(x)) → AG(Right3(x))
RIGHT3(g(x)) → RIGHT3(x)
RIGHT4(g(x)) → AG(Right4(x))
RIGHT4(g(x)) → RIGHT4(x)
RIGHT5(g(x)) → AG(Right5(x))
RIGHT5(g(x)) → RIGHT5(x)
RIGHT6(g(x)) → AG(Right6(x))
RIGHT6(g(x)) → RIGHT6(x)
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right4(a(x)) → Aa(Right4(x))
Right5(a(x)) → Aa(Right5(x))
Right6(a(x)) → Aa(Right6(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right4(b(x)) → Ab(Right4(x))
Right5(b(x)) → Ab(Right5(x))
Right6(b(x)) → Ab(Right6(x))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Right4(c(x)) → Ac(Right4(x))
Right5(c(x)) → Ac(Right5(x))
Right6(c(x)) → Ac(Right6(x))
Right1(d(x)) → Ad(Right1(x))
Right2(d(x)) → Ad(Right2(x))
Right3(d(x)) → Ad(Right3(x))
Right4(d(x)) → Ad(Right4(x))
Right5(d(x)) → Ad(Right5(x))
Right6(d(x)) → Ad(Right6(x))
Right1(f(x)) → Af(Right1(x))
Right2(f(x)) → Af(Right2(x))
Right3(f(x)) → Af(Right3(x))
Right4(f(x)) → Af(Right4(x))
Right5(f(x)) → Af(Right5(x))
Right6(f(x)) → Af(Right6(x))
Right1(g(x)) → Ag(Right1(x))
Right2(g(x)) → Ag(Right2(x))
Right3(g(x)) → Ag(Right3(x))
Right4(g(x)) → Ag(Right4(x))
Right5(g(x)) → Ag(Right5(x))
Right6(g(x)) → Ag(Right6(x))
Aa(Left(x)) → Left(a(x))
Ab(Left(x)) → Left(b(x))
Ac(Left(x)) → Left(c(x))
Ad(Left(x)) → Left(d(x))
Af(Left(x)) → Left(f(x))
Ag(Left(x)) → Left(g(x))
Right1(a(x0))
Right2(a(x0))
Right3(a(x0))
Right4(a(x0))
Right5(a(x0))
Right6(a(x0))
Right1(b(x0))
Right2(b(x0))
Right3(b(x0))
Right4(b(x0))
Right5(b(x0))
Right6(b(x0))
Right1(c(x0))
Right2(c(x0))
Right3(c(x0))
Right4(c(x0))
Right5(c(x0))
Right6(c(x0))
Right1(d(x0))
Right2(d(x0))
Right3(d(x0))
Right4(d(x0))
Right5(d(x0))
Right6(d(x0))
Right1(f(x0))
Right2(f(x0))
Right3(f(x0))
Right4(f(x0))
Right5(f(x0))
Right6(f(x0))
Right1(g(x0))
Right2(g(x0))
Right3(g(x0))
Right4(g(x0))
Right5(g(x0))
Right6(g(x0))
Aa(Left(x0))
Ab(Left(x0))
Ac(Left(x0))
Ad(Left(x0))
Af(Left(x0))
Ag(Left(x0))
RIGHT6(b(x)) → RIGHT6(x)
RIGHT6(a(x)) → RIGHT6(x)
RIGHT6(c(x)) → RIGHT6(x)
RIGHT6(d(x)) → RIGHT6(x)
RIGHT6(f(x)) → RIGHT6(x)
RIGHT6(g(x)) → RIGHT6(x)
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right4(a(x)) → Aa(Right4(x))
Right5(a(x)) → Aa(Right5(x))
Right6(a(x)) → Aa(Right6(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right4(b(x)) → Ab(Right4(x))
Right5(b(x)) → Ab(Right5(x))
Right6(b(x)) → Ab(Right6(x))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Right4(c(x)) → Ac(Right4(x))
Right5(c(x)) → Ac(Right5(x))
Right6(c(x)) → Ac(Right6(x))
Right1(d(x)) → Ad(Right1(x))
Right2(d(x)) → Ad(Right2(x))
Right3(d(x)) → Ad(Right3(x))
Right4(d(x)) → Ad(Right4(x))
Right5(d(x)) → Ad(Right5(x))
Right6(d(x)) → Ad(Right6(x))
Right1(f(x)) → Af(Right1(x))
Right2(f(x)) → Af(Right2(x))
Right3(f(x)) → Af(Right3(x))
Right4(f(x)) → Af(Right4(x))
Right5(f(x)) → Af(Right5(x))
Right6(f(x)) → Af(Right6(x))
Right1(g(x)) → Ag(Right1(x))
Right2(g(x)) → Ag(Right2(x))
Right3(g(x)) → Ag(Right3(x))
Right4(g(x)) → Ag(Right4(x))
Right5(g(x)) → Ag(Right5(x))
Right6(g(x)) → Ag(Right6(x))
Aa(Left(x)) → Left(a(x))
Ab(Left(x)) → Left(b(x))
Ac(Left(x)) → Left(c(x))
Ad(Left(x)) → Left(d(x))
Af(Left(x)) → Left(f(x))
Ag(Left(x)) → Left(g(x))
Right1(a(x0))
Right2(a(x0))
Right3(a(x0))
Right4(a(x0))
Right5(a(x0))
Right6(a(x0))
Right1(b(x0))
Right2(b(x0))
Right3(b(x0))
Right4(b(x0))
Right5(b(x0))
Right6(b(x0))
Right1(c(x0))
Right2(c(x0))
Right3(c(x0))
Right4(c(x0))
Right5(c(x0))
Right6(c(x0))
Right1(d(x0))
Right2(d(x0))
Right3(d(x0))
Right4(d(x0))
Right5(d(x0))
Right6(d(x0))
Right1(f(x0))
Right2(f(x0))
Right3(f(x0))
Right4(f(x0))
Right5(f(x0))
Right6(f(x0))
Right1(g(x0))
Right2(g(x0))
Right3(g(x0))
Right4(g(x0))
Right5(g(x0))
Right6(g(x0))
Aa(Left(x0))
Ab(Left(x0))
Ac(Left(x0))
Ad(Left(x0))
Af(Left(x0))
Ag(Left(x0))
RIGHT6(b(x)) → RIGHT6(x)
RIGHT6(a(x)) → RIGHT6(x)
RIGHT6(c(x)) → RIGHT6(x)
RIGHT6(d(x)) → RIGHT6(x)
RIGHT6(f(x)) → RIGHT6(x)
RIGHT6(g(x)) → RIGHT6(x)
Right1(a(x0))
Right2(a(x0))
Right3(a(x0))
Right4(a(x0))
Right5(a(x0))
Right6(a(x0))
Right1(b(x0))
Right2(b(x0))
Right3(b(x0))
Right4(b(x0))
Right5(b(x0))
Right6(b(x0))
Right1(c(x0))
Right2(c(x0))
Right3(c(x0))
Right4(c(x0))
Right5(c(x0))
Right6(c(x0))
Right1(d(x0))
Right2(d(x0))
Right3(d(x0))
Right4(d(x0))
Right5(d(x0))
Right6(d(x0))
Right1(f(x0))
Right2(f(x0))
Right3(f(x0))
Right4(f(x0))
Right5(f(x0))
Right6(f(x0))
Right1(g(x0))
Right2(g(x0))
Right3(g(x0))
Right4(g(x0))
Right5(g(x0))
Right6(g(x0))
Aa(Left(x0))
Ab(Left(x0))
Ac(Left(x0))
Ad(Left(x0))
Af(Left(x0))
Ag(Left(x0))
Right1(a(x0))
Right2(a(x0))
Right3(a(x0))
Right4(a(x0))
Right5(a(x0))
Right6(a(x0))
Right1(b(x0))
Right2(b(x0))
Right3(b(x0))
Right4(b(x0))
Right5(b(x0))
Right6(b(x0))
Right1(c(x0))
Right2(c(x0))
Right3(c(x0))
Right4(c(x0))
Right5(c(x0))
Right6(c(x0))
Right1(d(x0))
Right2(d(x0))
Right3(d(x0))
Right4(d(x0))
Right5(d(x0))
Right6(d(x0))
Right1(f(x0))
Right2(f(x0))
Right3(f(x0))
Right4(f(x0))
Right5(f(x0))
Right6(f(x0))
Right1(g(x0))
Right2(g(x0))
Right3(g(x0))
Right4(g(x0))
Right5(g(x0))
Right6(g(x0))
Aa(Left(x0))
Ab(Left(x0))
Ac(Left(x0))
Ad(Left(x0))
Af(Left(x0))
Ag(Left(x0))
RIGHT6(b(x)) → RIGHT6(x)
RIGHT6(a(x)) → RIGHT6(x)
RIGHT6(c(x)) → RIGHT6(x)
RIGHT6(d(x)) → RIGHT6(x)
RIGHT6(f(x)) → RIGHT6(x)
RIGHT6(g(x)) → RIGHT6(x)
From the DPs we obtained the following set of size-change graphs:
RIGHT5(b(x)) → RIGHT5(x)
RIGHT5(a(x)) → RIGHT5(x)
RIGHT5(c(x)) → RIGHT5(x)
RIGHT5(d(x)) → RIGHT5(x)
RIGHT5(f(x)) → RIGHT5(x)
RIGHT5(g(x)) → RIGHT5(x)
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right4(a(x)) → Aa(Right4(x))
Right5(a(x)) → Aa(Right5(x))
Right6(a(x)) → Aa(Right6(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right4(b(x)) → Ab(Right4(x))
Right5(b(x)) → Ab(Right5(x))
Right6(b(x)) → Ab(Right6(x))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Right4(c(x)) → Ac(Right4(x))
Right5(c(x)) → Ac(Right5(x))
Right6(c(x)) → Ac(Right6(x))
Right1(d(x)) → Ad(Right1(x))
Right2(d(x)) → Ad(Right2(x))
Right3(d(x)) → Ad(Right3(x))
Right4(d(x)) → Ad(Right4(x))
Right5(d(x)) → Ad(Right5(x))
Right6(d(x)) → Ad(Right6(x))
Right1(f(x)) → Af(Right1(x))
Right2(f(x)) → Af(Right2(x))
Right3(f(x)) → Af(Right3(x))
Right4(f(x)) → Af(Right4(x))
Right5(f(x)) → Af(Right5(x))
Right6(f(x)) → Af(Right6(x))
Right1(g(x)) → Ag(Right1(x))
Right2(g(x)) → Ag(Right2(x))
Right3(g(x)) → Ag(Right3(x))
Right4(g(x)) → Ag(Right4(x))
Right5(g(x)) → Ag(Right5(x))
Right6(g(x)) → Ag(Right6(x))
Aa(Left(x)) → Left(a(x))
Ab(Left(x)) → Left(b(x))
Ac(Left(x)) → Left(c(x))
Ad(Left(x)) → Left(d(x))
Af(Left(x)) → Left(f(x))
Ag(Left(x)) → Left(g(x))
Right1(a(x0))
Right2(a(x0))
Right3(a(x0))
Right4(a(x0))
Right5(a(x0))
Right6(a(x0))
Right1(b(x0))
Right2(b(x0))
Right3(b(x0))
Right4(b(x0))
Right5(b(x0))
Right6(b(x0))
Right1(c(x0))
Right2(c(x0))
Right3(c(x0))
Right4(c(x0))
Right5(c(x0))
Right6(c(x0))
Right1(d(x0))
Right2(d(x0))
Right3(d(x0))
Right4(d(x0))
Right5(d(x0))
Right6(d(x0))
Right1(f(x0))
Right2(f(x0))
Right3(f(x0))
Right4(f(x0))
Right5(f(x0))
Right6(f(x0))
Right1(g(x0))
Right2(g(x0))
Right3(g(x0))
Right4(g(x0))
Right5(g(x0))
Right6(g(x0))
Aa(Left(x0))
Ab(Left(x0))
Ac(Left(x0))
Ad(Left(x0))
Af(Left(x0))
Ag(Left(x0))
RIGHT5(b(x)) → RIGHT5(x)
RIGHT5(a(x)) → RIGHT5(x)
RIGHT5(c(x)) → RIGHT5(x)
RIGHT5(d(x)) → RIGHT5(x)
RIGHT5(f(x)) → RIGHT5(x)
RIGHT5(g(x)) → RIGHT5(x)
Right1(a(x0))
Right2(a(x0))
Right3(a(x0))
Right4(a(x0))
Right5(a(x0))
Right6(a(x0))
Right1(b(x0))
Right2(b(x0))
Right3(b(x0))
Right4(b(x0))
Right5(b(x0))
Right6(b(x0))
Right1(c(x0))
Right2(c(x0))
Right3(c(x0))
Right4(c(x0))
Right5(c(x0))
Right6(c(x0))
Right1(d(x0))
Right2(d(x0))
Right3(d(x0))
Right4(d(x0))
Right5(d(x0))
Right6(d(x0))
Right1(f(x0))
Right2(f(x0))
Right3(f(x0))
Right4(f(x0))
Right5(f(x0))
Right6(f(x0))
Right1(g(x0))
Right2(g(x0))
Right3(g(x0))
Right4(g(x0))
Right5(g(x0))
Right6(g(x0))
Aa(Left(x0))
Ab(Left(x0))
Ac(Left(x0))
Ad(Left(x0))
Af(Left(x0))
Ag(Left(x0))
Right1(a(x0))
Right2(a(x0))
Right3(a(x0))
Right4(a(x0))
Right5(a(x0))
Right6(a(x0))
Right1(b(x0))
Right2(b(x0))
Right3(b(x0))
Right4(b(x0))
Right5(b(x0))
Right6(b(x0))
Right1(c(x0))
Right2(c(x0))
Right3(c(x0))
Right4(c(x0))
Right5(c(x0))
Right6(c(x0))
Right1(d(x0))
Right2(d(x0))
Right3(d(x0))
Right4(d(x0))
Right5(d(x0))
Right6(d(x0))
Right1(f(x0))
Right2(f(x0))
Right3(f(x0))
Right4(f(x0))
Right5(f(x0))
Right6(f(x0))
Right1(g(x0))
Right2(g(x0))
Right3(g(x0))
Right4(g(x0))
Right5(g(x0))
Right6(g(x0))
Aa(Left(x0))
Ab(Left(x0))
Ac(Left(x0))
Ad(Left(x0))
Af(Left(x0))
Ag(Left(x0))
RIGHT5(b(x)) → RIGHT5(x)
RIGHT5(a(x)) → RIGHT5(x)
RIGHT5(c(x)) → RIGHT5(x)
RIGHT5(d(x)) → RIGHT5(x)
RIGHT5(f(x)) → RIGHT5(x)
RIGHT5(g(x)) → RIGHT5(x)
From the DPs we obtained the following set of size-change graphs:
RIGHT4(b(x)) → RIGHT4(x)
RIGHT4(a(x)) → RIGHT4(x)
RIGHT4(c(x)) → RIGHT4(x)
RIGHT4(d(x)) → RIGHT4(x)
RIGHT4(f(x)) → RIGHT4(x)
RIGHT4(g(x)) → RIGHT4(x)
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right4(a(x)) → Aa(Right4(x))
Right5(a(x)) → Aa(Right5(x))
Right6(a(x)) → Aa(Right6(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right4(b(x)) → Ab(Right4(x))
Right5(b(x)) → Ab(Right5(x))
Right6(b(x)) → Ab(Right6(x))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Right4(c(x)) → Ac(Right4(x))
Right5(c(x)) → Ac(Right5(x))
Right6(c(x)) → Ac(Right6(x))
Right1(d(x)) → Ad(Right1(x))
Right2(d(x)) → Ad(Right2(x))
Right3(d(x)) → Ad(Right3(x))
Right4(d(x)) → Ad(Right4(x))
Right5(d(x)) → Ad(Right5(x))
Right6(d(x)) → Ad(Right6(x))
Right1(f(x)) → Af(Right1(x))
Right2(f(x)) → Af(Right2(x))
Right3(f(x)) → Af(Right3(x))
Right4(f(x)) → Af(Right4(x))
Right5(f(x)) → Af(Right5(x))
Right6(f(x)) → Af(Right6(x))
Right1(g(x)) → Ag(Right1(x))
Right2(g(x)) → Ag(Right2(x))
Right3(g(x)) → Ag(Right3(x))
Right4(g(x)) → Ag(Right4(x))
Right5(g(x)) → Ag(Right5(x))
Right6(g(x)) → Ag(Right6(x))
Aa(Left(x)) → Left(a(x))
Ab(Left(x)) → Left(b(x))
Ac(Left(x)) → Left(c(x))
Ad(Left(x)) → Left(d(x))
Af(Left(x)) → Left(f(x))
Ag(Left(x)) → Left(g(x))
Right1(a(x0))
Right2(a(x0))
Right3(a(x0))
Right4(a(x0))
Right5(a(x0))
Right6(a(x0))
Right1(b(x0))
Right2(b(x0))
Right3(b(x0))
Right4(b(x0))
Right5(b(x0))
Right6(b(x0))
Right1(c(x0))
Right2(c(x0))
Right3(c(x0))
Right4(c(x0))
Right5(c(x0))
Right6(c(x0))
Right1(d(x0))
Right2(d(x0))
Right3(d(x0))
Right4(d(x0))
Right5(d(x0))
Right6(d(x0))
Right1(f(x0))
Right2(f(x0))
Right3(f(x0))
Right4(f(x0))
Right5(f(x0))
Right6(f(x0))
Right1(g(x0))
Right2(g(x0))
Right3(g(x0))
Right4(g(x0))
Right5(g(x0))
Right6(g(x0))
Aa(Left(x0))
Ab(Left(x0))
Ac(Left(x0))
Ad(Left(x0))
Af(Left(x0))
Ag(Left(x0))
RIGHT4(b(x)) → RIGHT4(x)
RIGHT4(a(x)) → RIGHT4(x)
RIGHT4(c(x)) → RIGHT4(x)
RIGHT4(d(x)) → RIGHT4(x)
RIGHT4(f(x)) → RIGHT4(x)
RIGHT4(g(x)) → RIGHT4(x)
Right1(a(x0))
Right2(a(x0))
Right3(a(x0))
Right4(a(x0))
Right5(a(x0))
Right6(a(x0))
Right1(b(x0))
Right2(b(x0))
Right3(b(x0))
Right4(b(x0))
Right5(b(x0))
Right6(b(x0))
Right1(c(x0))
Right2(c(x0))
Right3(c(x0))
Right4(c(x0))
Right5(c(x0))
Right6(c(x0))
Right1(d(x0))
Right2(d(x0))
Right3(d(x0))
Right4(d(x0))
Right5(d(x0))
Right6(d(x0))
Right1(f(x0))
Right2(f(x0))
Right3(f(x0))
Right4(f(x0))
Right5(f(x0))
Right6(f(x0))
Right1(g(x0))
Right2(g(x0))
Right3(g(x0))
Right4(g(x0))
Right5(g(x0))
Right6(g(x0))
Aa(Left(x0))
Ab(Left(x0))
Ac(Left(x0))
Ad(Left(x0))
Af(Left(x0))
Ag(Left(x0))
Right1(a(x0))
Right2(a(x0))
Right3(a(x0))
Right4(a(x0))
Right5(a(x0))
Right6(a(x0))
Right1(b(x0))
Right2(b(x0))
Right3(b(x0))
Right4(b(x0))
Right5(b(x0))
Right6(b(x0))
Right1(c(x0))
Right2(c(x0))
Right3(c(x0))
Right4(c(x0))
Right5(c(x0))
Right6(c(x0))
Right1(d(x0))
Right2(d(x0))
Right3(d(x0))
Right4(d(x0))
Right5(d(x0))
Right6(d(x0))
Right1(f(x0))
Right2(f(x0))
Right3(f(x0))
Right4(f(x0))
Right5(f(x0))
Right6(f(x0))
Right1(g(x0))
Right2(g(x0))
Right3(g(x0))
Right4(g(x0))
Right5(g(x0))
Right6(g(x0))
Aa(Left(x0))
Ab(Left(x0))
Ac(Left(x0))
Ad(Left(x0))
Af(Left(x0))
Ag(Left(x0))
RIGHT4(b(x)) → RIGHT4(x)
RIGHT4(a(x)) → RIGHT4(x)
RIGHT4(c(x)) → RIGHT4(x)
RIGHT4(d(x)) → RIGHT4(x)
RIGHT4(f(x)) → RIGHT4(x)
RIGHT4(g(x)) → RIGHT4(x)
From the DPs we obtained the following set of size-change graphs:
RIGHT3(b(x)) → RIGHT3(x)
RIGHT3(a(x)) → RIGHT3(x)
RIGHT3(c(x)) → RIGHT3(x)
RIGHT3(d(x)) → RIGHT3(x)
RIGHT3(f(x)) → RIGHT3(x)
RIGHT3(g(x)) → RIGHT3(x)
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right4(a(x)) → Aa(Right4(x))
Right5(a(x)) → Aa(Right5(x))
Right6(a(x)) → Aa(Right6(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right4(b(x)) → Ab(Right4(x))
Right5(b(x)) → Ab(Right5(x))
Right6(b(x)) → Ab(Right6(x))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Right4(c(x)) → Ac(Right4(x))
Right5(c(x)) → Ac(Right5(x))
Right6(c(x)) → Ac(Right6(x))
Right1(d(x)) → Ad(Right1(x))
Right2(d(x)) → Ad(Right2(x))
Right3(d(x)) → Ad(Right3(x))
Right4(d(x)) → Ad(Right4(x))
Right5(d(x)) → Ad(Right5(x))
Right6(d(x)) → Ad(Right6(x))
Right1(f(x)) → Af(Right1(x))
Right2(f(x)) → Af(Right2(x))
Right3(f(x)) → Af(Right3(x))
Right4(f(x)) → Af(Right4(x))
Right5(f(x)) → Af(Right5(x))
Right6(f(x)) → Af(Right6(x))
Right1(g(x)) → Ag(Right1(x))
Right2(g(x)) → Ag(Right2(x))
Right3(g(x)) → Ag(Right3(x))
Right4(g(x)) → Ag(Right4(x))
Right5(g(x)) → Ag(Right5(x))
Right6(g(x)) → Ag(Right6(x))
Aa(Left(x)) → Left(a(x))
Ab(Left(x)) → Left(b(x))
Ac(Left(x)) → Left(c(x))
Ad(Left(x)) → Left(d(x))
Af(Left(x)) → Left(f(x))
Ag(Left(x)) → Left(g(x))
Right1(a(x0))
Right2(a(x0))
Right3(a(x0))
Right4(a(x0))
Right5(a(x0))
Right6(a(x0))
Right1(b(x0))
Right2(b(x0))
Right3(b(x0))
Right4(b(x0))
Right5(b(x0))
Right6(b(x0))
Right1(c(x0))
Right2(c(x0))
Right3(c(x0))
Right4(c(x0))
Right5(c(x0))
Right6(c(x0))
Right1(d(x0))
Right2(d(x0))
Right3(d(x0))
Right4(d(x0))
Right5(d(x0))
Right6(d(x0))
Right1(f(x0))
Right2(f(x0))
Right3(f(x0))
Right4(f(x0))
Right5(f(x0))
Right6(f(x0))
Right1(g(x0))
Right2(g(x0))
Right3(g(x0))
Right4(g(x0))
Right5(g(x0))
Right6(g(x0))
Aa(Left(x0))
Ab(Left(x0))
Ac(Left(x0))
Ad(Left(x0))
Af(Left(x0))
Ag(Left(x0))
RIGHT3(b(x)) → RIGHT3(x)
RIGHT3(a(x)) → RIGHT3(x)
RIGHT3(c(x)) → RIGHT3(x)
RIGHT3(d(x)) → RIGHT3(x)
RIGHT3(f(x)) → RIGHT3(x)
RIGHT3(g(x)) → RIGHT3(x)
Right1(a(x0))
Right2(a(x0))
Right3(a(x0))
Right4(a(x0))
Right5(a(x0))
Right6(a(x0))
Right1(b(x0))
Right2(b(x0))
Right3(b(x0))
Right4(b(x0))
Right5(b(x0))
Right6(b(x0))
Right1(c(x0))
Right2(c(x0))
Right3(c(x0))
Right4(c(x0))
Right5(c(x0))
Right6(c(x0))
Right1(d(x0))
Right2(d(x0))
Right3(d(x0))
Right4(d(x0))
Right5(d(x0))
Right6(d(x0))
Right1(f(x0))
Right2(f(x0))
Right3(f(x0))
Right4(f(x0))
Right5(f(x0))
Right6(f(x0))
Right1(g(x0))
Right2(g(x0))
Right3(g(x0))
Right4(g(x0))
Right5(g(x0))
Right6(g(x0))
Aa(Left(x0))
Ab(Left(x0))
Ac(Left(x0))
Ad(Left(x0))
Af(Left(x0))
Ag(Left(x0))
Right1(a(x0))
Right2(a(x0))
Right3(a(x0))
Right4(a(x0))
Right5(a(x0))
Right6(a(x0))
Right1(b(x0))
Right2(b(x0))
Right3(b(x0))
Right4(b(x0))
Right5(b(x0))
Right6(b(x0))
Right1(c(x0))
Right2(c(x0))
Right3(c(x0))
Right4(c(x0))
Right5(c(x0))
Right6(c(x0))
Right1(d(x0))
Right2(d(x0))
Right3(d(x0))
Right4(d(x0))
Right5(d(x0))
Right6(d(x0))
Right1(f(x0))
Right2(f(x0))
Right3(f(x0))
Right4(f(x0))
Right5(f(x0))
Right6(f(x0))
Right1(g(x0))
Right2(g(x0))
Right3(g(x0))
Right4(g(x0))
Right5(g(x0))
Right6(g(x0))
Aa(Left(x0))
Ab(Left(x0))
Ac(Left(x0))
Ad(Left(x0))
Af(Left(x0))
Ag(Left(x0))
RIGHT3(b(x)) → RIGHT3(x)
RIGHT3(a(x)) → RIGHT3(x)
RIGHT3(c(x)) → RIGHT3(x)
RIGHT3(d(x)) → RIGHT3(x)
RIGHT3(f(x)) → RIGHT3(x)
RIGHT3(g(x)) → RIGHT3(x)
From the DPs we obtained the following set of size-change graphs:
RIGHT2(b(x)) → RIGHT2(x)
RIGHT2(a(x)) → RIGHT2(x)
RIGHT2(c(x)) → RIGHT2(x)
RIGHT2(d(x)) → RIGHT2(x)
RIGHT2(f(x)) → RIGHT2(x)
RIGHT2(g(x)) → RIGHT2(x)
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right4(a(x)) → Aa(Right4(x))
Right5(a(x)) → Aa(Right5(x))
Right6(a(x)) → Aa(Right6(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right4(b(x)) → Ab(Right4(x))
Right5(b(x)) → Ab(Right5(x))
Right6(b(x)) → Ab(Right6(x))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Right4(c(x)) → Ac(Right4(x))
Right5(c(x)) → Ac(Right5(x))
Right6(c(x)) → Ac(Right6(x))
Right1(d(x)) → Ad(Right1(x))
Right2(d(x)) → Ad(Right2(x))
Right3(d(x)) → Ad(Right3(x))
Right4(d(x)) → Ad(Right4(x))
Right5(d(x)) → Ad(Right5(x))
Right6(d(x)) → Ad(Right6(x))
Right1(f(x)) → Af(Right1(x))
Right2(f(x)) → Af(Right2(x))
Right3(f(x)) → Af(Right3(x))
Right4(f(x)) → Af(Right4(x))
Right5(f(x)) → Af(Right5(x))
Right6(f(x)) → Af(Right6(x))
Right1(g(x)) → Ag(Right1(x))
Right2(g(x)) → Ag(Right2(x))
Right3(g(x)) → Ag(Right3(x))
Right4(g(x)) → Ag(Right4(x))
Right5(g(x)) → Ag(Right5(x))
Right6(g(x)) → Ag(Right6(x))
Aa(Left(x)) → Left(a(x))
Ab(Left(x)) → Left(b(x))
Ac(Left(x)) → Left(c(x))
Ad(Left(x)) → Left(d(x))
Af(Left(x)) → Left(f(x))
Ag(Left(x)) → Left(g(x))
Right1(a(x0))
Right2(a(x0))
Right3(a(x0))
Right4(a(x0))
Right5(a(x0))
Right6(a(x0))
Right1(b(x0))
Right2(b(x0))
Right3(b(x0))
Right4(b(x0))
Right5(b(x0))
Right6(b(x0))
Right1(c(x0))
Right2(c(x0))
Right3(c(x0))
Right4(c(x0))
Right5(c(x0))
Right6(c(x0))
Right1(d(x0))
Right2(d(x0))
Right3(d(x0))
Right4(d(x0))
Right5(d(x0))
Right6(d(x0))
Right1(f(x0))
Right2(f(x0))
Right3(f(x0))
Right4(f(x0))
Right5(f(x0))
Right6(f(x0))
Right1(g(x0))
Right2(g(x0))
Right3(g(x0))
Right4(g(x0))
Right5(g(x0))
Right6(g(x0))
Aa(Left(x0))
Ab(Left(x0))
Ac(Left(x0))
Ad(Left(x0))
Af(Left(x0))
Ag(Left(x0))
RIGHT2(b(x)) → RIGHT2(x)
RIGHT2(a(x)) → RIGHT2(x)
RIGHT2(c(x)) → RIGHT2(x)
RIGHT2(d(x)) → RIGHT2(x)
RIGHT2(f(x)) → RIGHT2(x)
RIGHT2(g(x)) → RIGHT2(x)
Right1(a(x0))
Right2(a(x0))
Right3(a(x0))
Right4(a(x0))
Right5(a(x0))
Right6(a(x0))
Right1(b(x0))
Right2(b(x0))
Right3(b(x0))
Right4(b(x0))
Right5(b(x0))
Right6(b(x0))
Right1(c(x0))
Right2(c(x0))
Right3(c(x0))
Right4(c(x0))
Right5(c(x0))
Right6(c(x0))
Right1(d(x0))
Right2(d(x0))
Right3(d(x0))
Right4(d(x0))
Right5(d(x0))
Right6(d(x0))
Right1(f(x0))
Right2(f(x0))
Right3(f(x0))
Right4(f(x0))
Right5(f(x0))
Right6(f(x0))
Right1(g(x0))
Right2(g(x0))
Right3(g(x0))
Right4(g(x0))
Right5(g(x0))
Right6(g(x0))
Aa(Left(x0))
Ab(Left(x0))
Ac(Left(x0))
Ad(Left(x0))
Af(Left(x0))
Ag(Left(x0))
Right1(a(x0))
Right2(a(x0))
Right3(a(x0))
Right4(a(x0))
Right5(a(x0))
Right6(a(x0))
Right1(b(x0))
Right2(b(x0))
Right3(b(x0))
Right4(b(x0))
Right5(b(x0))
Right6(b(x0))
Right1(c(x0))
Right2(c(x0))
Right3(c(x0))
Right4(c(x0))
Right5(c(x0))
Right6(c(x0))
Right1(d(x0))
Right2(d(x0))
Right3(d(x0))
Right4(d(x0))
Right5(d(x0))
Right6(d(x0))
Right1(f(x0))
Right2(f(x0))
Right3(f(x0))
Right4(f(x0))
Right5(f(x0))
Right6(f(x0))
Right1(g(x0))
Right2(g(x0))
Right3(g(x0))
Right4(g(x0))
Right5(g(x0))
Right6(g(x0))
Aa(Left(x0))
Ab(Left(x0))
Ac(Left(x0))
Ad(Left(x0))
Af(Left(x0))
Ag(Left(x0))
RIGHT2(b(x)) → RIGHT2(x)
RIGHT2(a(x)) → RIGHT2(x)
RIGHT2(c(x)) → RIGHT2(x)
RIGHT2(d(x)) → RIGHT2(x)
RIGHT2(f(x)) → RIGHT2(x)
RIGHT2(g(x)) → RIGHT2(x)
From the DPs we obtained the following set of size-change graphs:
RIGHT1(b(x)) → RIGHT1(x)
RIGHT1(a(x)) → RIGHT1(x)
RIGHT1(c(x)) → RIGHT1(x)
RIGHT1(d(x)) → RIGHT1(x)
RIGHT1(f(x)) → RIGHT1(x)
RIGHT1(g(x)) → RIGHT1(x)
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right4(a(x)) → Aa(Right4(x))
Right5(a(x)) → Aa(Right5(x))
Right6(a(x)) → Aa(Right6(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right4(b(x)) → Ab(Right4(x))
Right5(b(x)) → Ab(Right5(x))
Right6(b(x)) → Ab(Right6(x))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Right4(c(x)) → Ac(Right4(x))
Right5(c(x)) → Ac(Right5(x))
Right6(c(x)) → Ac(Right6(x))
Right1(d(x)) → Ad(Right1(x))
Right2(d(x)) → Ad(Right2(x))
Right3(d(x)) → Ad(Right3(x))
Right4(d(x)) → Ad(Right4(x))
Right5(d(x)) → Ad(Right5(x))
Right6(d(x)) → Ad(Right6(x))
Right1(f(x)) → Af(Right1(x))
Right2(f(x)) → Af(Right2(x))
Right3(f(x)) → Af(Right3(x))
Right4(f(x)) → Af(Right4(x))
Right5(f(x)) → Af(Right5(x))
Right6(f(x)) → Af(Right6(x))
Right1(g(x)) → Ag(Right1(x))
Right2(g(x)) → Ag(Right2(x))
Right3(g(x)) → Ag(Right3(x))
Right4(g(x)) → Ag(Right4(x))
Right5(g(x)) → Ag(Right5(x))
Right6(g(x)) → Ag(Right6(x))
Aa(Left(x)) → Left(a(x))
Ab(Left(x)) → Left(b(x))
Ac(Left(x)) → Left(c(x))
Ad(Left(x)) → Left(d(x))
Af(Left(x)) → Left(f(x))
Ag(Left(x)) → Left(g(x))
Right1(a(x0))
Right2(a(x0))
Right3(a(x0))
Right4(a(x0))
Right5(a(x0))
Right6(a(x0))
Right1(b(x0))
Right2(b(x0))
Right3(b(x0))
Right4(b(x0))
Right5(b(x0))
Right6(b(x0))
Right1(c(x0))
Right2(c(x0))
Right3(c(x0))
Right4(c(x0))
Right5(c(x0))
Right6(c(x0))
Right1(d(x0))
Right2(d(x0))
Right3(d(x0))
Right4(d(x0))
Right5(d(x0))
Right6(d(x0))
Right1(f(x0))
Right2(f(x0))
Right3(f(x0))
Right4(f(x0))
Right5(f(x0))
Right6(f(x0))
Right1(g(x0))
Right2(g(x0))
Right3(g(x0))
Right4(g(x0))
Right5(g(x0))
Right6(g(x0))
Aa(Left(x0))
Ab(Left(x0))
Ac(Left(x0))
Ad(Left(x0))
Af(Left(x0))
Ag(Left(x0))
RIGHT1(b(x)) → RIGHT1(x)
RIGHT1(a(x)) → RIGHT1(x)
RIGHT1(c(x)) → RIGHT1(x)
RIGHT1(d(x)) → RIGHT1(x)
RIGHT1(f(x)) → RIGHT1(x)
RIGHT1(g(x)) → RIGHT1(x)
Right1(a(x0))
Right2(a(x0))
Right3(a(x0))
Right4(a(x0))
Right5(a(x0))
Right6(a(x0))
Right1(b(x0))
Right2(b(x0))
Right3(b(x0))
Right4(b(x0))
Right5(b(x0))
Right6(b(x0))
Right1(c(x0))
Right2(c(x0))
Right3(c(x0))
Right4(c(x0))
Right5(c(x0))
Right6(c(x0))
Right1(d(x0))
Right2(d(x0))
Right3(d(x0))
Right4(d(x0))
Right5(d(x0))
Right6(d(x0))
Right1(f(x0))
Right2(f(x0))
Right3(f(x0))
Right4(f(x0))
Right5(f(x0))
Right6(f(x0))
Right1(g(x0))
Right2(g(x0))
Right3(g(x0))
Right4(g(x0))
Right5(g(x0))
Right6(g(x0))
Aa(Left(x0))
Ab(Left(x0))
Ac(Left(x0))
Ad(Left(x0))
Af(Left(x0))
Ag(Left(x0))
Right1(a(x0))
Right2(a(x0))
Right3(a(x0))
Right4(a(x0))
Right5(a(x0))
Right6(a(x0))
Right1(b(x0))
Right2(b(x0))
Right3(b(x0))
Right4(b(x0))
Right5(b(x0))
Right6(b(x0))
Right1(c(x0))
Right2(c(x0))
Right3(c(x0))
Right4(c(x0))
Right5(c(x0))
Right6(c(x0))
Right1(d(x0))
Right2(d(x0))
Right3(d(x0))
Right4(d(x0))
Right5(d(x0))
Right6(d(x0))
Right1(f(x0))
Right2(f(x0))
Right3(f(x0))
Right4(f(x0))
Right5(f(x0))
Right6(f(x0))
Right1(g(x0))
Right2(g(x0))
Right3(g(x0))
Right4(g(x0))
Right5(g(x0))
Right6(g(x0))
Aa(Left(x0))
Ab(Left(x0))
Ac(Left(x0))
Ad(Left(x0))
Af(Left(x0))
Ag(Left(x0))
RIGHT1(b(x)) → RIGHT1(x)
RIGHT1(a(x)) → RIGHT1(x)
RIGHT1(c(x)) → RIGHT1(x)
RIGHT1(d(x)) → RIGHT1(x)
RIGHT1(f(x)) → RIGHT1(x)
RIGHT1(g(x)) → RIGHT1(x)
From the DPs we obtained the following set of size-change graphs: