YES
0 QTRS
↳1 QTRS Reverse (⇔, 0 ms)
↳2 QTRS
↳3 QTRSRRRProof (⇔, 78 ms)
↳4 QTRS
↳5 Overlay + Local Confluence (⇔, 38 ms)
↳6 QTRS
↳7 DependencyPairsProof (⇔, 35 ms)
↳8 QDP
↳9 DependencyGraphProof (⇔, 0 ms)
↳10 AND
↳11 QDP
↳12 UsableRulesProof (⇔, 0 ms)
↳13 QDP
↳14 QReductionProof (⇔, 0 ms)
↳15 QDP
↳16 QDPSizeChangeProof (⇔, 0 ms)
↳17 YES
↳18 QDP
↳19 UsableRulesProof (⇔, 0 ms)
↳20 QDP
↳21 QReductionProof (⇔, 0 ms)
↳22 QDP
↳23 QDPSizeChangeProof (⇔, 0 ms)
↳24 YES
↳25 QDP
↳26 UsableRulesProof (⇔, 0 ms)
↳27 QDP
↳28 QReductionProof (⇔, 0 ms)
↳29 QDP
↳30 QDPSizeChangeProof (⇔, 0 ms)
↳31 YES
↳32 QDP
↳33 UsableRulesProof (⇔, 0 ms)
↳34 QDP
↳35 QReductionProof (⇔, 0 ms)
↳36 QDP
↳37 QDPSizeChangeProof (⇔, 0 ms)
↳38 YES
↳39 QDP
↳40 UsableRulesProof (⇔, 0 ms)
↳41 QDP
↳42 QReductionProof (⇔, 0 ms)
↳43 QDP
↳44 QDPSizeChangeProof (⇔, 0 ms)
↳45 YES
↳46 QDP
↳47 UsableRulesProof (⇔, 0 ms)
↳48 QDP
↳49 QReductionProof (⇔, 0 ms)
↳50 QDP
↳51 QDPSizeChangeProof (⇔, 0 ms)
↳52 YES
↳53 QDP
↳54 UsableRulesProof (⇔, 0 ms)
↳55 QDP
↳56 QReductionProof (⇔, 0 ms)
↳57 QDP
↳58 QDPSizeChangeProof (⇔, 0 ms)
↳59 YES
B(x) → W(M(V(x)))
M(x) → x
M(V(a(x))) → V(Xa(x))
M(V(b(x))) → V(Xb(x))
M(V(c(x))) → V(Xc(x))
M(V(d(x))) → V(Xd(x))
M(V(f(x))) → V(Xf(x))
M(V(g(x))) → V(Xg(x))
Xa(a(x)) → a(Xa(x))
Xa(b(x)) → b(Xa(x))
Xa(c(x)) → c(Xa(x))
Xa(d(x)) → d(Xa(x))
Xa(f(x)) → f(Xa(x))
Xa(g(x)) → g(Xa(x))
Xb(a(x)) → a(Xb(x))
Xb(b(x)) → b(Xb(x))
Xb(c(x)) → c(Xb(x))
Xb(d(x)) → d(Xb(x))
Xb(f(x)) → f(Xb(x))
Xb(g(x)) → g(Xb(x))
Xc(a(x)) → a(Xc(x))
Xc(b(x)) → b(Xc(x))
Xc(c(x)) → c(Xc(x))
Xc(d(x)) → d(Xc(x))
Xc(f(x)) → f(Xc(x))
Xc(g(x)) → g(Xc(x))
Xd(a(x)) → a(Xd(x))
Xd(b(x)) → b(Xd(x))
Xd(c(x)) → c(Xd(x))
Xd(d(x)) → d(Xd(x))
Xd(f(x)) → f(Xd(x))
Xd(g(x)) → g(Xd(x))
Xf(a(x)) → a(Xf(x))
Xf(b(x)) → b(Xf(x))
Xf(c(x)) → c(Xf(x))
Xf(d(x)) → d(Xf(x))
Xf(f(x)) → f(Xf(x))
Xf(g(x)) → g(Xf(x))
Xg(a(x)) → a(Xg(x))
Xg(b(x)) → b(Xg(x))
Xg(c(x)) → c(Xg(x))
Xg(d(x)) → d(Xg(x))
Xg(f(x)) → f(Xg(x))
Xg(g(x)) → g(Xg(x))
Xa(E(x)) → a(E(x))
Xb(E(x)) → b(E(x))
Xc(E(x)) → c(E(x))
Xd(E(x)) → d(E(x))
Xf(E(x)) → f(E(x))
Xg(E(x)) → g(E(x))
W(V(x)) → R(L(x))
L(a(x)) → Ya(L(x))
L(b(x)) → Yb(L(x))
L(c(x)) → Yc(L(x))
L(d(x)) → Yd(L(x))
L(f(x)) → Yf(L(x))
L(g(x)) → Yg(L(x))
L(a(a(x))) → D(b(c(x)))
L(b(b(x))) → D(c(d(x)))
L(b(x)) → D(a(x))
L(c(c(x))) → D(d(f(x)))
L(d(d(x))) → D(f(f(f(x))))
L(d(x)) → D(b(x))
L(f(f(x))) → D(g(a(x)))
L(g(g(x))) → D(a(x))
Ya(D(x)) → D(a(x))
Yb(D(x)) → D(b(x))
Yc(D(x)) → D(c(x))
Yd(D(x)) → D(d(x))
Yf(D(x)) → D(f(x))
Yg(D(x)) → D(g(x))
R(D(x)) → B(x)
B(x) → V(M(W(x)))
M(x) → x
a(V(M(x))) → Xa(V(x))
b(V(M(x))) → Xb(V(x))
c(V(M(x))) → Xc(V(x))
d(V(M(x))) → Xd(V(x))
f(V(M(x))) → Xf(V(x))
g(V(M(x))) → Xg(V(x))
a(Xa(x)) → Xa(a(x))
b(Xa(x)) → Xa(b(x))
c(Xa(x)) → Xa(c(x))
d(Xa(x)) → Xa(d(x))
f(Xa(x)) → Xa(f(x))
g(Xa(x)) → Xa(g(x))
a(Xb(x)) → Xb(a(x))
b(Xb(x)) → Xb(b(x))
c(Xb(x)) → Xb(c(x))
d(Xb(x)) → Xb(d(x))
f(Xb(x)) → Xb(f(x))
g(Xb(x)) → Xb(g(x))
a(Xc(x)) → Xc(a(x))
b(Xc(x)) → Xc(b(x))
c(Xc(x)) → Xc(c(x))
d(Xc(x)) → Xc(d(x))
f(Xc(x)) → Xc(f(x))
g(Xc(x)) → Xc(g(x))
a(Xd(x)) → Xd(a(x))
b(Xd(x)) → Xd(b(x))
c(Xd(x)) → Xd(c(x))
d(Xd(x)) → Xd(d(x))
f(Xd(x)) → Xd(f(x))
g(Xd(x)) → Xd(g(x))
a(Xf(x)) → Xf(a(x))
b(Xf(x)) → Xf(b(x))
c(Xf(x)) → Xf(c(x))
d(Xf(x)) → Xf(d(x))
f(Xf(x)) → Xf(f(x))
g(Xf(x)) → Xf(g(x))
a(Xg(x)) → Xg(a(x))
b(Xg(x)) → Xg(b(x))
c(Xg(x)) → Xg(c(x))
d(Xg(x)) → Xg(d(x))
f(Xg(x)) → Xg(f(x))
g(Xg(x)) → Xg(g(x))
E(Xa(x)) → E(a(x))
E(Xb(x)) → E(b(x))
E(Xc(x)) → E(c(x))
E(Xd(x)) → E(d(x))
E(Xf(x)) → E(f(x))
E(Xg(x)) → E(g(x))
V(W(x)) → L(R(x))
a(L(x)) → L(Ya(x))
b(L(x)) → L(Yb(x))
c(L(x)) → L(Yc(x))
d(L(x)) → L(Yd(x))
f(L(x)) → L(Yf(x))
g(L(x)) → L(Yg(x))
a(a(L(x))) → c(b(D(x)))
b(b(L(x))) → d(c(D(x)))
b(L(x)) → a(D(x))
c(c(L(x))) → f(d(D(x)))
d(d(L(x))) → f(f(f(D(x))))
d(L(x)) → b(D(x))
f(f(L(x))) → a(g(D(x)))
g(g(L(x))) → a(D(x))
D(Ya(x)) → a(D(x))
D(Yb(x)) → b(D(x))
D(Yc(x)) → c(D(x))
D(Yd(x)) → d(D(x))
D(Yf(x)) → f(D(x))
D(Yg(x)) → g(D(x))
D(R(x)) → B(x)
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(B(x1)) = 4 + x1
POL(D(x1)) = 5 + x1
POL(E(x1)) = x1
POL(L(x1)) = x1
POL(M(x1)) = 2 + x1
POL(R(x1)) = x1
POL(V(x1)) = 1 + x1
POL(W(x1)) = x1
POL(Xa(x1)) = 931 + x1
POL(Xb(x1)) = 973 + x1
POL(Xc(x1)) = 883 + x1
POL(Xd(x1)) = 1057 + x1
POL(Xf(x1)) = 703 + x1
POL(Xg(x1)) = 469 + x1
POL(Ya(x1)) = 930 + x1
POL(Yb(x1)) = 972 + x1
POL(Yc(x1)) = 882 + x1
POL(Yd(x1)) = 1056 + x1
POL(Yf(x1)) = 702 + x1
POL(Yg(x1)) = 468 + x1
POL(a(x1)) = 930 + x1
POL(b(x1)) = 972 + x1
POL(c(x1)) = 882 + x1
POL(d(x1)) = 1056 + x1
POL(f(x1)) = 702 + x1
POL(g(x1)) = 468 + x1
B(x) → V(M(W(x)))
M(x) → x
a(V(M(x))) → Xa(V(x))
b(V(M(x))) → Xb(V(x))
c(V(M(x))) → Xc(V(x))
d(V(M(x))) → Xd(V(x))
f(V(M(x))) → Xf(V(x))
g(V(M(x))) → Xg(V(x))
E(Xa(x)) → E(a(x))
E(Xb(x)) → E(b(x))
E(Xc(x)) → E(c(x))
E(Xd(x)) → E(d(x))
E(Xf(x)) → E(f(x))
E(Xg(x)) → E(g(x))
V(W(x)) → L(R(x))
a(a(L(x))) → c(b(D(x)))
b(b(L(x))) → d(c(D(x)))
b(L(x)) → a(D(x))
c(c(L(x))) → f(d(D(x)))
d(d(L(x))) → f(f(f(D(x))))
d(L(x)) → b(D(x))
f(f(L(x))) → a(g(D(x)))
g(g(L(x))) → a(D(x))
D(R(x)) → B(x)
a(Xa(x)) → Xa(a(x))
b(Xa(x)) → Xa(b(x))
c(Xa(x)) → Xa(c(x))
d(Xa(x)) → Xa(d(x))
f(Xa(x)) → Xa(f(x))
g(Xa(x)) → Xa(g(x))
a(Xb(x)) → Xb(a(x))
b(Xb(x)) → Xb(b(x))
c(Xb(x)) → Xb(c(x))
d(Xb(x)) → Xb(d(x))
f(Xb(x)) → Xb(f(x))
g(Xb(x)) → Xb(g(x))
a(Xc(x)) → Xc(a(x))
b(Xc(x)) → Xc(b(x))
c(Xc(x)) → Xc(c(x))
d(Xc(x)) → Xc(d(x))
f(Xc(x)) → Xc(f(x))
g(Xc(x)) → Xc(g(x))
a(Xd(x)) → Xd(a(x))
b(Xd(x)) → Xd(b(x))
c(Xd(x)) → Xd(c(x))
d(Xd(x)) → Xd(d(x))
f(Xd(x)) → Xd(f(x))
g(Xd(x)) → Xd(g(x))
a(Xf(x)) → Xf(a(x))
b(Xf(x)) → Xf(b(x))
c(Xf(x)) → Xf(c(x))
d(Xf(x)) → Xf(d(x))
f(Xf(x)) → Xf(f(x))
g(Xf(x)) → Xf(g(x))
a(Xg(x)) → Xg(a(x))
b(Xg(x)) → Xg(b(x))
c(Xg(x)) → Xg(c(x))
d(Xg(x)) → Xg(d(x))
f(Xg(x)) → Xg(f(x))
g(Xg(x)) → Xg(g(x))
a(L(x)) → L(Ya(x))
b(L(x)) → L(Yb(x))
c(L(x)) → L(Yc(x))
d(L(x)) → L(Yd(x))
f(L(x)) → L(Yf(x))
g(L(x)) → L(Yg(x))
D(Ya(x)) → a(D(x))
D(Yb(x)) → b(D(x))
D(Yc(x)) → c(D(x))
D(Yd(x)) → d(D(x))
D(Yf(x)) → f(D(x))
D(Yg(x)) → g(D(x))
a(Xa(x)) → Xa(a(x))
b(Xa(x)) → Xa(b(x))
c(Xa(x)) → Xa(c(x))
d(Xa(x)) → Xa(d(x))
f(Xa(x)) → Xa(f(x))
g(Xa(x)) → Xa(g(x))
a(Xb(x)) → Xb(a(x))
b(Xb(x)) → Xb(b(x))
c(Xb(x)) → Xb(c(x))
d(Xb(x)) → Xb(d(x))
f(Xb(x)) → Xb(f(x))
g(Xb(x)) → Xb(g(x))
a(Xc(x)) → Xc(a(x))
b(Xc(x)) → Xc(b(x))
c(Xc(x)) → Xc(c(x))
d(Xc(x)) → Xc(d(x))
f(Xc(x)) → Xc(f(x))
g(Xc(x)) → Xc(g(x))
a(Xd(x)) → Xd(a(x))
b(Xd(x)) → Xd(b(x))
c(Xd(x)) → Xd(c(x))
d(Xd(x)) → Xd(d(x))
f(Xd(x)) → Xd(f(x))
g(Xd(x)) → Xd(g(x))
a(Xf(x)) → Xf(a(x))
b(Xf(x)) → Xf(b(x))
c(Xf(x)) → Xf(c(x))
d(Xf(x)) → Xf(d(x))
f(Xf(x)) → Xf(f(x))
g(Xf(x)) → Xf(g(x))
a(Xg(x)) → Xg(a(x))
b(Xg(x)) → Xg(b(x))
c(Xg(x)) → Xg(c(x))
d(Xg(x)) → Xg(d(x))
f(Xg(x)) → Xg(f(x))
g(Xg(x)) → Xg(g(x))
a(L(x)) → L(Ya(x))
b(L(x)) → L(Yb(x))
c(L(x)) → L(Yc(x))
d(L(x)) → L(Yd(x))
f(L(x)) → L(Yf(x))
g(L(x)) → L(Yg(x))
D(Ya(x)) → a(D(x))
D(Yb(x)) → b(D(x))
D(Yc(x)) → c(D(x))
D(Yd(x)) → d(D(x))
D(Yf(x)) → f(D(x))
D(Yg(x)) → g(D(x))
a(Xa(x0))
b(Xa(x0))
c(Xa(x0))
d(Xa(x0))
f(Xa(x0))
g(Xa(x0))
a(Xb(x0))
b(Xb(x0))
c(Xb(x0))
d(Xb(x0))
f(Xb(x0))
g(Xb(x0))
a(Xc(x0))
b(Xc(x0))
c(Xc(x0))
d(Xc(x0))
f(Xc(x0))
g(Xc(x0))
a(Xd(x0))
b(Xd(x0))
c(Xd(x0))
d(Xd(x0))
f(Xd(x0))
g(Xd(x0))
a(Xf(x0))
b(Xf(x0))
c(Xf(x0))
d(Xf(x0))
f(Xf(x0))
g(Xf(x0))
a(Xg(x0))
b(Xg(x0))
c(Xg(x0))
d(Xg(x0))
f(Xg(x0))
g(Xg(x0))
a(L(x0))
b(L(x0))
c(L(x0))
d(L(x0))
f(L(x0))
g(L(x0))
D(Ya(x0))
D(Yb(x0))
D(Yc(x0))
D(Yd(x0))
D(Yf(x0))
D(Yg(x0))
A(Xa(x)) → A(x)
B(Xa(x)) → B(x)
C(Xa(x)) → C(x)
D1(Xa(x)) → D1(x)
F(Xa(x)) → F(x)
G(Xa(x)) → G(x)
A(Xb(x)) → A(x)
B(Xb(x)) → B(x)
C(Xb(x)) → C(x)
D1(Xb(x)) → D1(x)
F(Xb(x)) → F(x)
G(Xb(x)) → G(x)
A(Xc(x)) → A(x)
B(Xc(x)) → B(x)
C(Xc(x)) → C(x)
D1(Xc(x)) → D1(x)
F(Xc(x)) → F(x)
G(Xc(x)) → G(x)
A(Xd(x)) → A(x)
B(Xd(x)) → B(x)
C(Xd(x)) → C(x)
D1(Xd(x)) → D1(x)
F(Xd(x)) → F(x)
G(Xd(x)) → G(x)
A(Xf(x)) → A(x)
B(Xf(x)) → B(x)
C(Xf(x)) → C(x)
D1(Xf(x)) → D1(x)
F(Xf(x)) → F(x)
G(Xf(x)) → G(x)
A(Xg(x)) → A(x)
B(Xg(x)) → B(x)
C(Xg(x)) → C(x)
D1(Xg(x)) → D1(x)
F(Xg(x)) → F(x)
G(Xg(x)) → G(x)
D2(Ya(x)) → A(D(x))
D2(Ya(x)) → D2(x)
D2(Yb(x)) → B(D(x))
D2(Yb(x)) → D2(x)
D2(Yc(x)) → C(D(x))
D2(Yc(x)) → D2(x)
D2(Yd(x)) → D1(D(x))
D2(Yd(x)) → D2(x)
D2(Yf(x)) → F(D(x))
D2(Yf(x)) → D2(x)
D2(Yg(x)) → G(D(x))
D2(Yg(x)) → D2(x)
a(Xa(x)) → Xa(a(x))
b(Xa(x)) → Xa(b(x))
c(Xa(x)) → Xa(c(x))
d(Xa(x)) → Xa(d(x))
f(Xa(x)) → Xa(f(x))
g(Xa(x)) → Xa(g(x))
a(Xb(x)) → Xb(a(x))
b(Xb(x)) → Xb(b(x))
c(Xb(x)) → Xb(c(x))
d(Xb(x)) → Xb(d(x))
f(Xb(x)) → Xb(f(x))
g(Xb(x)) → Xb(g(x))
a(Xc(x)) → Xc(a(x))
b(Xc(x)) → Xc(b(x))
c(Xc(x)) → Xc(c(x))
d(Xc(x)) → Xc(d(x))
f(Xc(x)) → Xc(f(x))
g(Xc(x)) → Xc(g(x))
a(Xd(x)) → Xd(a(x))
b(Xd(x)) → Xd(b(x))
c(Xd(x)) → Xd(c(x))
d(Xd(x)) → Xd(d(x))
f(Xd(x)) → Xd(f(x))
g(Xd(x)) → Xd(g(x))
a(Xf(x)) → Xf(a(x))
b(Xf(x)) → Xf(b(x))
c(Xf(x)) → Xf(c(x))
d(Xf(x)) → Xf(d(x))
f(Xf(x)) → Xf(f(x))
g(Xf(x)) → Xf(g(x))
a(Xg(x)) → Xg(a(x))
b(Xg(x)) → Xg(b(x))
c(Xg(x)) → Xg(c(x))
d(Xg(x)) → Xg(d(x))
f(Xg(x)) → Xg(f(x))
g(Xg(x)) → Xg(g(x))
a(L(x)) → L(Ya(x))
b(L(x)) → L(Yb(x))
c(L(x)) → L(Yc(x))
d(L(x)) → L(Yd(x))
f(L(x)) → L(Yf(x))
g(L(x)) → L(Yg(x))
D(Ya(x)) → a(D(x))
D(Yb(x)) → b(D(x))
D(Yc(x)) → c(D(x))
D(Yd(x)) → d(D(x))
D(Yf(x)) → f(D(x))
D(Yg(x)) → g(D(x))
a(Xa(x0))
b(Xa(x0))
c(Xa(x0))
d(Xa(x0))
f(Xa(x0))
g(Xa(x0))
a(Xb(x0))
b(Xb(x0))
c(Xb(x0))
d(Xb(x0))
f(Xb(x0))
g(Xb(x0))
a(Xc(x0))
b(Xc(x0))
c(Xc(x0))
d(Xc(x0))
f(Xc(x0))
g(Xc(x0))
a(Xd(x0))
b(Xd(x0))
c(Xd(x0))
d(Xd(x0))
f(Xd(x0))
g(Xd(x0))
a(Xf(x0))
b(Xf(x0))
c(Xf(x0))
d(Xf(x0))
f(Xf(x0))
g(Xf(x0))
a(Xg(x0))
b(Xg(x0))
c(Xg(x0))
d(Xg(x0))
f(Xg(x0))
g(Xg(x0))
a(L(x0))
b(L(x0))
c(L(x0))
d(L(x0))
f(L(x0))
g(L(x0))
D(Ya(x0))
D(Yb(x0))
D(Yc(x0))
D(Yd(x0))
D(Yf(x0))
D(Yg(x0))
G(Xb(x)) → G(x)
G(Xa(x)) → G(x)
G(Xc(x)) → G(x)
G(Xd(x)) → G(x)
G(Xf(x)) → G(x)
G(Xg(x)) → G(x)
a(Xa(x)) → Xa(a(x))
b(Xa(x)) → Xa(b(x))
c(Xa(x)) → Xa(c(x))
d(Xa(x)) → Xa(d(x))
f(Xa(x)) → Xa(f(x))
g(Xa(x)) → Xa(g(x))
a(Xb(x)) → Xb(a(x))
b(Xb(x)) → Xb(b(x))
c(Xb(x)) → Xb(c(x))
d(Xb(x)) → Xb(d(x))
f(Xb(x)) → Xb(f(x))
g(Xb(x)) → Xb(g(x))
a(Xc(x)) → Xc(a(x))
b(Xc(x)) → Xc(b(x))
c(Xc(x)) → Xc(c(x))
d(Xc(x)) → Xc(d(x))
f(Xc(x)) → Xc(f(x))
g(Xc(x)) → Xc(g(x))
a(Xd(x)) → Xd(a(x))
b(Xd(x)) → Xd(b(x))
c(Xd(x)) → Xd(c(x))
d(Xd(x)) → Xd(d(x))
f(Xd(x)) → Xd(f(x))
g(Xd(x)) → Xd(g(x))
a(Xf(x)) → Xf(a(x))
b(Xf(x)) → Xf(b(x))
c(Xf(x)) → Xf(c(x))
d(Xf(x)) → Xf(d(x))
f(Xf(x)) → Xf(f(x))
g(Xf(x)) → Xf(g(x))
a(Xg(x)) → Xg(a(x))
b(Xg(x)) → Xg(b(x))
c(Xg(x)) → Xg(c(x))
d(Xg(x)) → Xg(d(x))
f(Xg(x)) → Xg(f(x))
g(Xg(x)) → Xg(g(x))
a(L(x)) → L(Ya(x))
b(L(x)) → L(Yb(x))
c(L(x)) → L(Yc(x))
d(L(x)) → L(Yd(x))
f(L(x)) → L(Yf(x))
g(L(x)) → L(Yg(x))
D(Ya(x)) → a(D(x))
D(Yb(x)) → b(D(x))
D(Yc(x)) → c(D(x))
D(Yd(x)) → d(D(x))
D(Yf(x)) → f(D(x))
D(Yg(x)) → g(D(x))
a(Xa(x0))
b(Xa(x0))
c(Xa(x0))
d(Xa(x0))
f(Xa(x0))
g(Xa(x0))
a(Xb(x0))
b(Xb(x0))
c(Xb(x0))
d(Xb(x0))
f(Xb(x0))
g(Xb(x0))
a(Xc(x0))
b(Xc(x0))
c(Xc(x0))
d(Xc(x0))
f(Xc(x0))
g(Xc(x0))
a(Xd(x0))
b(Xd(x0))
c(Xd(x0))
d(Xd(x0))
f(Xd(x0))
g(Xd(x0))
a(Xf(x0))
b(Xf(x0))
c(Xf(x0))
d(Xf(x0))
f(Xf(x0))
g(Xf(x0))
a(Xg(x0))
b(Xg(x0))
c(Xg(x0))
d(Xg(x0))
f(Xg(x0))
g(Xg(x0))
a(L(x0))
b(L(x0))
c(L(x0))
d(L(x0))
f(L(x0))
g(L(x0))
D(Ya(x0))
D(Yb(x0))
D(Yc(x0))
D(Yd(x0))
D(Yf(x0))
D(Yg(x0))
G(Xb(x)) → G(x)
G(Xa(x)) → G(x)
G(Xc(x)) → G(x)
G(Xd(x)) → G(x)
G(Xf(x)) → G(x)
G(Xg(x)) → G(x)
a(Xa(x0))
b(Xa(x0))
c(Xa(x0))
d(Xa(x0))
f(Xa(x0))
g(Xa(x0))
a(Xb(x0))
b(Xb(x0))
c(Xb(x0))
d(Xb(x0))
f(Xb(x0))
g(Xb(x0))
a(Xc(x0))
b(Xc(x0))
c(Xc(x0))
d(Xc(x0))
f(Xc(x0))
g(Xc(x0))
a(Xd(x0))
b(Xd(x0))
c(Xd(x0))
d(Xd(x0))
f(Xd(x0))
g(Xd(x0))
a(Xf(x0))
b(Xf(x0))
c(Xf(x0))
d(Xf(x0))
f(Xf(x0))
g(Xf(x0))
a(Xg(x0))
b(Xg(x0))
c(Xg(x0))
d(Xg(x0))
f(Xg(x0))
g(Xg(x0))
a(L(x0))
b(L(x0))
c(L(x0))
d(L(x0))
f(L(x0))
g(L(x0))
D(Ya(x0))
D(Yb(x0))
D(Yc(x0))
D(Yd(x0))
D(Yf(x0))
D(Yg(x0))
a(Xa(x0))
b(Xa(x0))
c(Xa(x0))
d(Xa(x0))
f(Xa(x0))
g(Xa(x0))
a(Xb(x0))
b(Xb(x0))
c(Xb(x0))
d(Xb(x0))
f(Xb(x0))
g(Xb(x0))
a(Xc(x0))
b(Xc(x0))
c(Xc(x0))
d(Xc(x0))
f(Xc(x0))
g(Xc(x0))
a(Xd(x0))
b(Xd(x0))
c(Xd(x0))
d(Xd(x0))
f(Xd(x0))
g(Xd(x0))
a(Xf(x0))
b(Xf(x0))
c(Xf(x0))
d(Xf(x0))
f(Xf(x0))
g(Xf(x0))
a(Xg(x0))
b(Xg(x0))
c(Xg(x0))
d(Xg(x0))
f(Xg(x0))
g(Xg(x0))
a(L(x0))
b(L(x0))
c(L(x0))
d(L(x0))
f(L(x0))
g(L(x0))
D(Ya(x0))
D(Yb(x0))
D(Yc(x0))
D(Yd(x0))
D(Yf(x0))
D(Yg(x0))
G(Xb(x)) → G(x)
G(Xa(x)) → G(x)
G(Xc(x)) → G(x)
G(Xd(x)) → G(x)
G(Xf(x)) → G(x)
G(Xg(x)) → G(x)
From the DPs we obtained the following set of size-change graphs:
F(Xb(x)) → F(x)
F(Xa(x)) → F(x)
F(Xc(x)) → F(x)
F(Xd(x)) → F(x)
F(Xf(x)) → F(x)
F(Xg(x)) → F(x)
a(Xa(x)) → Xa(a(x))
b(Xa(x)) → Xa(b(x))
c(Xa(x)) → Xa(c(x))
d(Xa(x)) → Xa(d(x))
f(Xa(x)) → Xa(f(x))
g(Xa(x)) → Xa(g(x))
a(Xb(x)) → Xb(a(x))
b(Xb(x)) → Xb(b(x))
c(Xb(x)) → Xb(c(x))
d(Xb(x)) → Xb(d(x))
f(Xb(x)) → Xb(f(x))
g(Xb(x)) → Xb(g(x))
a(Xc(x)) → Xc(a(x))
b(Xc(x)) → Xc(b(x))
c(Xc(x)) → Xc(c(x))
d(Xc(x)) → Xc(d(x))
f(Xc(x)) → Xc(f(x))
g(Xc(x)) → Xc(g(x))
a(Xd(x)) → Xd(a(x))
b(Xd(x)) → Xd(b(x))
c(Xd(x)) → Xd(c(x))
d(Xd(x)) → Xd(d(x))
f(Xd(x)) → Xd(f(x))
g(Xd(x)) → Xd(g(x))
a(Xf(x)) → Xf(a(x))
b(Xf(x)) → Xf(b(x))
c(Xf(x)) → Xf(c(x))
d(Xf(x)) → Xf(d(x))
f(Xf(x)) → Xf(f(x))
g(Xf(x)) → Xf(g(x))
a(Xg(x)) → Xg(a(x))
b(Xg(x)) → Xg(b(x))
c(Xg(x)) → Xg(c(x))
d(Xg(x)) → Xg(d(x))
f(Xg(x)) → Xg(f(x))
g(Xg(x)) → Xg(g(x))
a(L(x)) → L(Ya(x))
b(L(x)) → L(Yb(x))
c(L(x)) → L(Yc(x))
d(L(x)) → L(Yd(x))
f(L(x)) → L(Yf(x))
g(L(x)) → L(Yg(x))
D(Ya(x)) → a(D(x))
D(Yb(x)) → b(D(x))
D(Yc(x)) → c(D(x))
D(Yd(x)) → d(D(x))
D(Yf(x)) → f(D(x))
D(Yg(x)) → g(D(x))
a(Xa(x0))
b(Xa(x0))
c(Xa(x0))
d(Xa(x0))
f(Xa(x0))
g(Xa(x0))
a(Xb(x0))
b(Xb(x0))
c(Xb(x0))
d(Xb(x0))
f(Xb(x0))
g(Xb(x0))
a(Xc(x0))
b(Xc(x0))
c(Xc(x0))
d(Xc(x0))
f(Xc(x0))
g(Xc(x0))
a(Xd(x0))
b(Xd(x0))
c(Xd(x0))
d(Xd(x0))
f(Xd(x0))
g(Xd(x0))
a(Xf(x0))
b(Xf(x0))
c(Xf(x0))
d(Xf(x0))
f(Xf(x0))
g(Xf(x0))
a(Xg(x0))
b(Xg(x0))
c(Xg(x0))
d(Xg(x0))
f(Xg(x0))
g(Xg(x0))
a(L(x0))
b(L(x0))
c(L(x0))
d(L(x0))
f(L(x0))
g(L(x0))
D(Ya(x0))
D(Yb(x0))
D(Yc(x0))
D(Yd(x0))
D(Yf(x0))
D(Yg(x0))
F(Xb(x)) → F(x)
F(Xa(x)) → F(x)
F(Xc(x)) → F(x)
F(Xd(x)) → F(x)
F(Xf(x)) → F(x)
F(Xg(x)) → F(x)
a(Xa(x0))
b(Xa(x0))
c(Xa(x0))
d(Xa(x0))
f(Xa(x0))
g(Xa(x0))
a(Xb(x0))
b(Xb(x0))
c(Xb(x0))
d(Xb(x0))
f(Xb(x0))
g(Xb(x0))
a(Xc(x0))
b(Xc(x0))
c(Xc(x0))
d(Xc(x0))
f(Xc(x0))
g(Xc(x0))
a(Xd(x0))
b(Xd(x0))
c(Xd(x0))
d(Xd(x0))
f(Xd(x0))
g(Xd(x0))
a(Xf(x0))
b(Xf(x0))
c(Xf(x0))
d(Xf(x0))
f(Xf(x0))
g(Xf(x0))
a(Xg(x0))
b(Xg(x0))
c(Xg(x0))
d(Xg(x0))
f(Xg(x0))
g(Xg(x0))
a(L(x0))
b(L(x0))
c(L(x0))
d(L(x0))
f(L(x0))
g(L(x0))
D(Ya(x0))
D(Yb(x0))
D(Yc(x0))
D(Yd(x0))
D(Yf(x0))
D(Yg(x0))
a(Xa(x0))
b(Xa(x0))
c(Xa(x0))
d(Xa(x0))
f(Xa(x0))
g(Xa(x0))
a(Xb(x0))
b(Xb(x0))
c(Xb(x0))
d(Xb(x0))
f(Xb(x0))
g(Xb(x0))
a(Xc(x0))
b(Xc(x0))
c(Xc(x0))
d(Xc(x0))
f(Xc(x0))
g(Xc(x0))
a(Xd(x0))
b(Xd(x0))
c(Xd(x0))
d(Xd(x0))
f(Xd(x0))
g(Xd(x0))
a(Xf(x0))
b(Xf(x0))
c(Xf(x0))
d(Xf(x0))
f(Xf(x0))
g(Xf(x0))
a(Xg(x0))
b(Xg(x0))
c(Xg(x0))
d(Xg(x0))
f(Xg(x0))
g(Xg(x0))
a(L(x0))
b(L(x0))
c(L(x0))
d(L(x0))
f(L(x0))
g(L(x0))
D(Ya(x0))
D(Yb(x0))
D(Yc(x0))
D(Yd(x0))
D(Yf(x0))
D(Yg(x0))
F(Xb(x)) → F(x)
F(Xa(x)) → F(x)
F(Xc(x)) → F(x)
F(Xd(x)) → F(x)
F(Xf(x)) → F(x)
F(Xg(x)) → F(x)
From the DPs we obtained the following set of size-change graphs:
D1(Xb(x)) → D1(x)
D1(Xa(x)) → D1(x)
D1(Xc(x)) → D1(x)
D1(Xd(x)) → D1(x)
D1(Xf(x)) → D1(x)
D1(Xg(x)) → D1(x)
a(Xa(x)) → Xa(a(x))
b(Xa(x)) → Xa(b(x))
c(Xa(x)) → Xa(c(x))
d(Xa(x)) → Xa(d(x))
f(Xa(x)) → Xa(f(x))
g(Xa(x)) → Xa(g(x))
a(Xb(x)) → Xb(a(x))
b(Xb(x)) → Xb(b(x))
c(Xb(x)) → Xb(c(x))
d(Xb(x)) → Xb(d(x))
f(Xb(x)) → Xb(f(x))
g(Xb(x)) → Xb(g(x))
a(Xc(x)) → Xc(a(x))
b(Xc(x)) → Xc(b(x))
c(Xc(x)) → Xc(c(x))
d(Xc(x)) → Xc(d(x))
f(Xc(x)) → Xc(f(x))
g(Xc(x)) → Xc(g(x))
a(Xd(x)) → Xd(a(x))
b(Xd(x)) → Xd(b(x))
c(Xd(x)) → Xd(c(x))
d(Xd(x)) → Xd(d(x))
f(Xd(x)) → Xd(f(x))
g(Xd(x)) → Xd(g(x))
a(Xf(x)) → Xf(a(x))
b(Xf(x)) → Xf(b(x))
c(Xf(x)) → Xf(c(x))
d(Xf(x)) → Xf(d(x))
f(Xf(x)) → Xf(f(x))
g(Xf(x)) → Xf(g(x))
a(Xg(x)) → Xg(a(x))
b(Xg(x)) → Xg(b(x))
c(Xg(x)) → Xg(c(x))
d(Xg(x)) → Xg(d(x))
f(Xg(x)) → Xg(f(x))
g(Xg(x)) → Xg(g(x))
a(L(x)) → L(Ya(x))
b(L(x)) → L(Yb(x))
c(L(x)) → L(Yc(x))
d(L(x)) → L(Yd(x))
f(L(x)) → L(Yf(x))
g(L(x)) → L(Yg(x))
D(Ya(x)) → a(D(x))
D(Yb(x)) → b(D(x))
D(Yc(x)) → c(D(x))
D(Yd(x)) → d(D(x))
D(Yf(x)) → f(D(x))
D(Yg(x)) → g(D(x))
a(Xa(x0))
b(Xa(x0))
c(Xa(x0))
d(Xa(x0))
f(Xa(x0))
g(Xa(x0))
a(Xb(x0))
b(Xb(x0))
c(Xb(x0))
d(Xb(x0))
f(Xb(x0))
g(Xb(x0))
a(Xc(x0))
b(Xc(x0))
c(Xc(x0))
d(Xc(x0))
f(Xc(x0))
g(Xc(x0))
a(Xd(x0))
b(Xd(x0))
c(Xd(x0))
d(Xd(x0))
f(Xd(x0))
g(Xd(x0))
a(Xf(x0))
b(Xf(x0))
c(Xf(x0))
d(Xf(x0))
f(Xf(x0))
g(Xf(x0))
a(Xg(x0))
b(Xg(x0))
c(Xg(x0))
d(Xg(x0))
f(Xg(x0))
g(Xg(x0))
a(L(x0))
b(L(x0))
c(L(x0))
d(L(x0))
f(L(x0))
g(L(x0))
D(Ya(x0))
D(Yb(x0))
D(Yc(x0))
D(Yd(x0))
D(Yf(x0))
D(Yg(x0))
D1(Xb(x)) → D1(x)
D1(Xa(x)) → D1(x)
D1(Xc(x)) → D1(x)
D1(Xd(x)) → D1(x)
D1(Xf(x)) → D1(x)
D1(Xg(x)) → D1(x)
a(Xa(x0))
b(Xa(x0))
c(Xa(x0))
d(Xa(x0))
f(Xa(x0))
g(Xa(x0))
a(Xb(x0))
b(Xb(x0))
c(Xb(x0))
d(Xb(x0))
f(Xb(x0))
g(Xb(x0))
a(Xc(x0))
b(Xc(x0))
c(Xc(x0))
d(Xc(x0))
f(Xc(x0))
g(Xc(x0))
a(Xd(x0))
b(Xd(x0))
c(Xd(x0))
d(Xd(x0))
f(Xd(x0))
g(Xd(x0))
a(Xf(x0))
b(Xf(x0))
c(Xf(x0))
d(Xf(x0))
f(Xf(x0))
g(Xf(x0))
a(Xg(x0))
b(Xg(x0))
c(Xg(x0))
d(Xg(x0))
f(Xg(x0))
g(Xg(x0))
a(L(x0))
b(L(x0))
c(L(x0))
d(L(x0))
f(L(x0))
g(L(x0))
D(Ya(x0))
D(Yb(x0))
D(Yc(x0))
D(Yd(x0))
D(Yf(x0))
D(Yg(x0))
a(Xa(x0))
b(Xa(x0))
c(Xa(x0))
d(Xa(x0))
f(Xa(x0))
g(Xa(x0))
a(Xb(x0))
b(Xb(x0))
c(Xb(x0))
d(Xb(x0))
f(Xb(x0))
g(Xb(x0))
a(Xc(x0))
b(Xc(x0))
c(Xc(x0))
d(Xc(x0))
f(Xc(x0))
g(Xc(x0))
a(Xd(x0))
b(Xd(x0))
c(Xd(x0))
d(Xd(x0))
f(Xd(x0))
g(Xd(x0))
a(Xf(x0))
b(Xf(x0))
c(Xf(x0))
d(Xf(x0))
f(Xf(x0))
g(Xf(x0))
a(Xg(x0))
b(Xg(x0))
c(Xg(x0))
d(Xg(x0))
f(Xg(x0))
g(Xg(x0))
a(L(x0))
b(L(x0))
c(L(x0))
d(L(x0))
f(L(x0))
g(L(x0))
D(Ya(x0))
D(Yb(x0))
D(Yc(x0))
D(Yd(x0))
D(Yf(x0))
D(Yg(x0))
D1(Xb(x)) → D1(x)
D1(Xa(x)) → D1(x)
D1(Xc(x)) → D1(x)
D1(Xd(x)) → D1(x)
D1(Xf(x)) → D1(x)
D1(Xg(x)) → D1(x)
From the DPs we obtained the following set of size-change graphs:
C(Xb(x)) → C(x)
C(Xa(x)) → C(x)
C(Xc(x)) → C(x)
C(Xd(x)) → C(x)
C(Xf(x)) → C(x)
C(Xg(x)) → C(x)
a(Xa(x)) → Xa(a(x))
b(Xa(x)) → Xa(b(x))
c(Xa(x)) → Xa(c(x))
d(Xa(x)) → Xa(d(x))
f(Xa(x)) → Xa(f(x))
g(Xa(x)) → Xa(g(x))
a(Xb(x)) → Xb(a(x))
b(Xb(x)) → Xb(b(x))
c(Xb(x)) → Xb(c(x))
d(Xb(x)) → Xb(d(x))
f(Xb(x)) → Xb(f(x))
g(Xb(x)) → Xb(g(x))
a(Xc(x)) → Xc(a(x))
b(Xc(x)) → Xc(b(x))
c(Xc(x)) → Xc(c(x))
d(Xc(x)) → Xc(d(x))
f(Xc(x)) → Xc(f(x))
g(Xc(x)) → Xc(g(x))
a(Xd(x)) → Xd(a(x))
b(Xd(x)) → Xd(b(x))
c(Xd(x)) → Xd(c(x))
d(Xd(x)) → Xd(d(x))
f(Xd(x)) → Xd(f(x))
g(Xd(x)) → Xd(g(x))
a(Xf(x)) → Xf(a(x))
b(Xf(x)) → Xf(b(x))
c(Xf(x)) → Xf(c(x))
d(Xf(x)) → Xf(d(x))
f(Xf(x)) → Xf(f(x))
g(Xf(x)) → Xf(g(x))
a(Xg(x)) → Xg(a(x))
b(Xg(x)) → Xg(b(x))
c(Xg(x)) → Xg(c(x))
d(Xg(x)) → Xg(d(x))
f(Xg(x)) → Xg(f(x))
g(Xg(x)) → Xg(g(x))
a(L(x)) → L(Ya(x))
b(L(x)) → L(Yb(x))
c(L(x)) → L(Yc(x))
d(L(x)) → L(Yd(x))
f(L(x)) → L(Yf(x))
g(L(x)) → L(Yg(x))
D(Ya(x)) → a(D(x))
D(Yb(x)) → b(D(x))
D(Yc(x)) → c(D(x))
D(Yd(x)) → d(D(x))
D(Yf(x)) → f(D(x))
D(Yg(x)) → g(D(x))
a(Xa(x0))
b(Xa(x0))
c(Xa(x0))
d(Xa(x0))
f(Xa(x0))
g(Xa(x0))
a(Xb(x0))
b(Xb(x0))
c(Xb(x0))
d(Xb(x0))
f(Xb(x0))
g(Xb(x0))
a(Xc(x0))
b(Xc(x0))
c(Xc(x0))
d(Xc(x0))
f(Xc(x0))
g(Xc(x0))
a(Xd(x0))
b(Xd(x0))
c(Xd(x0))
d(Xd(x0))
f(Xd(x0))
g(Xd(x0))
a(Xf(x0))
b(Xf(x0))
c(Xf(x0))
d(Xf(x0))
f(Xf(x0))
g(Xf(x0))
a(Xg(x0))
b(Xg(x0))
c(Xg(x0))
d(Xg(x0))
f(Xg(x0))
g(Xg(x0))
a(L(x0))
b(L(x0))
c(L(x0))
d(L(x0))
f(L(x0))
g(L(x0))
D(Ya(x0))
D(Yb(x0))
D(Yc(x0))
D(Yd(x0))
D(Yf(x0))
D(Yg(x0))
C(Xb(x)) → C(x)
C(Xa(x)) → C(x)
C(Xc(x)) → C(x)
C(Xd(x)) → C(x)
C(Xf(x)) → C(x)
C(Xg(x)) → C(x)
a(Xa(x0))
b(Xa(x0))
c(Xa(x0))
d(Xa(x0))
f(Xa(x0))
g(Xa(x0))
a(Xb(x0))
b(Xb(x0))
c(Xb(x0))
d(Xb(x0))
f(Xb(x0))
g(Xb(x0))
a(Xc(x0))
b(Xc(x0))
c(Xc(x0))
d(Xc(x0))
f(Xc(x0))
g(Xc(x0))
a(Xd(x0))
b(Xd(x0))
c(Xd(x0))
d(Xd(x0))
f(Xd(x0))
g(Xd(x0))
a(Xf(x0))
b(Xf(x0))
c(Xf(x0))
d(Xf(x0))
f(Xf(x0))
g(Xf(x0))
a(Xg(x0))
b(Xg(x0))
c(Xg(x0))
d(Xg(x0))
f(Xg(x0))
g(Xg(x0))
a(L(x0))
b(L(x0))
c(L(x0))
d(L(x0))
f(L(x0))
g(L(x0))
D(Ya(x0))
D(Yb(x0))
D(Yc(x0))
D(Yd(x0))
D(Yf(x0))
D(Yg(x0))
a(Xa(x0))
b(Xa(x0))
c(Xa(x0))
d(Xa(x0))
f(Xa(x0))
g(Xa(x0))
a(Xb(x0))
b(Xb(x0))
c(Xb(x0))
d(Xb(x0))
f(Xb(x0))
g(Xb(x0))
a(Xc(x0))
b(Xc(x0))
c(Xc(x0))
d(Xc(x0))
f(Xc(x0))
g(Xc(x0))
a(Xd(x0))
b(Xd(x0))
c(Xd(x0))
d(Xd(x0))
f(Xd(x0))
g(Xd(x0))
a(Xf(x0))
b(Xf(x0))
c(Xf(x0))
d(Xf(x0))
f(Xf(x0))
g(Xf(x0))
a(Xg(x0))
b(Xg(x0))
c(Xg(x0))
d(Xg(x0))
f(Xg(x0))
g(Xg(x0))
a(L(x0))
b(L(x0))
c(L(x0))
d(L(x0))
f(L(x0))
g(L(x0))
D(Ya(x0))
D(Yb(x0))
D(Yc(x0))
D(Yd(x0))
D(Yf(x0))
D(Yg(x0))
C(Xb(x)) → C(x)
C(Xa(x)) → C(x)
C(Xc(x)) → C(x)
C(Xd(x)) → C(x)
C(Xf(x)) → C(x)
C(Xg(x)) → C(x)
From the DPs we obtained the following set of size-change graphs:
B(Xb(x)) → B(x)
B(Xa(x)) → B(x)
B(Xc(x)) → B(x)
B(Xd(x)) → B(x)
B(Xf(x)) → B(x)
B(Xg(x)) → B(x)
a(Xa(x)) → Xa(a(x))
b(Xa(x)) → Xa(b(x))
c(Xa(x)) → Xa(c(x))
d(Xa(x)) → Xa(d(x))
f(Xa(x)) → Xa(f(x))
g(Xa(x)) → Xa(g(x))
a(Xb(x)) → Xb(a(x))
b(Xb(x)) → Xb(b(x))
c(Xb(x)) → Xb(c(x))
d(Xb(x)) → Xb(d(x))
f(Xb(x)) → Xb(f(x))
g(Xb(x)) → Xb(g(x))
a(Xc(x)) → Xc(a(x))
b(Xc(x)) → Xc(b(x))
c(Xc(x)) → Xc(c(x))
d(Xc(x)) → Xc(d(x))
f(Xc(x)) → Xc(f(x))
g(Xc(x)) → Xc(g(x))
a(Xd(x)) → Xd(a(x))
b(Xd(x)) → Xd(b(x))
c(Xd(x)) → Xd(c(x))
d(Xd(x)) → Xd(d(x))
f(Xd(x)) → Xd(f(x))
g(Xd(x)) → Xd(g(x))
a(Xf(x)) → Xf(a(x))
b(Xf(x)) → Xf(b(x))
c(Xf(x)) → Xf(c(x))
d(Xf(x)) → Xf(d(x))
f(Xf(x)) → Xf(f(x))
g(Xf(x)) → Xf(g(x))
a(Xg(x)) → Xg(a(x))
b(Xg(x)) → Xg(b(x))
c(Xg(x)) → Xg(c(x))
d(Xg(x)) → Xg(d(x))
f(Xg(x)) → Xg(f(x))
g(Xg(x)) → Xg(g(x))
a(L(x)) → L(Ya(x))
b(L(x)) → L(Yb(x))
c(L(x)) → L(Yc(x))
d(L(x)) → L(Yd(x))
f(L(x)) → L(Yf(x))
g(L(x)) → L(Yg(x))
D(Ya(x)) → a(D(x))
D(Yb(x)) → b(D(x))
D(Yc(x)) → c(D(x))
D(Yd(x)) → d(D(x))
D(Yf(x)) → f(D(x))
D(Yg(x)) → g(D(x))
a(Xa(x0))
b(Xa(x0))
c(Xa(x0))
d(Xa(x0))
f(Xa(x0))
g(Xa(x0))
a(Xb(x0))
b(Xb(x0))
c(Xb(x0))
d(Xb(x0))
f(Xb(x0))
g(Xb(x0))
a(Xc(x0))
b(Xc(x0))
c(Xc(x0))
d(Xc(x0))
f(Xc(x0))
g(Xc(x0))
a(Xd(x0))
b(Xd(x0))
c(Xd(x0))
d(Xd(x0))
f(Xd(x0))
g(Xd(x0))
a(Xf(x0))
b(Xf(x0))
c(Xf(x0))
d(Xf(x0))
f(Xf(x0))
g(Xf(x0))
a(Xg(x0))
b(Xg(x0))
c(Xg(x0))
d(Xg(x0))
f(Xg(x0))
g(Xg(x0))
a(L(x0))
b(L(x0))
c(L(x0))
d(L(x0))
f(L(x0))
g(L(x0))
D(Ya(x0))
D(Yb(x0))
D(Yc(x0))
D(Yd(x0))
D(Yf(x0))
D(Yg(x0))
B(Xb(x)) → B(x)
B(Xa(x)) → B(x)
B(Xc(x)) → B(x)
B(Xd(x)) → B(x)
B(Xf(x)) → B(x)
B(Xg(x)) → B(x)
a(Xa(x0))
b(Xa(x0))
c(Xa(x0))
d(Xa(x0))
f(Xa(x0))
g(Xa(x0))
a(Xb(x0))
b(Xb(x0))
c(Xb(x0))
d(Xb(x0))
f(Xb(x0))
g(Xb(x0))
a(Xc(x0))
b(Xc(x0))
c(Xc(x0))
d(Xc(x0))
f(Xc(x0))
g(Xc(x0))
a(Xd(x0))
b(Xd(x0))
c(Xd(x0))
d(Xd(x0))
f(Xd(x0))
g(Xd(x0))
a(Xf(x0))
b(Xf(x0))
c(Xf(x0))
d(Xf(x0))
f(Xf(x0))
g(Xf(x0))
a(Xg(x0))
b(Xg(x0))
c(Xg(x0))
d(Xg(x0))
f(Xg(x0))
g(Xg(x0))
a(L(x0))
b(L(x0))
c(L(x0))
d(L(x0))
f(L(x0))
g(L(x0))
D(Ya(x0))
D(Yb(x0))
D(Yc(x0))
D(Yd(x0))
D(Yf(x0))
D(Yg(x0))
a(Xa(x0))
b(Xa(x0))
c(Xa(x0))
d(Xa(x0))
f(Xa(x0))
g(Xa(x0))
a(Xb(x0))
b(Xb(x0))
c(Xb(x0))
d(Xb(x0))
f(Xb(x0))
g(Xb(x0))
a(Xc(x0))
b(Xc(x0))
c(Xc(x0))
d(Xc(x0))
f(Xc(x0))
g(Xc(x0))
a(Xd(x0))
b(Xd(x0))
c(Xd(x0))
d(Xd(x0))
f(Xd(x0))
g(Xd(x0))
a(Xf(x0))
b(Xf(x0))
c(Xf(x0))
d(Xf(x0))
f(Xf(x0))
g(Xf(x0))
a(Xg(x0))
b(Xg(x0))
c(Xg(x0))
d(Xg(x0))
f(Xg(x0))
g(Xg(x0))
a(L(x0))
b(L(x0))
c(L(x0))
d(L(x0))
f(L(x0))
g(L(x0))
D(Ya(x0))
D(Yb(x0))
D(Yc(x0))
D(Yd(x0))
D(Yf(x0))
D(Yg(x0))
B(Xb(x)) → B(x)
B(Xa(x)) → B(x)
B(Xc(x)) → B(x)
B(Xd(x)) → B(x)
B(Xf(x)) → B(x)
B(Xg(x)) → B(x)
From the DPs we obtained the following set of size-change graphs:
A(Xb(x)) → A(x)
A(Xa(x)) → A(x)
A(Xc(x)) → A(x)
A(Xd(x)) → A(x)
A(Xf(x)) → A(x)
A(Xg(x)) → A(x)
a(Xa(x)) → Xa(a(x))
b(Xa(x)) → Xa(b(x))
c(Xa(x)) → Xa(c(x))
d(Xa(x)) → Xa(d(x))
f(Xa(x)) → Xa(f(x))
g(Xa(x)) → Xa(g(x))
a(Xb(x)) → Xb(a(x))
b(Xb(x)) → Xb(b(x))
c(Xb(x)) → Xb(c(x))
d(Xb(x)) → Xb(d(x))
f(Xb(x)) → Xb(f(x))
g(Xb(x)) → Xb(g(x))
a(Xc(x)) → Xc(a(x))
b(Xc(x)) → Xc(b(x))
c(Xc(x)) → Xc(c(x))
d(Xc(x)) → Xc(d(x))
f(Xc(x)) → Xc(f(x))
g(Xc(x)) → Xc(g(x))
a(Xd(x)) → Xd(a(x))
b(Xd(x)) → Xd(b(x))
c(Xd(x)) → Xd(c(x))
d(Xd(x)) → Xd(d(x))
f(Xd(x)) → Xd(f(x))
g(Xd(x)) → Xd(g(x))
a(Xf(x)) → Xf(a(x))
b(Xf(x)) → Xf(b(x))
c(Xf(x)) → Xf(c(x))
d(Xf(x)) → Xf(d(x))
f(Xf(x)) → Xf(f(x))
g(Xf(x)) → Xf(g(x))
a(Xg(x)) → Xg(a(x))
b(Xg(x)) → Xg(b(x))
c(Xg(x)) → Xg(c(x))
d(Xg(x)) → Xg(d(x))
f(Xg(x)) → Xg(f(x))
g(Xg(x)) → Xg(g(x))
a(L(x)) → L(Ya(x))
b(L(x)) → L(Yb(x))
c(L(x)) → L(Yc(x))
d(L(x)) → L(Yd(x))
f(L(x)) → L(Yf(x))
g(L(x)) → L(Yg(x))
D(Ya(x)) → a(D(x))
D(Yb(x)) → b(D(x))
D(Yc(x)) → c(D(x))
D(Yd(x)) → d(D(x))
D(Yf(x)) → f(D(x))
D(Yg(x)) → g(D(x))
a(Xa(x0))
b(Xa(x0))
c(Xa(x0))
d(Xa(x0))
f(Xa(x0))
g(Xa(x0))
a(Xb(x0))
b(Xb(x0))
c(Xb(x0))
d(Xb(x0))
f(Xb(x0))
g(Xb(x0))
a(Xc(x0))
b(Xc(x0))
c(Xc(x0))
d(Xc(x0))
f(Xc(x0))
g(Xc(x0))
a(Xd(x0))
b(Xd(x0))
c(Xd(x0))
d(Xd(x0))
f(Xd(x0))
g(Xd(x0))
a(Xf(x0))
b(Xf(x0))
c(Xf(x0))
d(Xf(x0))
f(Xf(x0))
g(Xf(x0))
a(Xg(x0))
b(Xg(x0))
c(Xg(x0))
d(Xg(x0))
f(Xg(x0))
g(Xg(x0))
a(L(x0))
b(L(x0))
c(L(x0))
d(L(x0))
f(L(x0))
g(L(x0))
D(Ya(x0))
D(Yb(x0))
D(Yc(x0))
D(Yd(x0))
D(Yf(x0))
D(Yg(x0))
A(Xb(x)) → A(x)
A(Xa(x)) → A(x)
A(Xc(x)) → A(x)
A(Xd(x)) → A(x)
A(Xf(x)) → A(x)
A(Xg(x)) → A(x)
a(Xa(x0))
b(Xa(x0))
c(Xa(x0))
d(Xa(x0))
f(Xa(x0))
g(Xa(x0))
a(Xb(x0))
b(Xb(x0))
c(Xb(x0))
d(Xb(x0))
f(Xb(x0))
g(Xb(x0))
a(Xc(x0))
b(Xc(x0))
c(Xc(x0))
d(Xc(x0))
f(Xc(x0))
g(Xc(x0))
a(Xd(x0))
b(Xd(x0))
c(Xd(x0))
d(Xd(x0))
f(Xd(x0))
g(Xd(x0))
a(Xf(x0))
b(Xf(x0))
c(Xf(x0))
d(Xf(x0))
f(Xf(x0))
g(Xf(x0))
a(Xg(x0))
b(Xg(x0))
c(Xg(x0))
d(Xg(x0))
f(Xg(x0))
g(Xg(x0))
a(L(x0))
b(L(x0))
c(L(x0))
d(L(x0))
f(L(x0))
g(L(x0))
D(Ya(x0))
D(Yb(x0))
D(Yc(x0))
D(Yd(x0))
D(Yf(x0))
D(Yg(x0))
a(Xa(x0))
b(Xa(x0))
c(Xa(x0))
d(Xa(x0))
f(Xa(x0))
g(Xa(x0))
a(Xb(x0))
b(Xb(x0))
c(Xb(x0))
d(Xb(x0))
f(Xb(x0))
g(Xb(x0))
a(Xc(x0))
b(Xc(x0))
c(Xc(x0))
d(Xc(x0))
f(Xc(x0))
g(Xc(x0))
a(Xd(x0))
b(Xd(x0))
c(Xd(x0))
d(Xd(x0))
f(Xd(x0))
g(Xd(x0))
a(Xf(x0))
b(Xf(x0))
c(Xf(x0))
d(Xf(x0))
f(Xf(x0))
g(Xf(x0))
a(Xg(x0))
b(Xg(x0))
c(Xg(x0))
d(Xg(x0))
f(Xg(x0))
g(Xg(x0))
a(L(x0))
b(L(x0))
c(L(x0))
d(L(x0))
f(L(x0))
g(L(x0))
D(Ya(x0))
D(Yb(x0))
D(Yc(x0))
D(Yd(x0))
D(Yf(x0))
D(Yg(x0))
A(Xb(x)) → A(x)
A(Xa(x)) → A(x)
A(Xc(x)) → A(x)
A(Xd(x)) → A(x)
A(Xf(x)) → A(x)
A(Xg(x)) → A(x)
From the DPs we obtained the following set of size-change graphs:
D2(Yb(x)) → D2(x)
D2(Ya(x)) → D2(x)
D2(Yc(x)) → D2(x)
D2(Yd(x)) → D2(x)
D2(Yf(x)) → D2(x)
D2(Yg(x)) → D2(x)
a(Xa(x)) → Xa(a(x))
b(Xa(x)) → Xa(b(x))
c(Xa(x)) → Xa(c(x))
d(Xa(x)) → Xa(d(x))
f(Xa(x)) → Xa(f(x))
g(Xa(x)) → Xa(g(x))
a(Xb(x)) → Xb(a(x))
b(Xb(x)) → Xb(b(x))
c(Xb(x)) → Xb(c(x))
d(Xb(x)) → Xb(d(x))
f(Xb(x)) → Xb(f(x))
g(Xb(x)) → Xb(g(x))
a(Xc(x)) → Xc(a(x))
b(Xc(x)) → Xc(b(x))
c(Xc(x)) → Xc(c(x))
d(Xc(x)) → Xc(d(x))
f(Xc(x)) → Xc(f(x))
g(Xc(x)) → Xc(g(x))
a(Xd(x)) → Xd(a(x))
b(Xd(x)) → Xd(b(x))
c(Xd(x)) → Xd(c(x))
d(Xd(x)) → Xd(d(x))
f(Xd(x)) → Xd(f(x))
g(Xd(x)) → Xd(g(x))
a(Xf(x)) → Xf(a(x))
b(Xf(x)) → Xf(b(x))
c(Xf(x)) → Xf(c(x))
d(Xf(x)) → Xf(d(x))
f(Xf(x)) → Xf(f(x))
g(Xf(x)) → Xf(g(x))
a(Xg(x)) → Xg(a(x))
b(Xg(x)) → Xg(b(x))
c(Xg(x)) → Xg(c(x))
d(Xg(x)) → Xg(d(x))
f(Xg(x)) → Xg(f(x))
g(Xg(x)) → Xg(g(x))
a(L(x)) → L(Ya(x))
b(L(x)) → L(Yb(x))
c(L(x)) → L(Yc(x))
d(L(x)) → L(Yd(x))
f(L(x)) → L(Yf(x))
g(L(x)) → L(Yg(x))
D(Ya(x)) → a(D(x))
D(Yb(x)) → b(D(x))
D(Yc(x)) → c(D(x))
D(Yd(x)) → d(D(x))
D(Yf(x)) → f(D(x))
D(Yg(x)) → g(D(x))
a(Xa(x0))
b(Xa(x0))
c(Xa(x0))
d(Xa(x0))
f(Xa(x0))
g(Xa(x0))
a(Xb(x0))
b(Xb(x0))
c(Xb(x0))
d(Xb(x0))
f(Xb(x0))
g(Xb(x0))
a(Xc(x0))
b(Xc(x0))
c(Xc(x0))
d(Xc(x0))
f(Xc(x0))
g(Xc(x0))
a(Xd(x0))
b(Xd(x0))
c(Xd(x0))
d(Xd(x0))
f(Xd(x0))
g(Xd(x0))
a(Xf(x0))
b(Xf(x0))
c(Xf(x0))
d(Xf(x0))
f(Xf(x0))
g(Xf(x0))
a(Xg(x0))
b(Xg(x0))
c(Xg(x0))
d(Xg(x0))
f(Xg(x0))
g(Xg(x0))
a(L(x0))
b(L(x0))
c(L(x0))
d(L(x0))
f(L(x0))
g(L(x0))
D(Ya(x0))
D(Yb(x0))
D(Yc(x0))
D(Yd(x0))
D(Yf(x0))
D(Yg(x0))
D2(Yb(x)) → D2(x)
D2(Ya(x)) → D2(x)
D2(Yc(x)) → D2(x)
D2(Yd(x)) → D2(x)
D2(Yf(x)) → D2(x)
D2(Yg(x)) → D2(x)
a(Xa(x0))
b(Xa(x0))
c(Xa(x0))
d(Xa(x0))
f(Xa(x0))
g(Xa(x0))
a(Xb(x0))
b(Xb(x0))
c(Xb(x0))
d(Xb(x0))
f(Xb(x0))
g(Xb(x0))
a(Xc(x0))
b(Xc(x0))
c(Xc(x0))
d(Xc(x0))
f(Xc(x0))
g(Xc(x0))
a(Xd(x0))
b(Xd(x0))
c(Xd(x0))
d(Xd(x0))
f(Xd(x0))
g(Xd(x0))
a(Xf(x0))
b(Xf(x0))
c(Xf(x0))
d(Xf(x0))
f(Xf(x0))
g(Xf(x0))
a(Xg(x0))
b(Xg(x0))
c(Xg(x0))
d(Xg(x0))
f(Xg(x0))
g(Xg(x0))
a(L(x0))
b(L(x0))
c(L(x0))
d(L(x0))
f(L(x0))
g(L(x0))
D(Ya(x0))
D(Yb(x0))
D(Yc(x0))
D(Yd(x0))
D(Yf(x0))
D(Yg(x0))
a(Xa(x0))
b(Xa(x0))
c(Xa(x0))
d(Xa(x0))
f(Xa(x0))
g(Xa(x0))
a(Xb(x0))
b(Xb(x0))
c(Xb(x0))
d(Xb(x0))
f(Xb(x0))
g(Xb(x0))
a(Xc(x0))
b(Xc(x0))
c(Xc(x0))
d(Xc(x0))
f(Xc(x0))
g(Xc(x0))
a(Xd(x0))
b(Xd(x0))
c(Xd(x0))
d(Xd(x0))
f(Xd(x0))
g(Xd(x0))
a(Xf(x0))
b(Xf(x0))
c(Xf(x0))
d(Xf(x0))
f(Xf(x0))
g(Xf(x0))
a(Xg(x0))
b(Xg(x0))
c(Xg(x0))
d(Xg(x0))
f(Xg(x0))
g(Xg(x0))
a(L(x0))
b(L(x0))
c(L(x0))
d(L(x0))
f(L(x0))
g(L(x0))
D(Ya(x0))
D(Yb(x0))
D(Yc(x0))
D(Yd(x0))
D(Yf(x0))
D(Yg(x0))
D2(Yb(x)) → D2(x)
D2(Ya(x)) → D2(x)
D2(Yc(x)) → D2(x)
D2(Yd(x)) → D2(x)
D2(Yf(x)) → D2(x)
D2(Yg(x)) → D2(x)
From the DPs we obtained the following set of size-change graphs: