(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
begin(end(x)) → rewrite(end(x))
begin(a(x)) → rotate(cut(Ca(guess(x))))
begin(b(x)) → rotate(cut(Cb(guess(x))))
begin(c(x)) → rotate(cut(Cc(guess(x))))
begin(d(x)) → rotate(cut(Cd(guess(x))))
begin(f(x)) → rotate(cut(Cf(guess(x))))
begin(g(x)) → rotate(cut(Cg(guess(x))))
guess(a(x)) → Ca(guess(x))
guess(b(x)) → Cb(guess(x))
guess(c(x)) → Cc(guess(x))
guess(d(x)) → Cd(guess(x))
guess(f(x)) → Cf(guess(x))
guess(g(x)) → Cg(guess(x))
guess(a(x)) → moveleft(Ba(wait(x)))
guess(b(x)) → moveleft(Bb(wait(x)))
guess(c(x)) → moveleft(Bc(wait(x)))
guess(d(x)) → moveleft(Bd(wait(x)))
guess(f(x)) → moveleft(Bf(wait(x)))
guess(g(x)) → moveleft(Bg(wait(x)))
guess(end(x)) → finish(end(x))
Ca(moveleft(Ba(x))) → moveleft(Ba(Aa(x)))
Cb(moveleft(Ba(x))) → moveleft(Ba(Ab(x)))
Cc(moveleft(Ba(x))) → moveleft(Ba(Ac(x)))
Cd(moveleft(Ba(x))) → moveleft(Ba(Ad(x)))
Cf(moveleft(Ba(x))) → moveleft(Ba(Af(x)))
Cg(moveleft(Ba(x))) → moveleft(Ba(Ag(x)))
Ca(moveleft(Bb(x))) → moveleft(Bb(Aa(x)))
Cb(moveleft(Bb(x))) → moveleft(Bb(Ab(x)))
Cc(moveleft(Bb(x))) → moveleft(Bb(Ac(x)))
Cd(moveleft(Bb(x))) → moveleft(Bb(Ad(x)))
Cf(moveleft(Bb(x))) → moveleft(Bb(Af(x)))
Cg(moveleft(Bb(x))) → moveleft(Bb(Ag(x)))
Ca(moveleft(Bc(x))) → moveleft(Bc(Aa(x)))
Cb(moveleft(Bc(x))) → moveleft(Bc(Ab(x)))
Cc(moveleft(Bc(x))) → moveleft(Bc(Ac(x)))
Cd(moveleft(Bc(x))) → moveleft(Bc(Ad(x)))
Cf(moveleft(Bc(x))) → moveleft(Bc(Af(x)))
Cg(moveleft(Bc(x))) → moveleft(Bc(Ag(x)))
Ca(moveleft(Bd(x))) → moveleft(Bd(Aa(x)))
Cb(moveleft(Bd(x))) → moveleft(Bd(Ab(x)))
Cc(moveleft(Bd(x))) → moveleft(Bd(Ac(x)))
Cd(moveleft(Bd(x))) → moveleft(Bd(Ad(x)))
Cf(moveleft(Bd(x))) → moveleft(Bd(Af(x)))
Cg(moveleft(Bd(x))) → moveleft(Bd(Ag(x)))
Ca(moveleft(Bf(x))) → moveleft(Bf(Aa(x)))
Cb(moveleft(Bf(x))) → moveleft(Bf(Ab(x)))
Cc(moveleft(Bf(x))) → moveleft(Bf(Ac(x)))
Cd(moveleft(Bf(x))) → moveleft(Bf(Ad(x)))
Cf(moveleft(Bf(x))) → moveleft(Bf(Af(x)))
Cg(moveleft(Bf(x))) → moveleft(Bf(Ag(x)))
Ca(moveleft(Bg(x))) → moveleft(Bg(Aa(x)))
Cb(moveleft(Bg(x))) → moveleft(Bg(Ab(x)))
Cc(moveleft(Bg(x))) → moveleft(Bg(Ac(x)))
Cd(moveleft(Bg(x))) → moveleft(Bg(Ad(x)))
Cf(moveleft(Bg(x))) → moveleft(Bg(Af(x)))
Cg(moveleft(Bg(x))) → moveleft(Bg(Ag(x)))
cut(moveleft(Ba(x))) → Da(cut(goright(x)))
cut(moveleft(Bb(x))) → Db(cut(goright(x)))
cut(moveleft(Bc(x))) → Dc(cut(goright(x)))
cut(moveleft(Bd(x))) → Dd(cut(goright(x)))
cut(moveleft(Bf(x))) → Df(cut(goright(x)))
cut(moveleft(Bg(x))) → Dg(cut(goright(x)))
goright(Aa(x)) → Ca(goright(x))
goright(Ab(x)) → Cb(goright(x))
goright(Ac(x)) → Cc(goright(x))
goright(Ad(x)) → Cd(goright(x))
goright(Af(x)) → Cf(goright(x))
goright(Ag(x)) → Cg(goright(x))
goright(wait(a(x))) → moveleft(Ba(wait(x)))
goright(wait(b(x))) → moveleft(Bb(wait(x)))
goright(wait(c(x))) → moveleft(Bc(wait(x)))
goright(wait(d(x))) → moveleft(Bd(wait(x)))
goright(wait(f(x))) → moveleft(Bf(wait(x)))
goright(wait(g(x))) → moveleft(Bg(wait(x)))
goright(wait(end(x))) → finish(end(x))
Ca(finish(x)) → finish(a(x))
Cb(finish(x)) → finish(b(x))
Cc(finish(x)) → finish(c(x))
Cd(finish(x)) → finish(d(x))
Cf(finish(x)) → finish(f(x))
Cg(finish(x)) → finish(g(x))
cut(finish(x)) → finish2(x)
Da(finish2(x)) → finish2(a(x))
Db(finish2(x)) → finish2(b(x))
Dc(finish2(x)) → finish2(c(x))
Dd(finish2(x)) → finish2(d(x))
Df(finish2(x)) → finish2(f(x))
Dg(finish2(x)) → finish2(g(x))
rotate(finish2(x)) → rewrite(x)
rewrite(a(a(x))) → begin(b(c(x)))
rewrite(b(b(x))) → begin(c(d(x)))
rewrite(b(x)) → begin(a(x))
rewrite(c(c(x))) → begin(d(f(x)))
rewrite(d(d(x))) → begin(f(f(f(x))))
rewrite(d(x)) → begin(b(x))
rewrite(f(f(x))) → begin(g(a(x)))
rewrite(g(g(x))) → begin(a(x))
Q is empty.
(1) QTRS Reverse (EQUIVALENT transformation)
We applied the QTRS Reverse Processor [REVERSE].
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
end(begin(x)) → end(rewrite(x))
a(begin(x)) → guess(Ca(cut(rotate(x))))
b(begin(x)) → guess(Cb(cut(rotate(x))))
c(begin(x)) → guess(Cc(cut(rotate(x))))
d(begin(x)) → guess(Cd(cut(rotate(x))))
f(begin(x)) → guess(Cf(cut(rotate(x))))
g(begin(x)) → guess(Cg(cut(rotate(x))))
a(guess(x)) → guess(Ca(x))
b(guess(x)) → guess(Cb(x))
c(guess(x)) → guess(Cc(x))
d(guess(x)) → guess(Cd(x))
f(guess(x)) → guess(Cf(x))
g(guess(x)) → guess(Cg(x))
a(guess(x)) → wait(Ba(moveleft(x)))
b(guess(x)) → wait(Bb(moveleft(x)))
c(guess(x)) → wait(Bc(moveleft(x)))
d(guess(x)) → wait(Bd(moveleft(x)))
f(guess(x)) → wait(Bf(moveleft(x)))
g(guess(x)) → wait(Bg(moveleft(x)))
end(guess(x)) → end(finish(x))
Ba(moveleft(Ca(x))) → Aa(Ba(moveleft(x)))
Ba(moveleft(Cb(x))) → Ab(Ba(moveleft(x)))
Ba(moveleft(Cc(x))) → Ac(Ba(moveleft(x)))
Ba(moveleft(Cd(x))) → Ad(Ba(moveleft(x)))
Ba(moveleft(Cf(x))) → Af(Ba(moveleft(x)))
Ba(moveleft(Cg(x))) → Ag(Ba(moveleft(x)))
Bb(moveleft(Ca(x))) → Aa(Bb(moveleft(x)))
Bb(moveleft(Cb(x))) → Ab(Bb(moveleft(x)))
Bb(moveleft(Cc(x))) → Ac(Bb(moveleft(x)))
Bb(moveleft(Cd(x))) → Ad(Bb(moveleft(x)))
Bb(moveleft(Cf(x))) → Af(Bb(moveleft(x)))
Bb(moveleft(Cg(x))) → Ag(Bb(moveleft(x)))
Bc(moveleft(Ca(x))) → Aa(Bc(moveleft(x)))
Bc(moveleft(Cb(x))) → Ab(Bc(moveleft(x)))
Bc(moveleft(Cc(x))) → Ac(Bc(moveleft(x)))
Bc(moveleft(Cd(x))) → Ad(Bc(moveleft(x)))
Bc(moveleft(Cf(x))) → Af(Bc(moveleft(x)))
Bc(moveleft(Cg(x))) → Ag(Bc(moveleft(x)))
Bd(moveleft(Ca(x))) → Aa(Bd(moveleft(x)))
Bd(moveleft(Cb(x))) → Ab(Bd(moveleft(x)))
Bd(moveleft(Cc(x))) → Ac(Bd(moveleft(x)))
Bd(moveleft(Cd(x))) → Ad(Bd(moveleft(x)))
Bd(moveleft(Cf(x))) → Af(Bd(moveleft(x)))
Bd(moveleft(Cg(x))) → Ag(Bd(moveleft(x)))
Bf(moveleft(Ca(x))) → Aa(Bf(moveleft(x)))
Bf(moveleft(Cb(x))) → Ab(Bf(moveleft(x)))
Bf(moveleft(Cc(x))) → Ac(Bf(moveleft(x)))
Bf(moveleft(Cd(x))) → Ad(Bf(moveleft(x)))
Bf(moveleft(Cf(x))) → Af(Bf(moveleft(x)))
Bf(moveleft(Cg(x))) → Ag(Bf(moveleft(x)))
Bg(moveleft(Ca(x))) → Aa(Bg(moveleft(x)))
Bg(moveleft(Cb(x))) → Ab(Bg(moveleft(x)))
Bg(moveleft(Cc(x))) → Ac(Bg(moveleft(x)))
Bg(moveleft(Cd(x))) → Ad(Bg(moveleft(x)))
Bg(moveleft(Cf(x))) → Af(Bg(moveleft(x)))
Bg(moveleft(Cg(x))) → Ag(Bg(moveleft(x)))
Ba(moveleft(cut(x))) → goright(cut(Da(x)))
Bb(moveleft(cut(x))) → goright(cut(Db(x)))
Bc(moveleft(cut(x))) → goright(cut(Dc(x)))
Bd(moveleft(cut(x))) → goright(cut(Dd(x)))
Bf(moveleft(cut(x))) → goright(cut(Df(x)))
Bg(moveleft(cut(x))) → goright(cut(Dg(x)))
Aa(goright(x)) → goright(Ca(x))
Ab(goright(x)) → goright(Cb(x))
Ac(goright(x)) → goright(Cc(x))
Ad(goright(x)) → goright(Cd(x))
Af(goright(x)) → goright(Cf(x))
Ag(goright(x)) → goright(Cg(x))
a(wait(goright(x))) → wait(Ba(moveleft(x)))
b(wait(goright(x))) → wait(Bb(moveleft(x)))
c(wait(goright(x))) → wait(Bc(moveleft(x)))
d(wait(goright(x))) → wait(Bd(moveleft(x)))
f(wait(goright(x))) → wait(Bf(moveleft(x)))
g(wait(goright(x))) → wait(Bg(moveleft(x)))
end(wait(goright(x))) → end(finish(x))
finish(Ca(x)) → a(finish(x))
finish(Cb(x)) → b(finish(x))
finish(Cc(x)) → c(finish(x))
finish(Cd(x)) → d(finish(x))
finish(Cf(x)) → f(finish(x))
finish(Cg(x)) → g(finish(x))
finish(cut(x)) → finish2(x)
finish2(Da(x)) → a(finish2(x))
finish2(Db(x)) → b(finish2(x))
finish2(Dc(x)) → c(finish2(x))
finish2(Dd(x)) → d(finish2(x))
finish2(Df(x)) → f(finish2(x))
finish2(Dg(x)) → g(finish2(x))
finish2(rotate(x)) → rewrite(x)
a(a(rewrite(x))) → c(b(begin(x)))
b(b(rewrite(x))) → d(c(begin(x)))
b(rewrite(x)) → a(begin(x))
c(c(rewrite(x))) → f(d(begin(x)))
d(d(rewrite(x))) → f(f(f(begin(x))))
d(rewrite(x)) → b(begin(x))
f(f(rewrite(x))) → a(g(begin(x)))
g(g(rewrite(x))) → a(begin(x))
Q is empty.
(3) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Polynomial interpretation [POLO]:
POL(Aa(x1)) = 930 + x1
POL(Ab(x1)) = 972 + x1
POL(Ac(x1)) = 882 + x1
POL(Ad(x1)) = 1056 + x1
POL(Af(x1)) = 702 + x1
POL(Ag(x1)) = 468 + x1
POL(Ba(x1)) = 930 + x1
POL(Bb(x1)) = 972 + x1
POL(Bc(x1)) = 882 + x1
POL(Bd(x1)) = 1056 + x1
POL(Bf(x1)) = 702 + x1
POL(Bg(x1)) = 468 + x1
POL(Ca(x1)) = 930 + x1
POL(Cb(x1)) = 972 + x1
POL(Cc(x1)) = 882 + x1
POL(Cd(x1)) = 1056 + x1
POL(Cf(x1)) = 702 + x1
POL(Cg(x1)) = 468 + x1
POL(Da(x1)) = 930 + x1
POL(Db(x1)) = 972 + x1
POL(Dc(x1)) = 882 + x1
POL(Dd(x1)) = 1056 + x1
POL(Df(x1)) = 702 + x1
POL(Dg(x1)) = 468 + x1
POL(a(x1)) = 930 + x1
POL(b(x1)) = 972 + x1
POL(begin(x1)) = 5 + x1
POL(c(x1)) = 882 + x1
POL(cut(x1)) = 2 + x1
POL(d(x1)) = 1056 + x1
POL(end(x1)) = x1
POL(f(x1)) = 702 + x1
POL(finish(x1)) = x1
POL(finish2(x1)) = 1 + x1
POL(g(x1)) = 468 + x1
POL(goright(x1)) = x1
POL(guess(x1)) = 2 + x1
POL(moveleft(x1)) = x1
POL(rewrite(x1)) = x1
POL(rotate(x1)) = x1
POL(wait(x1)) = 1 + x1
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
end(begin(x)) → end(rewrite(x))
a(begin(x)) → guess(Ca(cut(rotate(x))))
b(begin(x)) → guess(Cb(cut(rotate(x))))
c(begin(x)) → guess(Cc(cut(rotate(x))))
d(begin(x)) → guess(Cd(cut(rotate(x))))
f(begin(x)) → guess(Cf(cut(rotate(x))))
g(begin(x)) → guess(Cg(cut(rotate(x))))
a(guess(x)) → wait(Ba(moveleft(x)))
b(guess(x)) → wait(Bb(moveleft(x)))
c(guess(x)) → wait(Bc(moveleft(x)))
d(guess(x)) → wait(Bd(moveleft(x)))
f(guess(x)) → wait(Bf(moveleft(x)))
g(guess(x)) → wait(Bg(moveleft(x)))
end(guess(x)) → end(finish(x))
end(wait(goright(x))) → end(finish(x))
finish(cut(x)) → finish2(x)
finish2(rotate(x)) → rewrite(x)
a(a(rewrite(x))) → c(b(begin(x)))
b(b(rewrite(x))) → d(c(begin(x)))
b(rewrite(x)) → a(begin(x))
c(c(rewrite(x))) → f(d(begin(x)))
d(d(rewrite(x))) → f(f(f(begin(x))))
d(rewrite(x)) → b(begin(x))
f(f(rewrite(x))) → a(g(begin(x)))
g(g(rewrite(x))) → a(begin(x))
(4) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
a(guess(x)) → guess(Ca(x))
b(guess(x)) → guess(Cb(x))
c(guess(x)) → guess(Cc(x))
d(guess(x)) → guess(Cd(x))
f(guess(x)) → guess(Cf(x))
g(guess(x)) → guess(Cg(x))
Ba(moveleft(Ca(x))) → Aa(Ba(moveleft(x)))
Ba(moveleft(Cb(x))) → Ab(Ba(moveleft(x)))
Ba(moveleft(Cc(x))) → Ac(Ba(moveleft(x)))
Ba(moveleft(Cd(x))) → Ad(Ba(moveleft(x)))
Ba(moveleft(Cf(x))) → Af(Ba(moveleft(x)))
Ba(moveleft(Cg(x))) → Ag(Ba(moveleft(x)))
Bb(moveleft(Ca(x))) → Aa(Bb(moveleft(x)))
Bb(moveleft(Cb(x))) → Ab(Bb(moveleft(x)))
Bb(moveleft(Cc(x))) → Ac(Bb(moveleft(x)))
Bb(moveleft(Cd(x))) → Ad(Bb(moveleft(x)))
Bb(moveleft(Cf(x))) → Af(Bb(moveleft(x)))
Bb(moveleft(Cg(x))) → Ag(Bb(moveleft(x)))
Bc(moveleft(Ca(x))) → Aa(Bc(moveleft(x)))
Bc(moveleft(Cb(x))) → Ab(Bc(moveleft(x)))
Bc(moveleft(Cc(x))) → Ac(Bc(moveleft(x)))
Bc(moveleft(Cd(x))) → Ad(Bc(moveleft(x)))
Bc(moveleft(Cf(x))) → Af(Bc(moveleft(x)))
Bc(moveleft(Cg(x))) → Ag(Bc(moveleft(x)))
Bd(moveleft(Ca(x))) → Aa(Bd(moveleft(x)))
Bd(moveleft(Cb(x))) → Ab(Bd(moveleft(x)))
Bd(moveleft(Cc(x))) → Ac(Bd(moveleft(x)))
Bd(moveleft(Cd(x))) → Ad(Bd(moveleft(x)))
Bd(moveleft(Cf(x))) → Af(Bd(moveleft(x)))
Bd(moveleft(Cg(x))) → Ag(Bd(moveleft(x)))
Bf(moveleft(Ca(x))) → Aa(Bf(moveleft(x)))
Bf(moveleft(Cb(x))) → Ab(Bf(moveleft(x)))
Bf(moveleft(Cc(x))) → Ac(Bf(moveleft(x)))
Bf(moveleft(Cd(x))) → Ad(Bf(moveleft(x)))
Bf(moveleft(Cf(x))) → Af(Bf(moveleft(x)))
Bf(moveleft(Cg(x))) → Ag(Bf(moveleft(x)))
Bg(moveleft(Ca(x))) → Aa(Bg(moveleft(x)))
Bg(moveleft(Cb(x))) → Ab(Bg(moveleft(x)))
Bg(moveleft(Cc(x))) → Ac(Bg(moveleft(x)))
Bg(moveleft(Cd(x))) → Ad(Bg(moveleft(x)))
Bg(moveleft(Cf(x))) → Af(Bg(moveleft(x)))
Bg(moveleft(Cg(x))) → Ag(Bg(moveleft(x)))
Ba(moveleft(cut(x))) → goright(cut(Da(x)))
Bb(moveleft(cut(x))) → goright(cut(Db(x)))
Bc(moveleft(cut(x))) → goright(cut(Dc(x)))
Bd(moveleft(cut(x))) → goright(cut(Dd(x)))
Bf(moveleft(cut(x))) → goright(cut(Df(x)))
Bg(moveleft(cut(x))) → goright(cut(Dg(x)))
Aa(goright(x)) → goright(Ca(x))
Ab(goright(x)) → goright(Cb(x))
Ac(goright(x)) → goright(Cc(x))
Ad(goright(x)) → goright(Cd(x))
Af(goright(x)) → goright(Cf(x))
Ag(goright(x)) → goright(Cg(x))
a(wait(goright(x))) → wait(Ba(moveleft(x)))
b(wait(goright(x))) → wait(Bb(moveleft(x)))
c(wait(goright(x))) → wait(Bc(moveleft(x)))
d(wait(goright(x))) → wait(Bd(moveleft(x)))
f(wait(goright(x))) → wait(Bf(moveleft(x)))
g(wait(goright(x))) → wait(Bg(moveleft(x)))
finish(Ca(x)) → a(finish(x))
finish(Cb(x)) → b(finish(x))
finish(Cc(x)) → c(finish(x))
finish(Cd(x)) → d(finish(x))
finish(Cf(x)) → f(finish(x))
finish(Cg(x)) → g(finish(x))
finish2(Da(x)) → a(finish2(x))
finish2(Db(x)) → b(finish2(x))
finish2(Dc(x)) → c(finish2(x))
finish2(Dd(x)) → d(finish2(x))
finish2(Df(x)) → f(finish2(x))
finish2(Dg(x)) → g(finish2(x))
Q is empty.
(5) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(6) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
a(guess(x)) → guess(Ca(x))
b(guess(x)) → guess(Cb(x))
c(guess(x)) → guess(Cc(x))
d(guess(x)) → guess(Cd(x))
f(guess(x)) → guess(Cf(x))
g(guess(x)) → guess(Cg(x))
Ba(moveleft(Ca(x))) → Aa(Ba(moveleft(x)))
Ba(moveleft(Cb(x))) → Ab(Ba(moveleft(x)))
Ba(moveleft(Cc(x))) → Ac(Ba(moveleft(x)))
Ba(moveleft(Cd(x))) → Ad(Ba(moveleft(x)))
Ba(moveleft(Cf(x))) → Af(Ba(moveleft(x)))
Ba(moveleft(Cg(x))) → Ag(Ba(moveleft(x)))
Bb(moveleft(Ca(x))) → Aa(Bb(moveleft(x)))
Bb(moveleft(Cb(x))) → Ab(Bb(moveleft(x)))
Bb(moveleft(Cc(x))) → Ac(Bb(moveleft(x)))
Bb(moveleft(Cd(x))) → Ad(Bb(moveleft(x)))
Bb(moveleft(Cf(x))) → Af(Bb(moveleft(x)))
Bb(moveleft(Cg(x))) → Ag(Bb(moveleft(x)))
Bc(moveleft(Ca(x))) → Aa(Bc(moveleft(x)))
Bc(moveleft(Cb(x))) → Ab(Bc(moveleft(x)))
Bc(moveleft(Cc(x))) → Ac(Bc(moveleft(x)))
Bc(moveleft(Cd(x))) → Ad(Bc(moveleft(x)))
Bc(moveleft(Cf(x))) → Af(Bc(moveleft(x)))
Bc(moveleft(Cg(x))) → Ag(Bc(moveleft(x)))
Bd(moveleft(Ca(x))) → Aa(Bd(moveleft(x)))
Bd(moveleft(Cb(x))) → Ab(Bd(moveleft(x)))
Bd(moveleft(Cc(x))) → Ac(Bd(moveleft(x)))
Bd(moveleft(Cd(x))) → Ad(Bd(moveleft(x)))
Bd(moveleft(Cf(x))) → Af(Bd(moveleft(x)))
Bd(moveleft(Cg(x))) → Ag(Bd(moveleft(x)))
Bf(moveleft(Ca(x))) → Aa(Bf(moveleft(x)))
Bf(moveleft(Cb(x))) → Ab(Bf(moveleft(x)))
Bf(moveleft(Cc(x))) → Ac(Bf(moveleft(x)))
Bf(moveleft(Cd(x))) → Ad(Bf(moveleft(x)))
Bf(moveleft(Cf(x))) → Af(Bf(moveleft(x)))
Bf(moveleft(Cg(x))) → Ag(Bf(moveleft(x)))
Bg(moveleft(Ca(x))) → Aa(Bg(moveleft(x)))
Bg(moveleft(Cb(x))) → Ab(Bg(moveleft(x)))
Bg(moveleft(Cc(x))) → Ac(Bg(moveleft(x)))
Bg(moveleft(Cd(x))) → Ad(Bg(moveleft(x)))
Bg(moveleft(Cf(x))) → Af(Bg(moveleft(x)))
Bg(moveleft(Cg(x))) → Ag(Bg(moveleft(x)))
Ba(moveleft(cut(x))) → goright(cut(Da(x)))
Bb(moveleft(cut(x))) → goright(cut(Db(x)))
Bc(moveleft(cut(x))) → goright(cut(Dc(x)))
Bd(moveleft(cut(x))) → goright(cut(Dd(x)))
Bf(moveleft(cut(x))) → goright(cut(Df(x)))
Bg(moveleft(cut(x))) → goright(cut(Dg(x)))
Aa(goright(x)) → goright(Ca(x))
Ab(goright(x)) → goright(Cb(x))
Ac(goright(x)) → goright(Cc(x))
Ad(goright(x)) → goright(Cd(x))
Af(goright(x)) → goright(Cf(x))
Ag(goright(x)) → goright(Cg(x))
a(wait(goright(x))) → wait(Ba(moveleft(x)))
b(wait(goright(x))) → wait(Bb(moveleft(x)))
c(wait(goright(x))) → wait(Bc(moveleft(x)))
d(wait(goright(x))) → wait(Bd(moveleft(x)))
f(wait(goright(x))) → wait(Bf(moveleft(x)))
g(wait(goright(x))) → wait(Bg(moveleft(x)))
finish(Ca(x)) → a(finish(x))
finish(Cb(x)) → b(finish(x))
finish(Cc(x)) → c(finish(x))
finish(Cd(x)) → d(finish(x))
finish(Cf(x)) → f(finish(x))
finish(Cg(x)) → g(finish(x))
finish2(Da(x)) → a(finish2(x))
finish2(Db(x)) → b(finish2(x))
finish2(Dc(x)) → c(finish2(x))
finish2(Dd(x)) → d(finish2(x))
finish2(Df(x)) → f(finish2(x))
finish2(Dg(x)) → g(finish2(x))
The set Q consists of the following terms:
a(guess(x0))
b(guess(x0))
c(guess(x0))
d(guess(x0))
f(guess(x0))
g(guess(x0))
Ba(moveleft(Ca(x0)))
Ba(moveleft(Cb(x0)))
Ba(moveleft(Cc(x0)))
Ba(moveleft(Cd(x0)))
Ba(moveleft(Cf(x0)))
Ba(moveleft(Cg(x0)))
Bb(moveleft(Ca(x0)))
Bb(moveleft(Cb(x0)))
Bb(moveleft(Cc(x0)))
Bb(moveleft(Cd(x0)))
Bb(moveleft(Cf(x0)))
Bb(moveleft(Cg(x0)))
Bc(moveleft(Ca(x0)))
Bc(moveleft(Cb(x0)))
Bc(moveleft(Cc(x0)))
Bc(moveleft(Cd(x0)))
Bc(moveleft(Cf(x0)))
Bc(moveleft(Cg(x0)))
Bd(moveleft(Ca(x0)))
Bd(moveleft(Cb(x0)))
Bd(moveleft(Cc(x0)))
Bd(moveleft(Cd(x0)))
Bd(moveleft(Cf(x0)))
Bd(moveleft(Cg(x0)))
Bf(moveleft(Ca(x0)))
Bf(moveleft(Cb(x0)))
Bf(moveleft(Cc(x0)))
Bf(moveleft(Cd(x0)))
Bf(moveleft(Cf(x0)))
Bf(moveleft(Cg(x0)))
Bg(moveleft(Ca(x0)))
Bg(moveleft(Cb(x0)))
Bg(moveleft(Cc(x0)))
Bg(moveleft(Cd(x0)))
Bg(moveleft(Cf(x0)))
Bg(moveleft(Cg(x0)))
Ba(moveleft(cut(x0)))
Bb(moveleft(cut(x0)))
Bc(moveleft(cut(x0)))
Bd(moveleft(cut(x0)))
Bf(moveleft(cut(x0)))
Bg(moveleft(cut(x0)))
Aa(goright(x0))
Ab(goright(x0))
Ac(goright(x0))
Ad(goright(x0))
Af(goright(x0))
Ag(goright(x0))
a(wait(goright(x0)))
b(wait(goright(x0)))
c(wait(goright(x0)))
d(wait(goright(x0)))
f(wait(goright(x0)))
g(wait(goright(x0)))
finish(Ca(x0))
finish(Cb(x0))
finish(Cc(x0))
finish(Cd(x0))
finish(Cf(x0))
finish(Cg(x0))
finish2(Da(x0))
finish2(Db(x0))
finish2(Dc(x0))
finish2(Dd(x0))
finish2(Df(x0))
finish2(Dg(x0))
(7) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
BA(moveleft(Ca(x))) → AA(Ba(moveleft(x)))
BA(moveleft(Ca(x))) → BA(moveleft(x))
BA(moveleft(Cb(x))) → AB(Ba(moveleft(x)))
BA(moveleft(Cb(x))) → BA(moveleft(x))
BA(moveleft(Cc(x))) → AC(Ba(moveleft(x)))
BA(moveleft(Cc(x))) → BA(moveleft(x))
BA(moveleft(Cd(x))) → AD(Ba(moveleft(x)))
BA(moveleft(Cd(x))) → BA(moveleft(x))
BA(moveleft(Cf(x))) → AF(Ba(moveleft(x)))
BA(moveleft(Cf(x))) → BA(moveleft(x))
BA(moveleft(Cg(x))) → AG(Ba(moveleft(x)))
BA(moveleft(Cg(x))) → BA(moveleft(x))
BB(moveleft(Ca(x))) → AA(Bb(moveleft(x)))
BB(moveleft(Ca(x))) → BB(moveleft(x))
BB(moveleft(Cb(x))) → AB(Bb(moveleft(x)))
BB(moveleft(Cb(x))) → BB(moveleft(x))
BB(moveleft(Cc(x))) → AC(Bb(moveleft(x)))
BB(moveleft(Cc(x))) → BB(moveleft(x))
BB(moveleft(Cd(x))) → AD(Bb(moveleft(x)))
BB(moveleft(Cd(x))) → BB(moveleft(x))
BB(moveleft(Cf(x))) → AF(Bb(moveleft(x)))
BB(moveleft(Cf(x))) → BB(moveleft(x))
BB(moveleft(Cg(x))) → AG(Bb(moveleft(x)))
BB(moveleft(Cg(x))) → BB(moveleft(x))
BC(moveleft(Ca(x))) → AA(Bc(moveleft(x)))
BC(moveleft(Ca(x))) → BC(moveleft(x))
BC(moveleft(Cb(x))) → AB(Bc(moveleft(x)))
BC(moveleft(Cb(x))) → BC(moveleft(x))
BC(moveleft(Cc(x))) → AC(Bc(moveleft(x)))
BC(moveleft(Cc(x))) → BC(moveleft(x))
BC(moveleft(Cd(x))) → AD(Bc(moveleft(x)))
BC(moveleft(Cd(x))) → BC(moveleft(x))
BC(moveleft(Cf(x))) → AF(Bc(moveleft(x)))
BC(moveleft(Cf(x))) → BC(moveleft(x))
BC(moveleft(Cg(x))) → AG(Bc(moveleft(x)))
BC(moveleft(Cg(x))) → BC(moveleft(x))
BD(moveleft(Ca(x))) → AA(Bd(moveleft(x)))
BD(moveleft(Ca(x))) → BD(moveleft(x))
BD(moveleft(Cb(x))) → AB(Bd(moveleft(x)))
BD(moveleft(Cb(x))) → BD(moveleft(x))
BD(moveleft(Cc(x))) → AC(Bd(moveleft(x)))
BD(moveleft(Cc(x))) → BD(moveleft(x))
BD(moveleft(Cd(x))) → AD(Bd(moveleft(x)))
BD(moveleft(Cd(x))) → BD(moveleft(x))
BD(moveleft(Cf(x))) → AF(Bd(moveleft(x)))
BD(moveleft(Cf(x))) → BD(moveleft(x))
BD(moveleft(Cg(x))) → AG(Bd(moveleft(x)))
BD(moveleft(Cg(x))) → BD(moveleft(x))
BF(moveleft(Ca(x))) → AA(Bf(moveleft(x)))
BF(moveleft(Ca(x))) → BF(moveleft(x))
BF(moveleft(Cb(x))) → AB(Bf(moveleft(x)))
BF(moveleft(Cb(x))) → BF(moveleft(x))
BF(moveleft(Cc(x))) → AC(Bf(moveleft(x)))
BF(moveleft(Cc(x))) → BF(moveleft(x))
BF(moveleft(Cd(x))) → AD(Bf(moveleft(x)))
BF(moveleft(Cd(x))) → BF(moveleft(x))
BF(moveleft(Cf(x))) → AF(Bf(moveleft(x)))
BF(moveleft(Cf(x))) → BF(moveleft(x))
BF(moveleft(Cg(x))) → AG(Bf(moveleft(x)))
BF(moveleft(Cg(x))) → BF(moveleft(x))
BG(moveleft(Ca(x))) → AA(Bg(moveleft(x)))
BG(moveleft(Ca(x))) → BG(moveleft(x))
BG(moveleft(Cb(x))) → AB(Bg(moveleft(x)))
BG(moveleft(Cb(x))) → BG(moveleft(x))
BG(moveleft(Cc(x))) → AC(Bg(moveleft(x)))
BG(moveleft(Cc(x))) → BG(moveleft(x))
BG(moveleft(Cd(x))) → AD(Bg(moveleft(x)))
BG(moveleft(Cd(x))) → BG(moveleft(x))
BG(moveleft(Cf(x))) → AF(Bg(moveleft(x)))
BG(moveleft(Cf(x))) → BG(moveleft(x))
BG(moveleft(Cg(x))) → AG(Bg(moveleft(x)))
BG(moveleft(Cg(x))) → BG(moveleft(x))
A(wait(goright(x))) → BA(moveleft(x))
B(wait(goright(x))) → BB(moveleft(x))
C(wait(goright(x))) → BC(moveleft(x))
D(wait(goright(x))) → BD(moveleft(x))
F(wait(goright(x))) → BF(moveleft(x))
G(wait(goright(x))) → BG(moveleft(x))
FINISH(Ca(x)) → A(finish(x))
FINISH(Ca(x)) → FINISH(x)
FINISH(Cb(x)) → B(finish(x))
FINISH(Cb(x)) → FINISH(x)
FINISH(Cc(x)) → C(finish(x))
FINISH(Cc(x)) → FINISH(x)
FINISH(Cd(x)) → D(finish(x))
FINISH(Cd(x)) → FINISH(x)
FINISH(Cf(x)) → F(finish(x))
FINISH(Cf(x)) → FINISH(x)
FINISH(Cg(x)) → G(finish(x))
FINISH(Cg(x)) → FINISH(x)
FINISH2(Da(x)) → A(finish2(x))
FINISH2(Da(x)) → FINISH2(x)
FINISH2(Db(x)) → B(finish2(x))
FINISH2(Db(x)) → FINISH2(x)
FINISH2(Dc(x)) → C(finish2(x))
FINISH2(Dc(x)) → FINISH2(x)
FINISH2(Dd(x)) → D(finish2(x))
FINISH2(Dd(x)) → FINISH2(x)
FINISH2(Df(x)) → F(finish2(x))
FINISH2(Df(x)) → FINISH2(x)
FINISH2(Dg(x)) → G(finish2(x))
FINISH2(Dg(x)) → FINISH2(x)
The TRS R consists of the following rules:
a(guess(x)) → guess(Ca(x))
b(guess(x)) → guess(Cb(x))
c(guess(x)) → guess(Cc(x))
d(guess(x)) → guess(Cd(x))
f(guess(x)) → guess(Cf(x))
g(guess(x)) → guess(Cg(x))
Ba(moveleft(Ca(x))) → Aa(Ba(moveleft(x)))
Ba(moveleft(Cb(x))) → Ab(Ba(moveleft(x)))
Ba(moveleft(Cc(x))) → Ac(Ba(moveleft(x)))
Ba(moveleft(Cd(x))) → Ad(Ba(moveleft(x)))
Ba(moveleft(Cf(x))) → Af(Ba(moveleft(x)))
Ba(moveleft(Cg(x))) → Ag(Ba(moveleft(x)))
Bb(moveleft(Ca(x))) → Aa(Bb(moveleft(x)))
Bb(moveleft(Cb(x))) → Ab(Bb(moveleft(x)))
Bb(moveleft(Cc(x))) → Ac(Bb(moveleft(x)))
Bb(moveleft(Cd(x))) → Ad(Bb(moveleft(x)))
Bb(moveleft(Cf(x))) → Af(Bb(moveleft(x)))
Bb(moveleft(Cg(x))) → Ag(Bb(moveleft(x)))
Bc(moveleft(Ca(x))) → Aa(Bc(moveleft(x)))
Bc(moveleft(Cb(x))) → Ab(Bc(moveleft(x)))
Bc(moveleft(Cc(x))) → Ac(Bc(moveleft(x)))
Bc(moveleft(Cd(x))) → Ad(Bc(moveleft(x)))
Bc(moveleft(Cf(x))) → Af(Bc(moveleft(x)))
Bc(moveleft(Cg(x))) → Ag(Bc(moveleft(x)))
Bd(moveleft(Ca(x))) → Aa(Bd(moveleft(x)))
Bd(moveleft(Cb(x))) → Ab(Bd(moveleft(x)))
Bd(moveleft(Cc(x))) → Ac(Bd(moveleft(x)))
Bd(moveleft(Cd(x))) → Ad(Bd(moveleft(x)))
Bd(moveleft(Cf(x))) → Af(Bd(moveleft(x)))
Bd(moveleft(Cg(x))) → Ag(Bd(moveleft(x)))
Bf(moveleft(Ca(x))) → Aa(Bf(moveleft(x)))
Bf(moveleft(Cb(x))) → Ab(Bf(moveleft(x)))
Bf(moveleft(Cc(x))) → Ac(Bf(moveleft(x)))
Bf(moveleft(Cd(x))) → Ad(Bf(moveleft(x)))
Bf(moveleft(Cf(x))) → Af(Bf(moveleft(x)))
Bf(moveleft(Cg(x))) → Ag(Bf(moveleft(x)))
Bg(moveleft(Ca(x))) → Aa(Bg(moveleft(x)))
Bg(moveleft(Cb(x))) → Ab(Bg(moveleft(x)))
Bg(moveleft(Cc(x))) → Ac(Bg(moveleft(x)))
Bg(moveleft(Cd(x))) → Ad(Bg(moveleft(x)))
Bg(moveleft(Cf(x))) → Af(Bg(moveleft(x)))
Bg(moveleft(Cg(x))) → Ag(Bg(moveleft(x)))
Ba(moveleft(cut(x))) → goright(cut(Da(x)))
Bb(moveleft(cut(x))) → goright(cut(Db(x)))
Bc(moveleft(cut(x))) → goright(cut(Dc(x)))
Bd(moveleft(cut(x))) → goright(cut(Dd(x)))
Bf(moveleft(cut(x))) → goright(cut(Df(x)))
Bg(moveleft(cut(x))) → goright(cut(Dg(x)))
Aa(goright(x)) → goright(Ca(x))
Ab(goright(x)) → goright(Cb(x))
Ac(goright(x)) → goright(Cc(x))
Ad(goright(x)) → goright(Cd(x))
Af(goright(x)) → goright(Cf(x))
Ag(goright(x)) → goright(Cg(x))
a(wait(goright(x))) → wait(Ba(moveleft(x)))
b(wait(goright(x))) → wait(Bb(moveleft(x)))
c(wait(goright(x))) → wait(Bc(moveleft(x)))
d(wait(goright(x))) → wait(Bd(moveleft(x)))
f(wait(goright(x))) → wait(Bf(moveleft(x)))
g(wait(goright(x))) → wait(Bg(moveleft(x)))
finish(Ca(x)) → a(finish(x))
finish(Cb(x)) → b(finish(x))
finish(Cc(x)) → c(finish(x))
finish(Cd(x)) → d(finish(x))
finish(Cf(x)) → f(finish(x))
finish(Cg(x)) → g(finish(x))
finish2(Da(x)) → a(finish2(x))
finish2(Db(x)) → b(finish2(x))
finish2(Dc(x)) → c(finish2(x))
finish2(Dd(x)) → d(finish2(x))
finish2(Df(x)) → f(finish2(x))
finish2(Dg(x)) → g(finish2(x))
The set Q consists of the following terms:
a(guess(x0))
b(guess(x0))
c(guess(x0))
d(guess(x0))
f(guess(x0))
g(guess(x0))
Ba(moveleft(Ca(x0)))
Ba(moveleft(Cb(x0)))
Ba(moveleft(Cc(x0)))
Ba(moveleft(Cd(x0)))
Ba(moveleft(Cf(x0)))
Ba(moveleft(Cg(x0)))
Bb(moveleft(Ca(x0)))
Bb(moveleft(Cb(x0)))
Bb(moveleft(Cc(x0)))
Bb(moveleft(Cd(x0)))
Bb(moveleft(Cf(x0)))
Bb(moveleft(Cg(x0)))
Bc(moveleft(Ca(x0)))
Bc(moveleft(Cb(x0)))
Bc(moveleft(Cc(x0)))
Bc(moveleft(Cd(x0)))
Bc(moveleft(Cf(x0)))
Bc(moveleft(Cg(x0)))
Bd(moveleft(Ca(x0)))
Bd(moveleft(Cb(x0)))
Bd(moveleft(Cc(x0)))
Bd(moveleft(Cd(x0)))
Bd(moveleft(Cf(x0)))
Bd(moveleft(Cg(x0)))
Bf(moveleft(Ca(x0)))
Bf(moveleft(Cb(x0)))
Bf(moveleft(Cc(x0)))
Bf(moveleft(Cd(x0)))
Bf(moveleft(Cf(x0)))
Bf(moveleft(Cg(x0)))
Bg(moveleft(Ca(x0)))
Bg(moveleft(Cb(x0)))
Bg(moveleft(Cc(x0)))
Bg(moveleft(Cd(x0)))
Bg(moveleft(Cf(x0)))
Bg(moveleft(Cg(x0)))
Ba(moveleft(cut(x0)))
Bb(moveleft(cut(x0)))
Bc(moveleft(cut(x0)))
Bd(moveleft(cut(x0)))
Bf(moveleft(cut(x0)))
Bg(moveleft(cut(x0)))
Aa(goright(x0))
Ab(goright(x0))
Ac(goright(x0))
Ad(goright(x0))
Af(goright(x0))
Ag(goright(x0))
a(wait(goright(x0)))
b(wait(goright(x0)))
c(wait(goright(x0)))
d(wait(goright(x0)))
f(wait(goright(x0)))
g(wait(goright(x0)))
finish(Ca(x0))
finish(Cb(x0))
finish(Cc(x0))
finish(Cd(x0))
finish(Cf(x0))
finish(Cg(x0))
finish2(Da(x0))
finish2(Db(x0))
finish2(Dc(x0))
finish2(Dd(x0))
finish2(Df(x0))
finish2(Dg(x0))
We have to consider all minimal (P,Q,R)-chains.
(9) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 8 SCCs with 54 less nodes.
(10) Complex Obligation (AND)
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
BG(moveleft(Cb(x))) → BG(moveleft(x))
BG(moveleft(Ca(x))) → BG(moveleft(x))
BG(moveleft(Cc(x))) → BG(moveleft(x))
BG(moveleft(Cd(x))) → BG(moveleft(x))
BG(moveleft(Cf(x))) → BG(moveleft(x))
BG(moveleft(Cg(x))) → BG(moveleft(x))
The TRS R consists of the following rules:
a(guess(x)) → guess(Ca(x))
b(guess(x)) → guess(Cb(x))
c(guess(x)) → guess(Cc(x))
d(guess(x)) → guess(Cd(x))
f(guess(x)) → guess(Cf(x))
g(guess(x)) → guess(Cg(x))
Ba(moveleft(Ca(x))) → Aa(Ba(moveleft(x)))
Ba(moveleft(Cb(x))) → Ab(Ba(moveleft(x)))
Ba(moveleft(Cc(x))) → Ac(Ba(moveleft(x)))
Ba(moveleft(Cd(x))) → Ad(Ba(moveleft(x)))
Ba(moveleft(Cf(x))) → Af(Ba(moveleft(x)))
Ba(moveleft(Cg(x))) → Ag(Ba(moveleft(x)))
Bb(moveleft(Ca(x))) → Aa(Bb(moveleft(x)))
Bb(moveleft(Cb(x))) → Ab(Bb(moveleft(x)))
Bb(moveleft(Cc(x))) → Ac(Bb(moveleft(x)))
Bb(moveleft(Cd(x))) → Ad(Bb(moveleft(x)))
Bb(moveleft(Cf(x))) → Af(Bb(moveleft(x)))
Bb(moveleft(Cg(x))) → Ag(Bb(moveleft(x)))
Bc(moveleft(Ca(x))) → Aa(Bc(moveleft(x)))
Bc(moveleft(Cb(x))) → Ab(Bc(moveleft(x)))
Bc(moveleft(Cc(x))) → Ac(Bc(moveleft(x)))
Bc(moveleft(Cd(x))) → Ad(Bc(moveleft(x)))
Bc(moveleft(Cf(x))) → Af(Bc(moveleft(x)))
Bc(moveleft(Cg(x))) → Ag(Bc(moveleft(x)))
Bd(moveleft(Ca(x))) → Aa(Bd(moveleft(x)))
Bd(moveleft(Cb(x))) → Ab(Bd(moveleft(x)))
Bd(moveleft(Cc(x))) → Ac(Bd(moveleft(x)))
Bd(moveleft(Cd(x))) → Ad(Bd(moveleft(x)))
Bd(moveleft(Cf(x))) → Af(Bd(moveleft(x)))
Bd(moveleft(Cg(x))) → Ag(Bd(moveleft(x)))
Bf(moveleft(Ca(x))) → Aa(Bf(moveleft(x)))
Bf(moveleft(Cb(x))) → Ab(Bf(moveleft(x)))
Bf(moveleft(Cc(x))) → Ac(Bf(moveleft(x)))
Bf(moveleft(Cd(x))) → Ad(Bf(moveleft(x)))
Bf(moveleft(Cf(x))) → Af(Bf(moveleft(x)))
Bf(moveleft(Cg(x))) → Ag(Bf(moveleft(x)))
Bg(moveleft(Ca(x))) → Aa(Bg(moveleft(x)))
Bg(moveleft(Cb(x))) → Ab(Bg(moveleft(x)))
Bg(moveleft(Cc(x))) → Ac(Bg(moveleft(x)))
Bg(moveleft(Cd(x))) → Ad(Bg(moveleft(x)))
Bg(moveleft(Cf(x))) → Af(Bg(moveleft(x)))
Bg(moveleft(Cg(x))) → Ag(Bg(moveleft(x)))
Ba(moveleft(cut(x))) → goright(cut(Da(x)))
Bb(moveleft(cut(x))) → goright(cut(Db(x)))
Bc(moveleft(cut(x))) → goright(cut(Dc(x)))
Bd(moveleft(cut(x))) → goright(cut(Dd(x)))
Bf(moveleft(cut(x))) → goright(cut(Df(x)))
Bg(moveleft(cut(x))) → goright(cut(Dg(x)))
Aa(goright(x)) → goright(Ca(x))
Ab(goright(x)) → goright(Cb(x))
Ac(goright(x)) → goright(Cc(x))
Ad(goright(x)) → goright(Cd(x))
Af(goright(x)) → goright(Cf(x))
Ag(goright(x)) → goright(Cg(x))
a(wait(goright(x))) → wait(Ba(moveleft(x)))
b(wait(goright(x))) → wait(Bb(moveleft(x)))
c(wait(goright(x))) → wait(Bc(moveleft(x)))
d(wait(goright(x))) → wait(Bd(moveleft(x)))
f(wait(goright(x))) → wait(Bf(moveleft(x)))
g(wait(goright(x))) → wait(Bg(moveleft(x)))
finish(Ca(x)) → a(finish(x))
finish(Cb(x)) → b(finish(x))
finish(Cc(x)) → c(finish(x))
finish(Cd(x)) → d(finish(x))
finish(Cf(x)) → f(finish(x))
finish(Cg(x)) → g(finish(x))
finish2(Da(x)) → a(finish2(x))
finish2(Db(x)) → b(finish2(x))
finish2(Dc(x)) → c(finish2(x))
finish2(Dd(x)) → d(finish2(x))
finish2(Df(x)) → f(finish2(x))
finish2(Dg(x)) → g(finish2(x))
The set Q consists of the following terms:
a(guess(x0))
b(guess(x0))
c(guess(x0))
d(guess(x0))
f(guess(x0))
g(guess(x0))
Ba(moveleft(Ca(x0)))
Ba(moveleft(Cb(x0)))
Ba(moveleft(Cc(x0)))
Ba(moveleft(Cd(x0)))
Ba(moveleft(Cf(x0)))
Ba(moveleft(Cg(x0)))
Bb(moveleft(Ca(x0)))
Bb(moveleft(Cb(x0)))
Bb(moveleft(Cc(x0)))
Bb(moveleft(Cd(x0)))
Bb(moveleft(Cf(x0)))
Bb(moveleft(Cg(x0)))
Bc(moveleft(Ca(x0)))
Bc(moveleft(Cb(x0)))
Bc(moveleft(Cc(x0)))
Bc(moveleft(Cd(x0)))
Bc(moveleft(Cf(x0)))
Bc(moveleft(Cg(x0)))
Bd(moveleft(Ca(x0)))
Bd(moveleft(Cb(x0)))
Bd(moveleft(Cc(x0)))
Bd(moveleft(Cd(x0)))
Bd(moveleft(Cf(x0)))
Bd(moveleft(Cg(x0)))
Bf(moveleft(Ca(x0)))
Bf(moveleft(Cb(x0)))
Bf(moveleft(Cc(x0)))
Bf(moveleft(Cd(x0)))
Bf(moveleft(Cf(x0)))
Bf(moveleft(Cg(x0)))
Bg(moveleft(Ca(x0)))
Bg(moveleft(Cb(x0)))
Bg(moveleft(Cc(x0)))
Bg(moveleft(Cd(x0)))
Bg(moveleft(Cf(x0)))
Bg(moveleft(Cg(x0)))
Ba(moveleft(cut(x0)))
Bb(moveleft(cut(x0)))
Bc(moveleft(cut(x0)))
Bd(moveleft(cut(x0)))
Bf(moveleft(cut(x0)))
Bg(moveleft(cut(x0)))
Aa(goright(x0))
Ab(goright(x0))
Ac(goright(x0))
Ad(goright(x0))
Af(goright(x0))
Ag(goright(x0))
a(wait(goright(x0)))
b(wait(goright(x0)))
c(wait(goright(x0)))
d(wait(goright(x0)))
f(wait(goright(x0)))
g(wait(goright(x0)))
finish(Ca(x0))
finish(Cb(x0))
finish(Cc(x0))
finish(Cd(x0))
finish(Cf(x0))
finish(Cg(x0))
finish2(Da(x0))
finish2(Db(x0))
finish2(Dc(x0))
finish2(Dd(x0))
finish2(Df(x0))
finish2(Dg(x0))
We have to consider all minimal (P,Q,R)-chains.
(12) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(13) Obligation:
Q DP problem:
The TRS P consists of the following rules:
BG(moveleft(Cb(x))) → BG(moveleft(x))
BG(moveleft(Ca(x))) → BG(moveleft(x))
BG(moveleft(Cc(x))) → BG(moveleft(x))
BG(moveleft(Cd(x))) → BG(moveleft(x))
BG(moveleft(Cf(x))) → BG(moveleft(x))
BG(moveleft(Cg(x))) → BG(moveleft(x))
R is empty.
The set Q consists of the following terms:
a(guess(x0))
b(guess(x0))
c(guess(x0))
d(guess(x0))
f(guess(x0))
g(guess(x0))
Ba(moveleft(Ca(x0)))
Ba(moveleft(Cb(x0)))
Ba(moveleft(Cc(x0)))
Ba(moveleft(Cd(x0)))
Ba(moveleft(Cf(x0)))
Ba(moveleft(Cg(x0)))
Bb(moveleft(Ca(x0)))
Bb(moveleft(Cb(x0)))
Bb(moveleft(Cc(x0)))
Bb(moveleft(Cd(x0)))
Bb(moveleft(Cf(x0)))
Bb(moveleft(Cg(x0)))
Bc(moveleft(Ca(x0)))
Bc(moveleft(Cb(x0)))
Bc(moveleft(Cc(x0)))
Bc(moveleft(Cd(x0)))
Bc(moveleft(Cf(x0)))
Bc(moveleft(Cg(x0)))
Bd(moveleft(Ca(x0)))
Bd(moveleft(Cb(x0)))
Bd(moveleft(Cc(x0)))
Bd(moveleft(Cd(x0)))
Bd(moveleft(Cf(x0)))
Bd(moveleft(Cg(x0)))
Bf(moveleft(Ca(x0)))
Bf(moveleft(Cb(x0)))
Bf(moveleft(Cc(x0)))
Bf(moveleft(Cd(x0)))
Bf(moveleft(Cf(x0)))
Bf(moveleft(Cg(x0)))
Bg(moveleft(Ca(x0)))
Bg(moveleft(Cb(x0)))
Bg(moveleft(Cc(x0)))
Bg(moveleft(Cd(x0)))
Bg(moveleft(Cf(x0)))
Bg(moveleft(Cg(x0)))
Ba(moveleft(cut(x0)))
Bb(moveleft(cut(x0)))
Bc(moveleft(cut(x0)))
Bd(moveleft(cut(x0)))
Bf(moveleft(cut(x0)))
Bg(moveleft(cut(x0)))
Aa(goright(x0))
Ab(goright(x0))
Ac(goright(x0))
Ad(goright(x0))
Af(goright(x0))
Ag(goright(x0))
a(wait(goright(x0)))
b(wait(goright(x0)))
c(wait(goright(x0)))
d(wait(goright(x0)))
f(wait(goright(x0)))
g(wait(goright(x0)))
finish(Ca(x0))
finish(Cb(x0))
finish(Cc(x0))
finish(Cd(x0))
finish(Cf(x0))
finish(Cg(x0))
finish2(Da(x0))
finish2(Db(x0))
finish2(Dc(x0))
finish2(Dd(x0))
finish2(Df(x0))
finish2(Dg(x0))
We have to consider all minimal (P,Q,R)-chains.
(14) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
a(guess(x0))
b(guess(x0))
c(guess(x0))
d(guess(x0))
f(guess(x0))
g(guess(x0))
Ba(moveleft(Ca(x0)))
Ba(moveleft(Cb(x0)))
Ba(moveleft(Cc(x0)))
Ba(moveleft(Cd(x0)))
Ba(moveleft(Cf(x0)))
Ba(moveleft(Cg(x0)))
Bb(moveleft(Ca(x0)))
Bb(moveleft(Cb(x0)))
Bb(moveleft(Cc(x0)))
Bb(moveleft(Cd(x0)))
Bb(moveleft(Cf(x0)))
Bb(moveleft(Cg(x0)))
Bc(moveleft(Ca(x0)))
Bc(moveleft(Cb(x0)))
Bc(moveleft(Cc(x0)))
Bc(moveleft(Cd(x0)))
Bc(moveleft(Cf(x0)))
Bc(moveleft(Cg(x0)))
Bd(moveleft(Ca(x0)))
Bd(moveleft(Cb(x0)))
Bd(moveleft(Cc(x0)))
Bd(moveleft(Cd(x0)))
Bd(moveleft(Cf(x0)))
Bd(moveleft(Cg(x0)))
Bf(moveleft(Ca(x0)))
Bf(moveleft(Cb(x0)))
Bf(moveleft(Cc(x0)))
Bf(moveleft(Cd(x0)))
Bf(moveleft(Cf(x0)))
Bf(moveleft(Cg(x0)))
Bg(moveleft(Ca(x0)))
Bg(moveleft(Cb(x0)))
Bg(moveleft(Cc(x0)))
Bg(moveleft(Cd(x0)))
Bg(moveleft(Cf(x0)))
Bg(moveleft(Cg(x0)))
Ba(moveleft(cut(x0)))
Bb(moveleft(cut(x0)))
Bc(moveleft(cut(x0)))
Bd(moveleft(cut(x0)))
Bf(moveleft(cut(x0)))
Bg(moveleft(cut(x0)))
Aa(goright(x0))
Ab(goright(x0))
Ac(goright(x0))
Ad(goright(x0))
Af(goright(x0))
Ag(goright(x0))
a(wait(goright(x0)))
b(wait(goright(x0)))
c(wait(goright(x0)))
d(wait(goright(x0)))
f(wait(goright(x0)))
g(wait(goright(x0)))
finish(Ca(x0))
finish(Cb(x0))
finish(Cc(x0))
finish(Cd(x0))
finish(Cf(x0))
finish(Cg(x0))
finish2(Da(x0))
finish2(Db(x0))
finish2(Dc(x0))
finish2(Dd(x0))
finish2(Df(x0))
finish2(Dg(x0))
(15) Obligation:
Q DP problem:
The TRS P consists of the following rules:
BG(moveleft(Cb(x))) → BG(moveleft(x))
BG(moveleft(Ca(x))) → BG(moveleft(x))
BG(moveleft(Cc(x))) → BG(moveleft(x))
BG(moveleft(Cd(x))) → BG(moveleft(x))
BG(moveleft(Cf(x))) → BG(moveleft(x))
BG(moveleft(Cg(x))) → BG(moveleft(x))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(16) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
BG(moveleft(Cb(x))) → BG(moveleft(x))
Used ordering: Polynomial interpretation [POLO]:
POL(BG(x1)) = 2·x1
POL(Ca(x1)) = 2·x1
POL(Cb(x1)) = 1 + x1
POL(Cc(x1)) = x1
POL(Cd(x1)) = 2·x1
POL(Cf(x1)) = x1
POL(Cg(x1)) = x1
POL(moveleft(x1)) = x1
(17) Obligation:
Q DP problem:
The TRS P consists of the following rules:
BG(moveleft(Ca(x))) → BG(moveleft(x))
BG(moveleft(Cc(x))) → BG(moveleft(x))
BG(moveleft(Cd(x))) → BG(moveleft(x))
BG(moveleft(Cf(x))) → BG(moveleft(x))
BG(moveleft(Cg(x))) → BG(moveleft(x))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(18) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
BG(moveleft(Cg(x))) → BG(moveleft(x))
Used ordering: Polynomial interpretation [POLO]:
POL(BG(x1)) = 2·x1
POL(Ca(x1)) = x1
POL(Cc(x1)) = 2·x1
POL(Cd(x1)) = 2·x1
POL(Cf(x1)) = x1
POL(Cg(x1)) = 1 + 2·x1
POL(moveleft(x1)) = x1
(19) Obligation:
Q DP problem:
The TRS P consists of the following rules:
BG(moveleft(Ca(x))) → BG(moveleft(x))
BG(moveleft(Cc(x))) → BG(moveleft(x))
BG(moveleft(Cd(x))) → BG(moveleft(x))
BG(moveleft(Cf(x))) → BG(moveleft(x))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(20) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
BG(moveleft(Ca(x))) → BG(moveleft(x))
BG(moveleft(Cc(x))) → BG(moveleft(x))
BG(moveleft(Cd(x))) → BG(moveleft(x))
BG(moveleft(Cf(x))) → BG(moveleft(x))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:
POL(BG(x1)) = x1
POL(Ca(x1)) = 1 + x1
POL(Cc(x1)) = 1 + x1
POL(Cd(x1)) = 1 + x1
POL(Cf(x1)) = 1 + x1
POL(moveleft(x1)) = x1
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
none
(21) Obligation:
Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(22) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(23) YES
(24) Obligation:
Q DP problem:
The TRS P consists of the following rules:
BF(moveleft(Cb(x))) → BF(moveleft(x))
BF(moveleft(Ca(x))) → BF(moveleft(x))
BF(moveleft(Cc(x))) → BF(moveleft(x))
BF(moveleft(Cd(x))) → BF(moveleft(x))
BF(moveleft(Cf(x))) → BF(moveleft(x))
BF(moveleft(Cg(x))) → BF(moveleft(x))
The TRS R consists of the following rules:
a(guess(x)) → guess(Ca(x))
b(guess(x)) → guess(Cb(x))
c(guess(x)) → guess(Cc(x))
d(guess(x)) → guess(Cd(x))
f(guess(x)) → guess(Cf(x))
g(guess(x)) → guess(Cg(x))
Ba(moveleft(Ca(x))) → Aa(Ba(moveleft(x)))
Ba(moveleft(Cb(x))) → Ab(Ba(moveleft(x)))
Ba(moveleft(Cc(x))) → Ac(Ba(moveleft(x)))
Ba(moveleft(Cd(x))) → Ad(Ba(moveleft(x)))
Ba(moveleft(Cf(x))) → Af(Ba(moveleft(x)))
Ba(moveleft(Cg(x))) → Ag(Ba(moveleft(x)))
Bb(moveleft(Ca(x))) → Aa(Bb(moveleft(x)))
Bb(moveleft(Cb(x))) → Ab(Bb(moveleft(x)))
Bb(moveleft(Cc(x))) → Ac(Bb(moveleft(x)))
Bb(moveleft(Cd(x))) → Ad(Bb(moveleft(x)))
Bb(moveleft(Cf(x))) → Af(Bb(moveleft(x)))
Bb(moveleft(Cg(x))) → Ag(Bb(moveleft(x)))
Bc(moveleft(Ca(x))) → Aa(Bc(moveleft(x)))
Bc(moveleft(Cb(x))) → Ab(Bc(moveleft(x)))
Bc(moveleft(Cc(x))) → Ac(Bc(moveleft(x)))
Bc(moveleft(Cd(x))) → Ad(Bc(moveleft(x)))
Bc(moveleft(Cf(x))) → Af(Bc(moveleft(x)))
Bc(moveleft(Cg(x))) → Ag(Bc(moveleft(x)))
Bd(moveleft(Ca(x))) → Aa(Bd(moveleft(x)))
Bd(moveleft(Cb(x))) → Ab(Bd(moveleft(x)))
Bd(moveleft(Cc(x))) → Ac(Bd(moveleft(x)))
Bd(moveleft(Cd(x))) → Ad(Bd(moveleft(x)))
Bd(moveleft(Cf(x))) → Af(Bd(moveleft(x)))
Bd(moveleft(Cg(x))) → Ag(Bd(moveleft(x)))
Bf(moveleft(Ca(x))) → Aa(Bf(moveleft(x)))
Bf(moveleft(Cb(x))) → Ab(Bf(moveleft(x)))
Bf(moveleft(Cc(x))) → Ac(Bf(moveleft(x)))
Bf(moveleft(Cd(x))) → Ad(Bf(moveleft(x)))
Bf(moveleft(Cf(x))) → Af(Bf(moveleft(x)))
Bf(moveleft(Cg(x))) → Ag(Bf(moveleft(x)))
Bg(moveleft(Ca(x))) → Aa(Bg(moveleft(x)))
Bg(moveleft(Cb(x))) → Ab(Bg(moveleft(x)))
Bg(moveleft(Cc(x))) → Ac(Bg(moveleft(x)))
Bg(moveleft(Cd(x))) → Ad(Bg(moveleft(x)))
Bg(moveleft(Cf(x))) → Af(Bg(moveleft(x)))
Bg(moveleft(Cg(x))) → Ag(Bg(moveleft(x)))
Ba(moveleft(cut(x))) → goright(cut(Da(x)))
Bb(moveleft(cut(x))) → goright(cut(Db(x)))
Bc(moveleft(cut(x))) → goright(cut(Dc(x)))
Bd(moveleft(cut(x))) → goright(cut(Dd(x)))
Bf(moveleft(cut(x))) → goright(cut(Df(x)))
Bg(moveleft(cut(x))) → goright(cut(Dg(x)))
Aa(goright(x)) → goright(Ca(x))
Ab(goright(x)) → goright(Cb(x))
Ac(goright(x)) → goright(Cc(x))
Ad(goright(x)) → goright(Cd(x))
Af(goright(x)) → goright(Cf(x))
Ag(goright(x)) → goright(Cg(x))
a(wait(goright(x))) → wait(Ba(moveleft(x)))
b(wait(goright(x))) → wait(Bb(moveleft(x)))
c(wait(goright(x))) → wait(Bc(moveleft(x)))
d(wait(goright(x))) → wait(Bd(moveleft(x)))
f(wait(goright(x))) → wait(Bf(moveleft(x)))
g(wait(goright(x))) → wait(Bg(moveleft(x)))
finish(Ca(x)) → a(finish(x))
finish(Cb(x)) → b(finish(x))
finish(Cc(x)) → c(finish(x))
finish(Cd(x)) → d(finish(x))
finish(Cf(x)) → f(finish(x))
finish(Cg(x)) → g(finish(x))
finish2(Da(x)) → a(finish2(x))
finish2(Db(x)) → b(finish2(x))
finish2(Dc(x)) → c(finish2(x))
finish2(Dd(x)) → d(finish2(x))
finish2(Df(x)) → f(finish2(x))
finish2(Dg(x)) → g(finish2(x))
The set Q consists of the following terms:
a(guess(x0))
b(guess(x0))
c(guess(x0))
d(guess(x0))
f(guess(x0))
g(guess(x0))
Ba(moveleft(Ca(x0)))
Ba(moveleft(Cb(x0)))
Ba(moveleft(Cc(x0)))
Ba(moveleft(Cd(x0)))
Ba(moveleft(Cf(x0)))
Ba(moveleft(Cg(x0)))
Bb(moveleft(Ca(x0)))
Bb(moveleft(Cb(x0)))
Bb(moveleft(Cc(x0)))
Bb(moveleft(Cd(x0)))
Bb(moveleft(Cf(x0)))
Bb(moveleft(Cg(x0)))
Bc(moveleft(Ca(x0)))
Bc(moveleft(Cb(x0)))
Bc(moveleft(Cc(x0)))
Bc(moveleft(Cd(x0)))
Bc(moveleft(Cf(x0)))
Bc(moveleft(Cg(x0)))
Bd(moveleft(Ca(x0)))
Bd(moveleft(Cb(x0)))
Bd(moveleft(Cc(x0)))
Bd(moveleft(Cd(x0)))
Bd(moveleft(Cf(x0)))
Bd(moveleft(Cg(x0)))
Bf(moveleft(Ca(x0)))
Bf(moveleft(Cb(x0)))
Bf(moveleft(Cc(x0)))
Bf(moveleft(Cd(x0)))
Bf(moveleft(Cf(x0)))
Bf(moveleft(Cg(x0)))
Bg(moveleft(Ca(x0)))
Bg(moveleft(Cb(x0)))
Bg(moveleft(Cc(x0)))
Bg(moveleft(Cd(x0)))
Bg(moveleft(Cf(x0)))
Bg(moveleft(Cg(x0)))
Ba(moveleft(cut(x0)))
Bb(moveleft(cut(x0)))
Bc(moveleft(cut(x0)))
Bd(moveleft(cut(x0)))
Bf(moveleft(cut(x0)))
Bg(moveleft(cut(x0)))
Aa(goright(x0))
Ab(goright(x0))
Ac(goright(x0))
Ad(goright(x0))
Af(goright(x0))
Ag(goright(x0))
a(wait(goright(x0)))
b(wait(goright(x0)))
c(wait(goright(x0)))
d(wait(goright(x0)))
f(wait(goright(x0)))
g(wait(goright(x0)))
finish(Ca(x0))
finish(Cb(x0))
finish(Cc(x0))
finish(Cd(x0))
finish(Cf(x0))
finish(Cg(x0))
finish2(Da(x0))
finish2(Db(x0))
finish2(Dc(x0))
finish2(Dd(x0))
finish2(Df(x0))
finish2(Dg(x0))
We have to consider all minimal (P,Q,R)-chains.
(25) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(26) Obligation:
Q DP problem:
The TRS P consists of the following rules:
BF(moveleft(Cb(x))) → BF(moveleft(x))
BF(moveleft(Ca(x))) → BF(moveleft(x))
BF(moveleft(Cc(x))) → BF(moveleft(x))
BF(moveleft(Cd(x))) → BF(moveleft(x))
BF(moveleft(Cf(x))) → BF(moveleft(x))
BF(moveleft(Cg(x))) → BF(moveleft(x))
R is empty.
The set Q consists of the following terms:
a(guess(x0))
b(guess(x0))
c(guess(x0))
d(guess(x0))
f(guess(x0))
g(guess(x0))
Ba(moveleft(Ca(x0)))
Ba(moveleft(Cb(x0)))
Ba(moveleft(Cc(x0)))
Ba(moveleft(Cd(x0)))
Ba(moveleft(Cf(x0)))
Ba(moveleft(Cg(x0)))
Bb(moveleft(Ca(x0)))
Bb(moveleft(Cb(x0)))
Bb(moveleft(Cc(x0)))
Bb(moveleft(Cd(x0)))
Bb(moveleft(Cf(x0)))
Bb(moveleft(Cg(x0)))
Bc(moveleft(Ca(x0)))
Bc(moveleft(Cb(x0)))
Bc(moveleft(Cc(x0)))
Bc(moveleft(Cd(x0)))
Bc(moveleft(Cf(x0)))
Bc(moveleft(Cg(x0)))
Bd(moveleft(Ca(x0)))
Bd(moveleft(Cb(x0)))
Bd(moveleft(Cc(x0)))
Bd(moveleft(Cd(x0)))
Bd(moveleft(Cf(x0)))
Bd(moveleft(Cg(x0)))
Bf(moveleft(Ca(x0)))
Bf(moveleft(Cb(x0)))
Bf(moveleft(Cc(x0)))
Bf(moveleft(Cd(x0)))
Bf(moveleft(Cf(x0)))
Bf(moveleft(Cg(x0)))
Bg(moveleft(Ca(x0)))
Bg(moveleft(Cb(x0)))
Bg(moveleft(Cc(x0)))
Bg(moveleft(Cd(x0)))
Bg(moveleft(Cf(x0)))
Bg(moveleft(Cg(x0)))
Ba(moveleft(cut(x0)))
Bb(moveleft(cut(x0)))
Bc(moveleft(cut(x0)))
Bd(moveleft(cut(x0)))
Bf(moveleft(cut(x0)))
Bg(moveleft(cut(x0)))
Aa(goright(x0))
Ab(goright(x0))
Ac(goright(x0))
Ad(goright(x0))
Af(goright(x0))
Ag(goright(x0))
a(wait(goright(x0)))
b(wait(goright(x0)))
c(wait(goright(x0)))
d(wait(goright(x0)))
f(wait(goright(x0)))
g(wait(goright(x0)))
finish(Ca(x0))
finish(Cb(x0))
finish(Cc(x0))
finish(Cd(x0))
finish(Cf(x0))
finish(Cg(x0))
finish2(Da(x0))
finish2(Db(x0))
finish2(Dc(x0))
finish2(Dd(x0))
finish2(Df(x0))
finish2(Dg(x0))
We have to consider all minimal (P,Q,R)-chains.
(27) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
a(guess(x0))
b(guess(x0))
c(guess(x0))
d(guess(x0))
f(guess(x0))
g(guess(x0))
Ba(moveleft(Ca(x0)))
Ba(moveleft(Cb(x0)))
Ba(moveleft(Cc(x0)))
Ba(moveleft(Cd(x0)))
Ba(moveleft(Cf(x0)))
Ba(moveleft(Cg(x0)))
Bb(moveleft(Ca(x0)))
Bb(moveleft(Cb(x0)))
Bb(moveleft(Cc(x0)))
Bb(moveleft(Cd(x0)))
Bb(moveleft(Cf(x0)))
Bb(moveleft(Cg(x0)))
Bc(moveleft(Ca(x0)))
Bc(moveleft(Cb(x0)))
Bc(moveleft(Cc(x0)))
Bc(moveleft(Cd(x0)))
Bc(moveleft(Cf(x0)))
Bc(moveleft(Cg(x0)))
Bd(moveleft(Ca(x0)))
Bd(moveleft(Cb(x0)))
Bd(moveleft(Cc(x0)))
Bd(moveleft(Cd(x0)))
Bd(moveleft(Cf(x0)))
Bd(moveleft(Cg(x0)))
Bf(moveleft(Ca(x0)))
Bf(moveleft(Cb(x0)))
Bf(moveleft(Cc(x0)))
Bf(moveleft(Cd(x0)))
Bf(moveleft(Cf(x0)))
Bf(moveleft(Cg(x0)))
Bg(moveleft(Ca(x0)))
Bg(moveleft(Cb(x0)))
Bg(moveleft(Cc(x0)))
Bg(moveleft(Cd(x0)))
Bg(moveleft(Cf(x0)))
Bg(moveleft(Cg(x0)))
Ba(moveleft(cut(x0)))
Bb(moveleft(cut(x0)))
Bc(moveleft(cut(x0)))
Bd(moveleft(cut(x0)))
Bf(moveleft(cut(x0)))
Bg(moveleft(cut(x0)))
Aa(goright(x0))
Ab(goright(x0))
Ac(goright(x0))
Ad(goright(x0))
Af(goright(x0))
Ag(goright(x0))
a(wait(goright(x0)))
b(wait(goright(x0)))
c(wait(goright(x0)))
d(wait(goright(x0)))
f(wait(goright(x0)))
g(wait(goright(x0)))
finish(Ca(x0))
finish(Cb(x0))
finish(Cc(x0))
finish(Cd(x0))
finish(Cf(x0))
finish(Cg(x0))
finish2(Da(x0))
finish2(Db(x0))
finish2(Dc(x0))
finish2(Dd(x0))
finish2(Df(x0))
finish2(Dg(x0))
(28) Obligation:
Q DP problem:
The TRS P consists of the following rules:
BF(moveleft(Cb(x))) → BF(moveleft(x))
BF(moveleft(Ca(x))) → BF(moveleft(x))
BF(moveleft(Cc(x))) → BF(moveleft(x))
BF(moveleft(Cd(x))) → BF(moveleft(x))
BF(moveleft(Cf(x))) → BF(moveleft(x))
BF(moveleft(Cg(x))) → BF(moveleft(x))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(29) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
BF(moveleft(Cb(x))) → BF(moveleft(x))
Used ordering: Polynomial interpretation [POLO]:
POL(BF(x1)) = 2·x1
POL(Ca(x1)) = 2·x1
POL(Cb(x1)) = 1 + x1
POL(Cc(x1)) = x1
POL(Cd(x1)) = 2·x1
POL(Cf(x1)) = x1
POL(Cg(x1)) = x1
POL(moveleft(x1)) = x1
(30) Obligation:
Q DP problem:
The TRS P consists of the following rules:
BF(moveleft(Ca(x))) → BF(moveleft(x))
BF(moveleft(Cc(x))) → BF(moveleft(x))
BF(moveleft(Cd(x))) → BF(moveleft(x))
BF(moveleft(Cf(x))) → BF(moveleft(x))
BF(moveleft(Cg(x))) → BF(moveleft(x))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(31) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
BF(moveleft(Ca(x))) → BF(moveleft(x))
BF(moveleft(Cc(x))) → BF(moveleft(x))
BF(moveleft(Cd(x))) → BF(moveleft(x))
BF(moveleft(Cf(x))) → BF(moveleft(x))
BF(moveleft(Cg(x))) → BF(moveleft(x))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( BF(x1) ) = max{0, 2x1 - 1} |
POL( moveleft(x1) ) = 2x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
none
(32) Obligation:
Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(33) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(34) YES
(35) Obligation:
Q DP problem:
The TRS P consists of the following rules:
BD(moveleft(Cb(x))) → BD(moveleft(x))
BD(moveleft(Ca(x))) → BD(moveleft(x))
BD(moveleft(Cc(x))) → BD(moveleft(x))
BD(moveleft(Cd(x))) → BD(moveleft(x))
BD(moveleft(Cf(x))) → BD(moveleft(x))
BD(moveleft(Cg(x))) → BD(moveleft(x))
The TRS R consists of the following rules:
a(guess(x)) → guess(Ca(x))
b(guess(x)) → guess(Cb(x))
c(guess(x)) → guess(Cc(x))
d(guess(x)) → guess(Cd(x))
f(guess(x)) → guess(Cf(x))
g(guess(x)) → guess(Cg(x))
Ba(moveleft(Ca(x))) → Aa(Ba(moveleft(x)))
Ba(moveleft(Cb(x))) → Ab(Ba(moveleft(x)))
Ba(moveleft(Cc(x))) → Ac(Ba(moveleft(x)))
Ba(moveleft(Cd(x))) → Ad(Ba(moveleft(x)))
Ba(moveleft(Cf(x))) → Af(Ba(moveleft(x)))
Ba(moveleft(Cg(x))) → Ag(Ba(moveleft(x)))
Bb(moveleft(Ca(x))) → Aa(Bb(moveleft(x)))
Bb(moveleft(Cb(x))) → Ab(Bb(moveleft(x)))
Bb(moveleft(Cc(x))) → Ac(Bb(moveleft(x)))
Bb(moveleft(Cd(x))) → Ad(Bb(moveleft(x)))
Bb(moveleft(Cf(x))) → Af(Bb(moveleft(x)))
Bb(moveleft(Cg(x))) → Ag(Bb(moveleft(x)))
Bc(moveleft(Ca(x))) → Aa(Bc(moveleft(x)))
Bc(moveleft(Cb(x))) → Ab(Bc(moveleft(x)))
Bc(moveleft(Cc(x))) → Ac(Bc(moveleft(x)))
Bc(moveleft(Cd(x))) → Ad(Bc(moveleft(x)))
Bc(moveleft(Cf(x))) → Af(Bc(moveleft(x)))
Bc(moveleft(Cg(x))) → Ag(Bc(moveleft(x)))
Bd(moveleft(Ca(x))) → Aa(Bd(moveleft(x)))
Bd(moveleft(Cb(x))) → Ab(Bd(moveleft(x)))
Bd(moveleft(Cc(x))) → Ac(Bd(moveleft(x)))
Bd(moveleft(Cd(x))) → Ad(Bd(moveleft(x)))
Bd(moveleft(Cf(x))) → Af(Bd(moveleft(x)))
Bd(moveleft(Cg(x))) → Ag(Bd(moveleft(x)))
Bf(moveleft(Ca(x))) → Aa(Bf(moveleft(x)))
Bf(moveleft(Cb(x))) → Ab(Bf(moveleft(x)))
Bf(moveleft(Cc(x))) → Ac(Bf(moveleft(x)))
Bf(moveleft(Cd(x))) → Ad(Bf(moveleft(x)))
Bf(moveleft(Cf(x))) → Af(Bf(moveleft(x)))
Bf(moveleft(Cg(x))) → Ag(Bf(moveleft(x)))
Bg(moveleft(Ca(x))) → Aa(Bg(moveleft(x)))
Bg(moveleft(Cb(x))) → Ab(Bg(moveleft(x)))
Bg(moveleft(Cc(x))) → Ac(Bg(moveleft(x)))
Bg(moveleft(Cd(x))) → Ad(Bg(moveleft(x)))
Bg(moveleft(Cf(x))) → Af(Bg(moveleft(x)))
Bg(moveleft(Cg(x))) → Ag(Bg(moveleft(x)))
Ba(moveleft(cut(x))) → goright(cut(Da(x)))
Bb(moveleft(cut(x))) → goright(cut(Db(x)))
Bc(moveleft(cut(x))) → goright(cut(Dc(x)))
Bd(moveleft(cut(x))) → goright(cut(Dd(x)))
Bf(moveleft(cut(x))) → goright(cut(Df(x)))
Bg(moveleft(cut(x))) → goright(cut(Dg(x)))
Aa(goright(x)) → goright(Ca(x))
Ab(goright(x)) → goright(Cb(x))
Ac(goright(x)) → goright(Cc(x))
Ad(goright(x)) → goright(Cd(x))
Af(goright(x)) → goright(Cf(x))
Ag(goright(x)) → goright(Cg(x))
a(wait(goright(x))) → wait(Ba(moveleft(x)))
b(wait(goright(x))) → wait(Bb(moveleft(x)))
c(wait(goright(x))) → wait(Bc(moveleft(x)))
d(wait(goright(x))) → wait(Bd(moveleft(x)))
f(wait(goright(x))) → wait(Bf(moveleft(x)))
g(wait(goright(x))) → wait(Bg(moveleft(x)))
finish(Ca(x)) → a(finish(x))
finish(Cb(x)) → b(finish(x))
finish(Cc(x)) → c(finish(x))
finish(Cd(x)) → d(finish(x))
finish(Cf(x)) → f(finish(x))
finish(Cg(x)) → g(finish(x))
finish2(Da(x)) → a(finish2(x))
finish2(Db(x)) → b(finish2(x))
finish2(Dc(x)) → c(finish2(x))
finish2(Dd(x)) → d(finish2(x))
finish2(Df(x)) → f(finish2(x))
finish2(Dg(x)) → g(finish2(x))
The set Q consists of the following terms:
a(guess(x0))
b(guess(x0))
c(guess(x0))
d(guess(x0))
f(guess(x0))
g(guess(x0))
Ba(moveleft(Ca(x0)))
Ba(moveleft(Cb(x0)))
Ba(moveleft(Cc(x0)))
Ba(moveleft(Cd(x0)))
Ba(moveleft(Cf(x0)))
Ba(moveleft(Cg(x0)))
Bb(moveleft(Ca(x0)))
Bb(moveleft(Cb(x0)))
Bb(moveleft(Cc(x0)))
Bb(moveleft(Cd(x0)))
Bb(moveleft(Cf(x0)))
Bb(moveleft(Cg(x0)))
Bc(moveleft(Ca(x0)))
Bc(moveleft(Cb(x0)))
Bc(moveleft(Cc(x0)))
Bc(moveleft(Cd(x0)))
Bc(moveleft(Cf(x0)))
Bc(moveleft(Cg(x0)))
Bd(moveleft(Ca(x0)))
Bd(moveleft(Cb(x0)))
Bd(moveleft(Cc(x0)))
Bd(moveleft(Cd(x0)))
Bd(moveleft(Cf(x0)))
Bd(moveleft(Cg(x0)))
Bf(moveleft(Ca(x0)))
Bf(moveleft(Cb(x0)))
Bf(moveleft(Cc(x0)))
Bf(moveleft(Cd(x0)))
Bf(moveleft(Cf(x0)))
Bf(moveleft(Cg(x0)))
Bg(moveleft(Ca(x0)))
Bg(moveleft(Cb(x0)))
Bg(moveleft(Cc(x0)))
Bg(moveleft(Cd(x0)))
Bg(moveleft(Cf(x0)))
Bg(moveleft(Cg(x0)))
Ba(moveleft(cut(x0)))
Bb(moveleft(cut(x0)))
Bc(moveleft(cut(x0)))
Bd(moveleft(cut(x0)))
Bf(moveleft(cut(x0)))
Bg(moveleft(cut(x0)))
Aa(goright(x0))
Ab(goright(x0))
Ac(goright(x0))
Ad(goright(x0))
Af(goright(x0))
Ag(goright(x0))
a(wait(goright(x0)))
b(wait(goright(x0)))
c(wait(goright(x0)))
d(wait(goright(x0)))
f(wait(goright(x0)))
g(wait(goright(x0)))
finish(Ca(x0))
finish(Cb(x0))
finish(Cc(x0))
finish(Cd(x0))
finish(Cf(x0))
finish(Cg(x0))
finish2(Da(x0))
finish2(Db(x0))
finish2(Dc(x0))
finish2(Dd(x0))
finish2(Df(x0))
finish2(Dg(x0))
We have to consider all minimal (P,Q,R)-chains.
(36) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(37) Obligation:
Q DP problem:
The TRS P consists of the following rules:
BD(moveleft(Cb(x))) → BD(moveleft(x))
BD(moveleft(Ca(x))) → BD(moveleft(x))
BD(moveleft(Cc(x))) → BD(moveleft(x))
BD(moveleft(Cd(x))) → BD(moveleft(x))
BD(moveleft(Cf(x))) → BD(moveleft(x))
BD(moveleft(Cg(x))) → BD(moveleft(x))
R is empty.
The set Q consists of the following terms:
a(guess(x0))
b(guess(x0))
c(guess(x0))
d(guess(x0))
f(guess(x0))
g(guess(x0))
Ba(moveleft(Ca(x0)))
Ba(moveleft(Cb(x0)))
Ba(moveleft(Cc(x0)))
Ba(moveleft(Cd(x0)))
Ba(moveleft(Cf(x0)))
Ba(moveleft(Cg(x0)))
Bb(moveleft(Ca(x0)))
Bb(moveleft(Cb(x0)))
Bb(moveleft(Cc(x0)))
Bb(moveleft(Cd(x0)))
Bb(moveleft(Cf(x0)))
Bb(moveleft(Cg(x0)))
Bc(moveleft(Ca(x0)))
Bc(moveleft(Cb(x0)))
Bc(moveleft(Cc(x0)))
Bc(moveleft(Cd(x0)))
Bc(moveleft(Cf(x0)))
Bc(moveleft(Cg(x0)))
Bd(moveleft(Ca(x0)))
Bd(moveleft(Cb(x0)))
Bd(moveleft(Cc(x0)))
Bd(moveleft(Cd(x0)))
Bd(moveleft(Cf(x0)))
Bd(moveleft(Cg(x0)))
Bf(moveleft(Ca(x0)))
Bf(moveleft(Cb(x0)))
Bf(moveleft(Cc(x0)))
Bf(moveleft(Cd(x0)))
Bf(moveleft(Cf(x0)))
Bf(moveleft(Cg(x0)))
Bg(moveleft(Ca(x0)))
Bg(moveleft(Cb(x0)))
Bg(moveleft(Cc(x0)))
Bg(moveleft(Cd(x0)))
Bg(moveleft(Cf(x0)))
Bg(moveleft(Cg(x0)))
Ba(moveleft(cut(x0)))
Bb(moveleft(cut(x0)))
Bc(moveleft(cut(x0)))
Bd(moveleft(cut(x0)))
Bf(moveleft(cut(x0)))
Bg(moveleft(cut(x0)))
Aa(goright(x0))
Ab(goright(x0))
Ac(goright(x0))
Ad(goright(x0))
Af(goright(x0))
Ag(goright(x0))
a(wait(goright(x0)))
b(wait(goright(x0)))
c(wait(goright(x0)))
d(wait(goright(x0)))
f(wait(goright(x0)))
g(wait(goright(x0)))
finish(Ca(x0))
finish(Cb(x0))
finish(Cc(x0))
finish(Cd(x0))
finish(Cf(x0))
finish(Cg(x0))
finish2(Da(x0))
finish2(Db(x0))
finish2(Dc(x0))
finish2(Dd(x0))
finish2(Df(x0))
finish2(Dg(x0))
We have to consider all minimal (P,Q,R)-chains.
(38) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
a(guess(x0))
b(guess(x0))
c(guess(x0))
d(guess(x0))
f(guess(x0))
g(guess(x0))
Ba(moveleft(Ca(x0)))
Ba(moveleft(Cb(x0)))
Ba(moveleft(Cc(x0)))
Ba(moveleft(Cd(x0)))
Ba(moveleft(Cf(x0)))
Ba(moveleft(Cg(x0)))
Bb(moveleft(Ca(x0)))
Bb(moveleft(Cb(x0)))
Bb(moveleft(Cc(x0)))
Bb(moveleft(Cd(x0)))
Bb(moveleft(Cf(x0)))
Bb(moveleft(Cg(x0)))
Bc(moveleft(Ca(x0)))
Bc(moveleft(Cb(x0)))
Bc(moveleft(Cc(x0)))
Bc(moveleft(Cd(x0)))
Bc(moveleft(Cf(x0)))
Bc(moveleft(Cg(x0)))
Bd(moveleft(Ca(x0)))
Bd(moveleft(Cb(x0)))
Bd(moveleft(Cc(x0)))
Bd(moveleft(Cd(x0)))
Bd(moveleft(Cf(x0)))
Bd(moveleft(Cg(x0)))
Bf(moveleft(Ca(x0)))
Bf(moveleft(Cb(x0)))
Bf(moveleft(Cc(x0)))
Bf(moveleft(Cd(x0)))
Bf(moveleft(Cf(x0)))
Bf(moveleft(Cg(x0)))
Bg(moveleft(Ca(x0)))
Bg(moveleft(Cb(x0)))
Bg(moveleft(Cc(x0)))
Bg(moveleft(Cd(x0)))
Bg(moveleft(Cf(x0)))
Bg(moveleft(Cg(x0)))
Ba(moveleft(cut(x0)))
Bb(moveleft(cut(x0)))
Bc(moveleft(cut(x0)))
Bd(moveleft(cut(x0)))
Bf(moveleft(cut(x0)))
Bg(moveleft(cut(x0)))
Aa(goright(x0))
Ab(goright(x0))
Ac(goright(x0))
Ad(goright(x0))
Af(goright(x0))
Ag(goright(x0))
a(wait(goright(x0)))
b(wait(goright(x0)))
c(wait(goright(x0)))
d(wait(goright(x0)))
f(wait(goright(x0)))
g(wait(goright(x0)))
finish(Ca(x0))
finish(Cb(x0))
finish(Cc(x0))
finish(Cd(x0))
finish(Cf(x0))
finish(Cg(x0))
finish2(Da(x0))
finish2(Db(x0))
finish2(Dc(x0))
finish2(Dd(x0))
finish2(Df(x0))
finish2(Dg(x0))
(39) Obligation:
Q DP problem:
The TRS P consists of the following rules:
BD(moveleft(Cb(x))) → BD(moveleft(x))
BD(moveleft(Ca(x))) → BD(moveleft(x))
BD(moveleft(Cc(x))) → BD(moveleft(x))
BD(moveleft(Cd(x))) → BD(moveleft(x))
BD(moveleft(Cf(x))) → BD(moveleft(x))
BD(moveleft(Cg(x))) → BD(moveleft(x))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(40) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
BD(moveleft(Cb(x))) → BD(moveleft(x))
Used ordering: Polynomial interpretation [POLO]:
POL(BD(x1)) = 2·x1
POL(Ca(x1)) = 2·x1
POL(Cb(x1)) = 1 + x1
POL(Cc(x1)) = x1
POL(Cd(x1)) = 2·x1
POL(Cf(x1)) = x1
POL(Cg(x1)) = x1
POL(moveleft(x1)) = x1
(41) Obligation:
Q DP problem:
The TRS P consists of the following rules:
BD(moveleft(Ca(x))) → BD(moveleft(x))
BD(moveleft(Cc(x))) → BD(moveleft(x))
BD(moveleft(Cd(x))) → BD(moveleft(x))
BD(moveleft(Cf(x))) → BD(moveleft(x))
BD(moveleft(Cg(x))) → BD(moveleft(x))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(42) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
BD(moveleft(Ca(x))) → BD(moveleft(x))
BD(moveleft(Cc(x))) → BD(moveleft(x))
BD(moveleft(Cd(x))) → BD(moveleft(x))
BD(moveleft(Cf(x))) → BD(moveleft(x))
BD(moveleft(Cg(x))) → BD(moveleft(x))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( BD(x1) ) = max{0, 2x1 - 1} |
POL( moveleft(x1) ) = 2x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
none
(43) Obligation:
Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(44) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(45) YES
(46) Obligation:
Q DP problem:
The TRS P consists of the following rules:
BC(moveleft(Cb(x))) → BC(moveleft(x))
BC(moveleft(Ca(x))) → BC(moveleft(x))
BC(moveleft(Cc(x))) → BC(moveleft(x))
BC(moveleft(Cd(x))) → BC(moveleft(x))
BC(moveleft(Cf(x))) → BC(moveleft(x))
BC(moveleft(Cg(x))) → BC(moveleft(x))
The TRS R consists of the following rules:
a(guess(x)) → guess(Ca(x))
b(guess(x)) → guess(Cb(x))
c(guess(x)) → guess(Cc(x))
d(guess(x)) → guess(Cd(x))
f(guess(x)) → guess(Cf(x))
g(guess(x)) → guess(Cg(x))
Ba(moveleft(Ca(x))) → Aa(Ba(moveleft(x)))
Ba(moveleft(Cb(x))) → Ab(Ba(moveleft(x)))
Ba(moveleft(Cc(x))) → Ac(Ba(moveleft(x)))
Ba(moveleft(Cd(x))) → Ad(Ba(moveleft(x)))
Ba(moveleft(Cf(x))) → Af(Ba(moveleft(x)))
Ba(moveleft(Cg(x))) → Ag(Ba(moveleft(x)))
Bb(moveleft(Ca(x))) → Aa(Bb(moveleft(x)))
Bb(moveleft(Cb(x))) → Ab(Bb(moveleft(x)))
Bb(moveleft(Cc(x))) → Ac(Bb(moveleft(x)))
Bb(moveleft(Cd(x))) → Ad(Bb(moveleft(x)))
Bb(moveleft(Cf(x))) → Af(Bb(moveleft(x)))
Bb(moveleft(Cg(x))) → Ag(Bb(moveleft(x)))
Bc(moveleft(Ca(x))) → Aa(Bc(moveleft(x)))
Bc(moveleft(Cb(x))) → Ab(Bc(moveleft(x)))
Bc(moveleft(Cc(x))) → Ac(Bc(moveleft(x)))
Bc(moveleft(Cd(x))) → Ad(Bc(moveleft(x)))
Bc(moveleft(Cf(x))) → Af(Bc(moveleft(x)))
Bc(moveleft(Cg(x))) → Ag(Bc(moveleft(x)))
Bd(moveleft(Ca(x))) → Aa(Bd(moveleft(x)))
Bd(moveleft(Cb(x))) → Ab(Bd(moveleft(x)))
Bd(moveleft(Cc(x))) → Ac(Bd(moveleft(x)))
Bd(moveleft(Cd(x))) → Ad(Bd(moveleft(x)))
Bd(moveleft(Cf(x))) → Af(Bd(moveleft(x)))
Bd(moveleft(Cg(x))) → Ag(Bd(moveleft(x)))
Bf(moveleft(Ca(x))) → Aa(Bf(moveleft(x)))
Bf(moveleft(Cb(x))) → Ab(Bf(moveleft(x)))
Bf(moveleft(Cc(x))) → Ac(Bf(moveleft(x)))
Bf(moveleft(Cd(x))) → Ad(Bf(moveleft(x)))
Bf(moveleft(Cf(x))) → Af(Bf(moveleft(x)))
Bf(moveleft(Cg(x))) → Ag(Bf(moveleft(x)))
Bg(moveleft(Ca(x))) → Aa(Bg(moveleft(x)))
Bg(moveleft(Cb(x))) → Ab(Bg(moveleft(x)))
Bg(moveleft(Cc(x))) → Ac(Bg(moveleft(x)))
Bg(moveleft(Cd(x))) → Ad(Bg(moveleft(x)))
Bg(moveleft(Cf(x))) → Af(Bg(moveleft(x)))
Bg(moveleft(Cg(x))) → Ag(Bg(moveleft(x)))
Ba(moveleft(cut(x))) → goright(cut(Da(x)))
Bb(moveleft(cut(x))) → goright(cut(Db(x)))
Bc(moveleft(cut(x))) → goright(cut(Dc(x)))
Bd(moveleft(cut(x))) → goright(cut(Dd(x)))
Bf(moveleft(cut(x))) → goright(cut(Df(x)))
Bg(moveleft(cut(x))) → goright(cut(Dg(x)))
Aa(goright(x)) → goright(Ca(x))
Ab(goright(x)) → goright(Cb(x))
Ac(goright(x)) → goright(Cc(x))
Ad(goright(x)) → goright(Cd(x))
Af(goright(x)) → goright(Cf(x))
Ag(goright(x)) → goright(Cg(x))
a(wait(goright(x))) → wait(Ba(moveleft(x)))
b(wait(goright(x))) → wait(Bb(moveleft(x)))
c(wait(goright(x))) → wait(Bc(moveleft(x)))
d(wait(goright(x))) → wait(Bd(moveleft(x)))
f(wait(goright(x))) → wait(Bf(moveleft(x)))
g(wait(goright(x))) → wait(Bg(moveleft(x)))
finish(Ca(x)) → a(finish(x))
finish(Cb(x)) → b(finish(x))
finish(Cc(x)) → c(finish(x))
finish(Cd(x)) → d(finish(x))
finish(Cf(x)) → f(finish(x))
finish(Cg(x)) → g(finish(x))
finish2(Da(x)) → a(finish2(x))
finish2(Db(x)) → b(finish2(x))
finish2(Dc(x)) → c(finish2(x))
finish2(Dd(x)) → d(finish2(x))
finish2(Df(x)) → f(finish2(x))
finish2(Dg(x)) → g(finish2(x))
The set Q consists of the following terms:
a(guess(x0))
b(guess(x0))
c(guess(x0))
d(guess(x0))
f(guess(x0))
g(guess(x0))
Ba(moveleft(Ca(x0)))
Ba(moveleft(Cb(x0)))
Ba(moveleft(Cc(x0)))
Ba(moveleft(Cd(x0)))
Ba(moveleft(Cf(x0)))
Ba(moveleft(Cg(x0)))
Bb(moveleft(Ca(x0)))
Bb(moveleft(Cb(x0)))
Bb(moveleft(Cc(x0)))
Bb(moveleft(Cd(x0)))
Bb(moveleft(Cf(x0)))
Bb(moveleft(Cg(x0)))
Bc(moveleft(Ca(x0)))
Bc(moveleft(Cb(x0)))
Bc(moveleft(Cc(x0)))
Bc(moveleft(Cd(x0)))
Bc(moveleft(Cf(x0)))
Bc(moveleft(Cg(x0)))
Bd(moveleft(Ca(x0)))
Bd(moveleft(Cb(x0)))
Bd(moveleft(Cc(x0)))
Bd(moveleft(Cd(x0)))
Bd(moveleft(Cf(x0)))
Bd(moveleft(Cg(x0)))
Bf(moveleft(Ca(x0)))
Bf(moveleft(Cb(x0)))
Bf(moveleft(Cc(x0)))
Bf(moveleft(Cd(x0)))
Bf(moveleft(Cf(x0)))
Bf(moveleft(Cg(x0)))
Bg(moveleft(Ca(x0)))
Bg(moveleft(Cb(x0)))
Bg(moveleft(Cc(x0)))
Bg(moveleft(Cd(x0)))
Bg(moveleft(Cf(x0)))
Bg(moveleft(Cg(x0)))
Ba(moveleft(cut(x0)))
Bb(moveleft(cut(x0)))
Bc(moveleft(cut(x0)))
Bd(moveleft(cut(x0)))
Bf(moveleft(cut(x0)))
Bg(moveleft(cut(x0)))
Aa(goright(x0))
Ab(goright(x0))
Ac(goright(x0))
Ad(goright(x0))
Af(goright(x0))
Ag(goright(x0))
a(wait(goright(x0)))
b(wait(goright(x0)))
c(wait(goright(x0)))
d(wait(goright(x0)))
f(wait(goright(x0)))
g(wait(goright(x0)))
finish(Ca(x0))
finish(Cb(x0))
finish(Cc(x0))
finish(Cd(x0))
finish(Cf(x0))
finish(Cg(x0))
finish2(Da(x0))
finish2(Db(x0))
finish2(Dc(x0))
finish2(Dd(x0))
finish2(Df(x0))
finish2(Dg(x0))
We have to consider all minimal (P,Q,R)-chains.
(47) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(48) Obligation:
Q DP problem:
The TRS P consists of the following rules:
BC(moveleft(Cb(x))) → BC(moveleft(x))
BC(moveleft(Ca(x))) → BC(moveleft(x))
BC(moveleft(Cc(x))) → BC(moveleft(x))
BC(moveleft(Cd(x))) → BC(moveleft(x))
BC(moveleft(Cf(x))) → BC(moveleft(x))
BC(moveleft(Cg(x))) → BC(moveleft(x))
R is empty.
The set Q consists of the following terms:
a(guess(x0))
b(guess(x0))
c(guess(x0))
d(guess(x0))
f(guess(x0))
g(guess(x0))
Ba(moveleft(Ca(x0)))
Ba(moveleft(Cb(x0)))
Ba(moveleft(Cc(x0)))
Ba(moveleft(Cd(x0)))
Ba(moveleft(Cf(x0)))
Ba(moveleft(Cg(x0)))
Bb(moveleft(Ca(x0)))
Bb(moveleft(Cb(x0)))
Bb(moveleft(Cc(x0)))
Bb(moveleft(Cd(x0)))
Bb(moveleft(Cf(x0)))
Bb(moveleft(Cg(x0)))
Bc(moveleft(Ca(x0)))
Bc(moveleft(Cb(x0)))
Bc(moveleft(Cc(x0)))
Bc(moveleft(Cd(x0)))
Bc(moveleft(Cf(x0)))
Bc(moveleft(Cg(x0)))
Bd(moveleft(Ca(x0)))
Bd(moveleft(Cb(x0)))
Bd(moveleft(Cc(x0)))
Bd(moveleft(Cd(x0)))
Bd(moveleft(Cf(x0)))
Bd(moveleft(Cg(x0)))
Bf(moveleft(Ca(x0)))
Bf(moveleft(Cb(x0)))
Bf(moveleft(Cc(x0)))
Bf(moveleft(Cd(x0)))
Bf(moveleft(Cf(x0)))
Bf(moveleft(Cg(x0)))
Bg(moveleft(Ca(x0)))
Bg(moveleft(Cb(x0)))
Bg(moveleft(Cc(x0)))
Bg(moveleft(Cd(x0)))
Bg(moveleft(Cf(x0)))
Bg(moveleft(Cg(x0)))
Ba(moveleft(cut(x0)))
Bb(moveleft(cut(x0)))
Bc(moveleft(cut(x0)))
Bd(moveleft(cut(x0)))
Bf(moveleft(cut(x0)))
Bg(moveleft(cut(x0)))
Aa(goright(x0))
Ab(goright(x0))
Ac(goright(x0))
Ad(goright(x0))
Af(goright(x0))
Ag(goright(x0))
a(wait(goright(x0)))
b(wait(goright(x0)))
c(wait(goright(x0)))
d(wait(goright(x0)))
f(wait(goright(x0)))
g(wait(goright(x0)))
finish(Ca(x0))
finish(Cb(x0))
finish(Cc(x0))
finish(Cd(x0))
finish(Cf(x0))
finish(Cg(x0))
finish2(Da(x0))
finish2(Db(x0))
finish2(Dc(x0))
finish2(Dd(x0))
finish2(Df(x0))
finish2(Dg(x0))
We have to consider all minimal (P,Q,R)-chains.
(49) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
a(guess(x0))
b(guess(x0))
c(guess(x0))
d(guess(x0))
f(guess(x0))
g(guess(x0))
Ba(moveleft(Ca(x0)))
Ba(moveleft(Cb(x0)))
Ba(moveleft(Cc(x0)))
Ba(moveleft(Cd(x0)))
Ba(moveleft(Cf(x0)))
Ba(moveleft(Cg(x0)))
Bb(moveleft(Ca(x0)))
Bb(moveleft(Cb(x0)))
Bb(moveleft(Cc(x0)))
Bb(moveleft(Cd(x0)))
Bb(moveleft(Cf(x0)))
Bb(moveleft(Cg(x0)))
Bc(moveleft(Ca(x0)))
Bc(moveleft(Cb(x0)))
Bc(moveleft(Cc(x0)))
Bc(moveleft(Cd(x0)))
Bc(moveleft(Cf(x0)))
Bc(moveleft(Cg(x0)))
Bd(moveleft(Ca(x0)))
Bd(moveleft(Cb(x0)))
Bd(moveleft(Cc(x0)))
Bd(moveleft(Cd(x0)))
Bd(moveleft(Cf(x0)))
Bd(moveleft(Cg(x0)))
Bf(moveleft(Ca(x0)))
Bf(moveleft(Cb(x0)))
Bf(moveleft(Cc(x0)))
Bf(moveleft(Cd(x0)))
Bf(moveleft(Cf(x0)))
Bf(moveleft(Cg(x0)))
Bg(moveleft(Ca(x0)))
Bg(moveleft(Cb(x0)))
Bg(moveleft(Cc(x0)))
Bg(moveleft(Cd(x0)))
Bg(moveleft(Cf(x0)))
Bg(moveleft(Cg(x0)))
Ba(moveleft(cut(x0)))
Bb(moveleft(cut(x0)))
Bc(moveleft(cut(x0)))
Bd(moveleft(cut(x0)))
Bf(moveleft(cut(x0)))
Bg(moveleft(cut(x0)))
Aa(goright(x0))
Ab(goright(x0))
Ac(goright(x0))
Ad(goright(x0))
Af(goright(x0))
Ag(goright(x0))
a(wait(goright(x0)))
b(wait(goright(x0)))
c(wait(goright(x0)))
d(wait(goright(x0)))
f(wait(goright(x0)))
g(wait(goright(x0)))
finish(Ca(x0))
finish(Cb(x0))
finish(Cc(x0))
finish(Cd(x0))
finish(Cf(x0))
finish(Cg(x0))
finish2(Da(x0))
finish2(Db(x0))
finish2(Dc(x0))
finish2(Dd(x0))
finish2(Df(x0))
finish2(Dg(x0))
(50) Obligation:
Q DP problem:
The TRS P consists of the following rules:
BC(moveleft(Cb(x))) → BC(moveleft(x))
BC(moveleft(Ca(x))) → BC(moveleft(x))
BC(moveleft(Cc(x))) → BC(moveleft(x))
BC(moveleft(Cd(x))) → BC(moveleft(x))
BC(moveleft(Cf(x))) → BC(moveleft(x))
BC(moveleft(Cg(x))) → BC(moveleft(x))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(51) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
BC(moveleft(Cb(x))) → BC(moveleft(x))
Used ordering: Polynomial interpretation [POLO]:
POL(BC(x1)) = 2·x1
POL(Ca(x1)) = 2·x1
POL(Cb(x1)) = 1 + x1
POL(Cc(x1)) = x1
POL(Cd(x1)) = 2·x1
POL(Cf(x1)) = x1
POL(Cg(x1)) = x1
POL(moveleft(x1)) = x1
(52) Obligation:
Q DP problem:
The TRS P consists of the following rules:
BC(moveleft(Ca(x))) → BC(moveleft(x))
BC(moveleft(Cc(x))) → BC(moveleft(x))
BC(moveleft(Cd(x))) → BC(moveleft(x))
BC(moveleft(Cf(x))) → BC(moveleft(x))
BC(moveleft(Cg(x))) → BC(moveleft(x))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(53) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
BC(moveleft(Cg(x))) → BC(moveleft(x))
Used ordering: Polynomial interpretation [POLO]:
POL(BC(x1)) = 2·x1
POL(Ca(x1)) = x1
POL(Cc(x1)) = 2·x1
POL(Cd(x1)) = 2·x1
POL(Cf(x1)) = x1
POL(Cg(x1)) = 1 + 2·x1
POL(moveleft(x1)) = x1
(54) Obligation:
Q DP problem:
The TRS P consists of the following rules:
BC(moveleft(Ca(x))) → BC(moveleft(x))
BC(moveleft(Cc(x))) → BC(moveleft(x))
BC(moveleft(Cd(x))) → BC(moveleft(x))
BC(moveleft(Cf(x))) → BC(moveleft(x))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(55) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
BC(moveleft(Ca(x))) → BC(moveleft(x))
BC(moveleft(Cc(x))) → BC(moveleft(x))
BC(moveleft(Cd(x))) → BC(moveleft(x))
BC(moveleft(Cf(x))) → BC(moveleft(x))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( BC(x1) ) = max{0, 2x1 - 1} |
POL( moveleft(x1) ) = 2x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
none
(56) Obligation:
Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(57) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(58) YES
(59) Obligation:
Q DP problem:
The TRS P consists of the following rules:
BB(moveleft(Cb(x))) → BB(moveleft(x))
BB(moveleft(Ca(x))) → BB(moveleft(x))
BB(moveleft(Cc(x))) → BB(moveleft(x))
BB(moveleft(Cd(x))) → BB(moveleft(x))
BB(moveleft(Cf(x))) → BB(moveleft(x))
BB(moveleft(Cg(x))) → BB(moveleft(x))
The TRS R consists of the following rules:
a(guess(x)) → guess(Ca(x))
b(guess(x)) → guess(Cb(x))
c(guess(x)) → guess(Cc(x))
d(guess(x)) → guess(Cd(x))
f(guess(x)) → guess(Cf(x))
g(guess(x)) → guess(Cg(x))
Ba(moveleft(Ca(x))) → Aa(Ba(moveleft(x)))
Ba(moveleft(Cb(x))) → Ab(Ba(moveleft(x)))
Ba(moveleft(Cc(x))) → Ac(Ba(moveleft(x)))
Ba(moveleft(Cd(x))) → Ad(Ba(moveleft(x)))
Ba(moveleft(Cf(x))) → Af(Ba(moveleft(x)))
Ba(moveleft(Cg(x))) → Ag(Ba(moveleft(x)))
Bb(moveleft(Ca(x))) → Aa(Bb(moveleft(x)))
Bb(moveleft(Cb(x))) → Ab(Bb(moveleft(x)))
Bb(moveleft(Cc(x))) → Ac(Bb(moveleft(x)))
Bb(moveleft(Cd(x))) → Ad(Bb(moveleft(x)))
Bb(moveleft(Cf(x))) → Af(Bb(moveleft(x)))
Bb(moveleft(Cg(x))) → Ag(Bb(moveleft(x)))
Bc(moveleft(Ca(x))) → Aa(Bc(moveleft(x)))
Bc(moveleft(Cb(x))) → Ab(Bc(moveleft(x)))
Bc(moveleft(Cc(x))) → Ac(Bc(moveleft(x)))
Bc(moveleft(Cd(x))) → Ad(Bc(moveleft(x)))
Bc(moveleft(Cf(x))) → Af(Bc(moveleft(x)))
Bc(moveleft(Cg(x))) → Ag(Bc(moveleft(x)))
Bd(moveleft(Ca(x))) → Aa(Bd(moveleft(x)))
Bd(moveleft(Cb(x))) → Ab(Bd(moveleft(x)))
Bd(moveleft(Cc(x))) → Ac(Bd(moveleft(x)))
Bd(moveleft(Cd(x))) → Ad(Bd(moveleft(x)))
Bd(moveleft(Cf(x))) → Af(Bd(moveleft(x)))
Bd(moveleft(Cg(x))) → Ag(Bd(moveleft(x)))
Bf(moveleft(Ca(x))) → Aa(Bf(moveleft(x)))
Bf(moveleft(Cb(x))) → Ab(Bf(moveleft(x)))
Bf(moveleft(Cc(x))) → Ac(Bf(moveleft(x)))
Bf(moveleft(Cd(x))) → Ad(Bf(moveleft(x)))
Bf(moveleft(Cf(x))) → Af(Bf(moveleft(x)))
Bf(moveleft(Cg(x))) → Ag(Bf(moveleft(x)))
Bg(moveleft(Ca(x))) → Aa(Bg(moveleft(x)))
Bg(moveleft(Cb(x))) → Ab(Bg(moveleft(x)))
Bg(moveleft(Cc(x))) → Ac(Bg(moveleft(x)))
Bg(moveleft(Cd(x))) → Ad(Bg(moveleft(x)))
Bg(moveleft(Cf(x))) → Af(Bg(moveleft(x)))
Bg(moveleft(Cg(x))) → Ag(Bg(moveleft(x)))
Ba(moveleft(cut(x))) → goright(cut(Da(x)))
Bb(moveleft(cut(x))) → goright(cut(Db(x)))
Bc(moveleft(cut(x))) → goright(cut(Dc(x)))
Bd(moveleft(cut(x))) → goright(cut(Dd(x)))
Bf(moveleft(cut(x))) → goright(cut(Df(x)))
Bg(moveleft(cut(x))) → goright(cut(Dg(x)))
Aa(goright(x)) → goright(Ca(x))
Ab(goright(x)) → goright(Cb(x))
Ac(goright(x)) → goright(Cc(x))
Ad(goright(x)) → goright(Cd(x))
Af(goright(x)) → goright(Cf(x))
Ag(goright(x)) → goright(Cg(x))
a(wait(goright(x))) → wait(Ba(moveleft(x)))
b(wait(goright(x))) → wait(Bb(moveleft(x)))
c(wait(goright(x))) → wait(Bc(moveleft(x)))
d(wait(goright(x))) → wait(Bd(moveleft(x)))
f(wait(goright(x))) → wait(Bf(moveleft(x)))
g(wait(goright(x))) → wait(Bg(moveleft(x)))
finish(Ca(x)) → a(finish(x))
finish(Cb(x)) → b(finish(x))
finish(Cc(x)) → c(finish(x))
finish(Cd(x)) → d(finish(x))
finish(Cf(x)) → f(finish(x))
finish(Cg(x)) → g(finish(x))
finish2(Da(x)) → a(finish2(x))
finish2(Db(x)) → b(finish2(x))
finish2(Dc(x)) → c(finish2(x))
finish2(Dd(x)) → d(finish2(x))
finish2(Df(x)) → f(finish2(x))
finish2(Dg(x)) → g(finish2(x))
The set Q consists of the following terms:
a(guess(x0))
b(guess(x0))
c(guess(x0))
d(guess(x0))
f(guess(x0))
g(guess(x0))
Ba(moveleft(Ca(x0)))
Ba(moveleft(Cb(x0)))
Ba(moveleft(Cc(x0)))
Ba(moveleft(Cd(x0)))
Ba(moveleft(Cf(x0)))
Ba(moveleft(Cg(x0)))
Bb(moveleft(Ca(x0)))
Bb(moveleft(Cb(x0)))
Bb(moveleft(Cc(x0)))
Bb(moveleft(Cd(x0)))
Bb(moveleft(Cf(x0)))
Bb(moveleft(Cg(x0)))
Bc(moveleft(Ca(x0)))
Bc(moveleft(Cb(x0)))
Bc(moveleft(Cc(x0)))
Bc(moveleft(Cd(x0)))
Bc(moveleft(Cf(x0)))
Bc(moveleft(Cg(x0)))
Bd(moveleft(Ca(x0)))
Bd(moveleft(Cb(x0)))
Bd(moveleft(Cc(x0)))
Bd(moveleft(Cd(x0)))
Bd(moveleft(Cf(x0)))
Bd(moveleft(Cg(x0)))
Bf(moveleft(Ca(x0)))
Bf(moveleft(Cb(x0)))
Bf(moveleft(Cc(x0)))
Bf(moveleft(Cd(x0)))
Bf(moveleft(Cf(x0)))
Bf(moveleft(Cg(x0)))
Bg(moveleft(Ca(x0)))
Bg(moveleft(Cb(x0)))
Bg(moveleft(Cc(x0)))
Bg(moveleft(Cd(x0)))
Bg(moveleft(Cf(x0)))
Bg(moveleft(Cg(x0)))
Ba(moveleft(cut(x0)))
Bb(moveleft(cut(x0)))
Bc(moveleft(cut(x0)))
Bd(moveleft(cut(x0)))
Bf(moveleft(cut(x0)))
Bg(moveleft(cut(x0)))
Aa(goright(x0))
Ab(goright(x0))
Ac(goright(x0))
Ad(goright(x0))
Af(goright(x0))
Ag(goright(x0))
a(wait(goright(x0)))
b(wait(goright(x0)))
c(wait(goright(x0)))
d(wait(goright(x0)))
f(wait(goright(x0)))
g(wait(goright(x0)))
finish(Ca(x0))
finish(Cb(x0))
finish(Cc(x0))
finish(Cd(x0))
finish(Cf(x0))
finish(Cg(x0))
finish2(Da(x0))
finish2(Db(x0))
finish2(Dc(x0))
finish2(Dd(x0))
finish2(Df(x0))
finish2(Dg(x0))
We have to consider all minimal (P,Q,R)-chains.
(60) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(61) Obligation:
Q DP problem:
The TRS P consists of the following rules:
BB(moveleft(Cb(x))) → BB(moveleft(x))
BB(moveleft(Ca(x))) → BB(moveleft(x))
BB(moveleft(Cc(x))) → BB(moveleft(x))
BB(moveleft(Cd(x))) → BB(moveleft(x))
BB(moveleft(Cf(x))) → BB(moveleft(x))
BB(moveleft(Cg(x))) → BB(moveleft(x))
R is empty.
The set Q consists of the following terms:
a(guess(x0))
b(guess(x0))
c(guess(x0))
d(guess(x0))
f(guess(x0))
g(guess(x0))
Ba(moveleft(Ca(x0)))
Ba(moveleft(Cb(x0)))
Ba(moveleft(Cc(x0)))
Ba(moveleft(Cd(x0)))
Ba(moveleft(Cf(x0)))
Ba(moveleft(Cg(x0)))
Bb(moveleft(Ca(x0)))
Bb(moveleft(Cb(x0)))
Bb(moveleft(Cc(x0)))
Bb(moveleft(Cd(x0)))
Bb(moveleft(Cf(x0)))
Bb(moveleft(Cg(x0)))
Bc(moveleft(Ca(x0)))
Bc(moveleft(Cb(x0)))
Bc(moveleft(Cc(x0)))
Bc(moveleft(Cd(x0)))
Bc(moveleft(Cf(x0)))
Bc(moveleft(Cg(x0)))
Bd(moveleft(Ca(x0)))
Bd(moveleft(Cb(x0)))
Bd(moveleft(Cc(x0)))
Bd(moveleft(Cd(x0)))
Bd(moveleft(Cf(x0)))
Bd(moveleft(Cg(x0)))
Bf(moveleft(Ca(x0)))
Bf(moveleft(Cb(x0)))
Bf(moveleft(Cc(x0)))
Bf(moveleft(Cd(x0)))
Bf(moveleft(Cf(x0)))
Bf(moveleft(Cg(x0)))
Bg(moveleft(Ca(x0)))
Bg(moveleft(Cb(x0)))
Bg(moveleft(Cc(x0)))
Bg(moveleft(Cd(x0)))
Bg(moveleft(Cf(x0)))
Bg(moveleft(Cg(x0)))
Ba(moveleft(cut(x0)))
Bb(moveleft(cut(x0)))
Bc(moveleft(cut(x0)))
Bd(moveleft(cut(x0)))
Bf(moveleft(cut(x0)))
Bg(moveleft(cut(x0)))
Aa(goright(x0))
Ab(goright(x0))
Ac(goright(x0))
Ad(goright(x0))
Af(goright(x0))
Ag(goright(x0))
a(wait(goright(x0)))
b(wait(goright(x0)))
c(wait(goright(x0)))
d(wait(goright(x0)))
f(wait(goright(x0)))
g(wait(goright(x0)))
finish(Ca(x0))
finish(Cb(x0))
finish(Cc(x0))
finish(Cd(x0))
finish(Cf(x0))
finish(Cg(x0))
finish2(Da(x0))
finish2(Db(x0))
finish2(Dc(x0))
finish2(Dd(x0))
finish2(Df(x0))
finish2(Dg(x0))
We have to consider all minimal (P,Q,R)-chains.
(62) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
a(guess(x0))
b(guess(x0))
c(guess(x0))
d(guess(x0))
f(guess(x0))
g(guess(x0))
Ba(moveleft(Ca(x0)))
Ba(moveleft(Cb(x0)))
Ba(moveleft(Cc(x0)))
Ba(moveleft(Cd(x0)))
Ba(moveleft(Cf(x0)))
Ba(moveleft(Cg(x0)))
Bb(moveleft(Ca(x0)))
Bb(moveleft(Cb(x0)))
Bb(moveleft(Cc(x0)))
Bb(moveleft(Cd(x0)))
Bb(moveleft(Cf(x0)))
Bb(moveleft(Cg(x0)))
Bc(moveleft(Ca(x0)))
Bc(moveleft(Cb(x0)))
Bc(moveleft(Cc(x0)))
Bc(moveleft(Cd(x0)))
Bc(moveleft(Cf(x0)))
Bc(moveleft(Cg(x0)))
Bd(moveleft(Ca(x0)))
Bd(moveleft(Cb(x0)))
Bd(moveleft(Cc(x0)))
Bd(moveleft(Cd(x0)))
Bd(moveleft(Cf(x0)))
Bd(moveleft(Cg(x0)))
Bf(moveleft(Ca(x0)))
Bf(moveleft(Cb(x0)))
Bf(moveleft(Cc(x0)))
Bf(moveleft(Cd(x0)))
Bf(moveleft(Cf(x0)))
Bf(moveleft(Cg(x0)))
Bg(moveleft(Ca(x0)))
Bg(moveleft(Cb(x0)))
Bg(moveleft(Cc(x0)))
Bg(moveleft(Cd(x0)))
Bg(moveleft(Cf(x0)))
Bg(moveleft(Cg(x0)))
Ba(moveleft(cut(x0)))
Bb(moveleft(cut(x0)))
Bc(moveleft(cut(x0)))
Bd(moveleft(cut(x0)))
Bf(moveleft(cut(x0)))
Bg(moveleft(cut(x0)))
Aa(goright(x0))
Ab(goright(x0))
Ac(goright(x0))
Ad(goright(x0))
Af(goright(x0))
Ag(goright(x0))
a(wait(goright(x0)))
b(wait(goright(x0)))
c(wait(goright(x0)))
d(wait(goright(x0)))
f(wait(goright(x0)))
g(wait(goright(x0)))
finish(Ca(x0))
finish(Cb(x0))
finish(Cc(x0))
finish(Cd(x0))
finish(Cf(x0))
finish(Cg(x0))
finish2(Da(x0))
finish2(Db(x0))
finish2(Dc(x0))
finish2(Dd(x0))
finish2(Df(x0))
finish2(Dg(x0))
(63) Obligation:
Q DP problem:
The TRS P consists of the following rules:
BB(moveleft(Cb(x))) → BB(moveleft(x))
BB(moveleft(Ca(x))) → BB(moveleft(x))
BB(moveleft(Cc(x))) → BB(moveleft(x))
BB(moveleft(Cd(x))) → BB(moveleft(x))
BB(moveleft(Cf(x))) → BB(moveleft(x))
BB(moveleft(Cg(x))) → BB(moveleft(x))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(64) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
BB(moveleft(Cb(x))) → BB(moveleft(x))
Used ordering: Polynomial interpretation [POLO]:
POL(BB(x1)) = 2·x1
POL(Ca(x1)) = 2·x1
POL(Cb(x1)) = 1 + x1
POL(Cc(x1)) = x1
POL(Cd(x1)) = 2·x1
POL(Cf(x1)) = x1
POL(Cg(x1)) = x1
POL(moveleft(x1)) = x1
(65) Obligation:
Q DP problem:
The TRS P consists of the following rules:
BB(moveleft(Ca(x))) → BB(moveleft(x))
BB(moveleft(Cc(x))) → BB(moveleft(x))
BB(moveleft(Cd(x))) → BB(moveleft(x))
BB(moveleft(Cf(x))) → BB(moveleft(x))
BB(moveleft(Cg(x))) → BB(moveleft(x))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(66) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
BB(moveleft(Cg(x))) → BB(moveleft(x))
Used ordering: Polynomial interpretation [POLO]:
POL(BB(x1)) = 2·x1
POL(Ca(x1)) = x1
POL(Cc(x1)) = 2·x1
POL(Cd(x1)) = 2·x1
POL(Cf(x1)) = x1
POL(Cg(x1)) = 1 + 2·x1
POL(moveleft(x1)) = x1
(67) Obligation:
Q DP problem:
The TRS P consists of the following rules:
BB(moveleft(Ca(x))) → BB(moveleft(x))
BB(moveleft(Cc(x))) → BB(moveleft(x))
BB(moveleft(Cd(x))) → BB(moveleft(x))
BB(moveleft(Cf(x))) → BB(moveleft(x))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(68) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
BB(moveleft(Ca(x))) → BB(moveleft(x))
BB(moveleft(Cc(x))) → BB(moveleft(x))
BB(moveleft(Cd(x))) → BB(moveleft(x))
BB(moveleft(Cf(x))) → BB(moveleft(x))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( BB(x1) ) = max{0, 2x1 - 1} |
POL( moveleft(x1) ) = 2x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
none
(69) Obligation:
Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(70) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(71) YES
(72) Obligation:
Q DP problem:
The TRS P consists of the following rules:
BA(moveleft(Cb(x))) → BA(moveleft(x))
BA(moveleft(Ca(x))) → BA(moveleft(x))
BA(moveleft(Cc(x))) → BA(moveleft(x))
BA(moveleft(Cd(x))) → BA(moveleft(x))
BA(moveleft(Cf(x))) → BA(moveleft(x))
BA(moveleft(Cg(x))) → BA(moveleft(x))
The TRS R consists of the following rules:
a(guess(x)) → guess(Ca(x))
b(guess(x)) → guess(Cb(x))
c(guess(x)) → guess(Cc(x))
d(guess(x)) → guess(Cd(x))
f(guess(x)) → guess(Cf(x))
g(guess(x)) → guess(Cg(x))
Ba(moveleft(Ca(x))) → Aa(Ba(moveleft(x)))
Ba(moveleft(Cb(x))) → Ab(Ba(moveleft(x)))
Ba(moveleft(Cc(x))) → Ac(Ba(moveleft(x)))
Ba(moveleft(Cd(x))) → Ad(Ba(moveleft(x)))
Ba(moveleft(Cf(x))) → Af(Ba(moveleft(x)))
Ba(moveleft(Cg(x))) → Ag(Ba(moveleft(x)))
Bb(moveleft(Ca(x))) → Aa(Bb(moveleft(x)))
Bb(moveleft(Cb(x))) → Ab(Bb(moveleft(x)))
Bb(moveleft(Cc(x))) → Ac(Bb(moveleft(x)))
Bb(moveleft(Cd(x))) → Ad(Bb(moveleft(x)))
Bb(moveleft(Cf(x))) → Af(Bb(moveleft(x)))
Bb(moveleft(Cg(x))) → Ag(Bb(moveleft(x)))
Bc(moveleft(Ca(x))) → Aa(Bc(moveleft(x)))
Bc(moveleft(Cb(x))) → Ab(Bc(moveleft(x)))
Bc(moveleft(Cc(x))) → Ac(Bc(moveleft(x)))
Bc(moveleft(Cd(x))) → Ad(Bc(moveleft(x)))
Bc(moveleft(Cf(x))) → Af(Bc(moveleft(x)))
Bc(moveleft(Cg(x))) → Ag(Bc(moveleft(x)))
Bd(moveleft(Ca(x))) → Aa(Bd(moveleft(x)))
Bd(moveleft(Cb(x))) → Ab(Bd(moveleft(x)))
Bd(moveleft(Cc(x))) → Ac(Bd(moveleft(x)))
Bd(moveleft(Cd(x))) → Ad(Bd(moveleft(x)))
Bd(moveleft(Cf(x))) → Af(Bd(moveleft(x)))
Bd(moveleft(Cg(x))) → Ag(Bd(moveleft(x)))
Bf(moveleft(Ca(x))) → Aa(Bf(moveleft(x)))
Bf(moveleft(Cb(x))) → Ab(Bf(moveleft(x)))
Bf(moveleft(Cc(x))) → Ac(Bf(moveleft(x)))
Bf(moveleft(Cd(x))) → Ad(Bf(moveleft(x)))
Bf(moveleft(Cf(x))) → Af(Bf(moveleft(x)))
Bf(moveleft(Cg(x))) → Ag(Bf(moveleft(x)))
Bg(moveleft(Ca(x))) → Aa(Bg(moveleft(x)))
Bg(moveleft(Cb(x))) → Ab(Bg(moveleft(x)))
Bg(moveleft(Cc(x))) → Ac(Bg(moveleft(x)))
Bg(moveleft(Cd(x))) → Ad(Bg(moveleft(x)))
Bg(moveleft(Cf(x))) → Af(Bg(moveleft(x)))
Bg(moveleft(Cg(x))) → Ag(Bg(moveleft(x)))
Ba(moveleft(cut(x))) → goright(cut(Da(x)))
Bb(moveleft(cut(x))) → goright(cut(Db(x)))
Bc(moveleft(cut(x))) → goright(cut(Dc(x)))
Bd(moveleft(cut(x))) → goright(cut(Dd(x)))
Bf(moveleft(cut(x))) → goright(cut(Df(x)))
Bg(moveleft(cut(x))) → goright(cut(Dg(x)))
Aa(goright(x)) → goright(Ca(x))
Ab(goright(x)) → goright(Cb(x))
Ac(goright(x)) → goright(Cc(x))
Ad(goright(x)) → goright(Cd(x))
Af(goright(x)) → goright(Cf(x))
Ag(goright(x)) → goright(Cg(x))
a(wait(goright(x))) → wait(Ba(moveleft(x)))
b(wait(goright(x))) → wait(Bb(moveleft(x)))
c(wait(goright(x))) → wait(Bc(moveleft(x)))
d(wait(goright(x))) → wait(Bd(moveleft(x)))
f(wait(goright(x))) → wait(Bf(moveleft(x)))
g(wait(goright(x))) → wait(Bg(moveleft(x)))
finish(Ca(x)) → a(finish(x))
finish(Cb(x)) → b(finish(x))
finish(Cc(x)) → c(finish(x))
finish(Cd(x)) → d(finish(x))
finish(Cf(x)) → f(finish(x))
finish(Cg(x)) → g(finish(x))
finish2(Da(x)) → a(finish2(x))
finish2(Db(x)) → b(finish2(x))
finish2(Dc(x)) → c(finish2(x))
finish2(Dd(x)) → d(finish2(x))
finish2(Df(x)) → f(finish2(x))
finish2(Dg(x)) → g(finish2(x))
The set Q consists of the following terms:
a(guess(x0))
b(guess(x0))
c(guess(x0))
d(guess(x0))
f(guess(x0))
g(guess(x0))
Ba(moveleft(Ca(x0)))
Ba(moveleft(Cb(x0)))
Ba(moveleft(Cc(x0)))
Ba(moveleft(Cd(x0)))
Ba(moveleft(Cf(x0)))
Ba(moveleft(Cg(x0)))
Bb(moveleft(Ca(x0)))
Bb(moveleft(Cb(x0)))
Bb(moveleft(Cc(x0)))
Bb(moveleft(Cd(x0)))
Bb(moveleft(Cf(x0)))
Bb(moveleft(Cg(x0)))
Bc(moveleft(Ca(x0)))
Bc(moveleft(Cb(x0)))
Bc(moveleft(Cc(x0)))
Bc(moveleft(Cd(x0)))
Bc(moveleft(Cf(x0)))
Bc(moveleft(Cg(x0)))
Bd(moveleft(Ca(x0)))
Bd(moveleft(Cb(x0)))
Bd(moveleft(Cc(x0)))
Bd(moveleft(Cd(x0)))
Bd(moveleft(Cf(x0)))
Bd(moveleft(Cg(x0)))
Bf(moveleft(Ca(x0)))
Bf(moveleft(Cb(x0)))
Bf(moveleft(Cc(x0)))
Bf(moveleft(Cd(x0)))
Bf(moveleft(Cf(x0)))
Bf(moveleft(Cg(x0)))
Bg(moveleft(Ca(x0)))
Bg(moveleft(Cb(x0)))
Bg(moveleft(Cc(x0)))
Bg(moveleft(Cd(x0)))
Bg(moveleft(Cf(x0)))
Bg(moveleft(Cg(x0)))
Ba(moveleft(cut(x0)))
Bb(moveleft(cut(x0)))
Bc(moveleft(cut(x0)))
Bd(moveleft(cut(x0)))
Bf(moveleft(cut(x0)))
Bg(moveleft(cut(x0)))
Aa(goright(x0))
Ab(goright(x0))
Ac(goright(x0))
Ad(goright(x0))
Af(goright(x0))
Ag(goright(x0))
a(wait(goright(x0)))
b(wait(goright(x0)))
c(wait(goright(x0)))
d(wait(goright(x0)))
f(wait(goright(x0)))
g(wait(goright(x0)))
finish(Ca(x0))
finish(Cb(x0))
finish(Cc(x0))
finish(Cd(x0))
finish(Cf(x0))
finish(Cg(x0))
finish2(Da(x0))
finish2(Db(x0))
finish2(Dc(x0))
finish2(Dd(x0))
finish2(Df(x0))
finish2(Dg(x0))
We have to consider all minimal (P,Q,R)-chains.
(73) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(74) Obligation:
Q DP problem:
The TRS P consists of the following rules:
BA(moveleft(Cb(x))) → BA(moveleft(x))
BA(moveleft(Ca(x))) → BA(moveleft(x))
BA(moveleft(Cc(x))) → BA(moveleft(x))
BA(moveleft(Cd(x))) → BA(moveleft(x))
BA(moveleft(Cf(x))) → BA(moveleft(x))
BA(moveleft(Cg(x))) → BA(moveleft(x))
R is empty.
The set Q consists of the following terms:
a(guess(x0))
b(guess(x0))
c(guess(x0))
d(guess(x0))
f(guess(x0))
g(guess(x0))
Ba(moveleft(Ca(x0)))
Ba(moveleft(Cb(x0)))
Ba(moveleft(Cc(x0)))
Ba(moveleft(Cd(x0)))
Ba(moveleft(Cf(x0)))
Ba(moveleft(Cg(x0)))
Bb(moveleft(Ca(x0)))
Bb(moveleft(Cb(x0)))
Bb(moveleft(Cc(x0)))
Bb(moveleft(Cd(x0)))
Bb(moveleft(Cf(x0)))
Bb(moveleft(Cg(x0)))
Bc(moveleft(Ca(x0)))
Bc(moveleft(Cb(x0)))
Bc(moveleft(Cc(x0)))
Bc(moveleft(Cd(x0)))
Bc(moveleft(Cf(x0)))
Bc(moveleft(Cg(x0)))
Bd(moveleft(Ca(x0)))
Bd(moveleft(Cb(x0)))
Bd(moveleft(Cc(x0)))
Bd(moveleft(Cd(x0)))
Bd(moveleft(Cf(x0)))
Bd(moveleft(Cg(x0)))
Bf(moveleft(Ca(x0)))
Bf(moveleft(Cb(x0)))
Bf(moveleft(Cc(x0)))
Bf(moveleft(Cd(x0)))
Bf(moveleft(Cf(x0)))
Bf(moveleft(Cg(x0)))
Bg(moveleft(Ca(x0)))
Bg(moveleft(Cb(x0)))
Bg(moveleft(Cc(x0)))
Bg(moveleft(Cd(x0)))
Bg(moveleft(Cf(x0)))
Bg(moveleft(Cg(x0)))
Ba(moveleft(cut(x0)))
Bb(moveleft(cut(x0)))
Bc(moveleft(cut(x0)))
Bd(moveleft(cut(x0)))
Bf(moveleft(cut(x0)))
Bg(moveleft(cut(x0)))
Aa(goright(x0))
Ab(goright(x0))
Ac(goright(x0))
Ad(goright(x0))
Af(goright(x0))
Ag(goright(x0))
a(wait(goright(x0)))
b(wait(goright(x0)))
c(wait(goright(x0)))
d(wait(goright(x0)))
f(wait(goright(x0)))
g(wait(goright(x0)))
finish(Ca(x0))
finish(Cb(x0))
finish(Cc(x0))
finish(Cd(x0))
finish(Cf(x0))
finish(Cg(x0))
finish2(Da(x0))
finish2(Db(x0))
finish2(Dc(x0))
finish2(Dd(x0))
finish2(Df(x0))
finish2(Dg(x0))
We have to consider all minimal (P,Q,R)-chains.
(75) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
a(guess(x0))
b(guess(x0))
c(guess(x0))
d(guess(x0))
f(guess(x0))
g(guess(x0))
Ba(moveleft(Ca(x0)))
Ba(moveleft(Cb(x0)))
Ba(moveleft(Cc(x0)))
Ba(moveleft(Cd(x0)))
Ba(moveleft(Cf(x0)))
Ba(moveleft(Cg(x0)))
Bb(moveleft(Ca(x0)))
Bb(moveleft(Cb(x0)))
Bb(moveleft(Cc(x0)))
Bb(moveleft(Cd(x0)))
Bb(moveleft(Cf(x0)))
Bb(moveleft(Cg(x0)))
Bc(moveleft(Ca(x0)))
Bc(moveleft(Cb(x0)))
Bc(moveleft(Cc(x0)))
Bc(moveleft(Cd(x0)))
Bc(moveleft(Cf(x0)))
Bc(moveleft(Cg(x0)))
Bd(moveleft(Ca(x0)))
Bd(moveleft(Cb(x0)))
Bd(moveleft(Cc(x0)))
Bd(moveleft(Cd(x0)))
Bd(moveleft(Cf(x0)))
Bd(moveleft(Cg(x0)))
Bf(moveleft(Ca(x0)))
Bf(moveleft(Cb(x0)))
Bf(moveleft(Cc(x0)))
Bf(moveleft(Cd(x0)))
Bf(moveleft(Cf(x0)))
Bf(moveleft(Cg(x0)))
Bg(moveleft(Ca(x0)))
Bg(moveleft(Cb(x0)))
Bg(moveleft(Cc(x0)))
Bg(moveleft(Cd(x0)))
Bg(moveleft(Cf(x0)))
Bg(moveleft(Cg(x0)))
Ba(moveleft(cut(x0)))
Bb(moveleft(cut(x0)))
Bc(moveleft(cut(x0)))
Bd(moveleft(cut(x0)))
Bf(moveleft(cut(x0)))
Bg(moveleft(cut(x0)))
Aa(goright(x0))
Ab(goright(x0))
Ac(goright(x0))
Ad(goright(x0))
Af(goright(x0))
Ag(goright(x0))
a(wait(goright(x0)))
b(wait(goright(x0)))
c(wait(goright(x0)))
d(wait(goright(x0)))
f(wait(goright(x0)))
g(wait(goright(x0)))
finish(Ca(x0))
finish(Cb(x0))
finish(Cc(x0))
finish(Cd(x0))
finish(Cf(x0))
finish(Cg(x0))
finish2(Da(x0))
finish2(Db(x0))
finish2(Dc(x0))
finish2(Dd(x0))
finish2(Df(x0))
finish2(Dg(x0))
(76) Obligation:
Q DP problem:
The TRS P consists of the following rules:
BA(moveleft(Cb(x))) → BA(moveleft(x))
BA(moveleft(Ca(x))) → BA(moveleft(x))
BA(moveleft(Cc(x))) → BA(moveleft(x))
BA(moveleft(Cd(x))) → BA(moveleft(x))
BA(moveleft(Cf(x))) → BA(moveleft(x))
BA(moveleft(Cg(x))) → BA(moveleft(x))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(77) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
BA(moveleft(Cb(x))) → BA(moveleft(x))
Used ordering: Polynomial interpretation [POLO]:
POL(BA(x1)) = 2·x1
POL(Ca(x1)) = 2·x1
POL(Cb(x1)) = 1 + x1
POL(Cc(x1)) = x1
POL(Cd(x1)) = 2·x1
POL(Cf(x1)) = x1
POL(Cg(x1)) = x1
POL(moveleft(x1)) = x1
(78) Obligation:
Q DP problem:
The TRS P consists of the following rules:
BA(moveleft(Ca(x))) → BA(moveleft(x))
BA(moveleft(Cc(x))) → BA(moveleft(x))
BA(moveleft(Cd(x))) → BA(moveleft(x))
BA(moveleft(Cf(x))) → BA(moveleft(x))
BA(moveleft(Cg(x))) → BA(moveleft(x))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(79) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
BA(moveleft(Cg(x))) → BA(moveleft(x))
Used ordering: Polynomial interpretation [POLO]:
POL(BA(x1)) = 2·x1
POL(Ca(x1)) = x1
POL(Cc(x1)) = 2·x1
POL(Cd(x1)) = 2·x1
POL(Cf(x1)) = x1
POL(Cg(x1)) = 1 + 2·x1
POL(moveleft(x1)) = x1
(80) Obligation:
Q DP problem:
The TRS P consists of the following rules:
BA(moveleft(Ca(x))) → BA(moveleft(x))
BA(moveleft(Cc(x))) → BA(moveleft(x))
BA(moveleft(Cd(x))) → BA(moveleft(x))
BA(moveleft(Cf(x))) → BA(moveleft(x))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(81) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
BA(moveleft(Ca(x))) → BA(moveleft(x))
Used ordering: Polynomial interpretation [POLO]:
POL(BA(x1)) = 2·x1
POL(Ca(x1)) = 1 + x1
POL(Cc(x1)) = 2·x1
POL(Cd(x1)) = 2·x1
POL(Cf(x1)) = 2·x1
POL(moveleft(x1)) = 2·x1
(82) Obligation:
Q DP problem:
The TRS P consists of the following rules:
BA(moveleft(Cc(x))) → BA(moveleft(x))
BA(moveleft(Cd(x))) → BA(moveleft(x))
BA(moveleft(Cf(x))) → BA(moveleft(x))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(83) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
BA(moveleft(Cc(x))) → BA(moveleft(x))
Used ordering: Polynomial interpretation [POLO]:
POL(BA(x1)) = 2·x1
POL(Cc(x1)) = 1 + x1
POL(Cd(x1)) = 2·x1
POL(Cf(x1)) = 2·x1
POL(moveleft(x1)) = x1
(84) Obligation:
Q DP problem:
The TRS P consists of the following rules:
BA(moveleft(Cd(x))) → BA(moveleft(x))
BA(moveleft(Cf(x))) → BA(moveleft(x))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(85) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
BA(moveleft(Cf(x))) → BA(moveleft(x))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:
POL(BA(x1)) = 4·x1
POL(Cd(x1)) = 2·x1
POL(Cf(x1)) = 5 + 2·x1
POL(moveleft(x1)) = 5·x1
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
none
(86) Obligation:
Q DP problem:
The TRS P consists of the following rules:
BA(moveleft(Cd(x))) → BA(moveleft(x))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(87) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
BA(moveleft(Cd(x))) → BA(moveleft(x))
Used ordering: Polynomial interpretation [POLO]:
POL(BA(x1)) = x1
POL(Cd(x1)) = 1 + x1
POL(moveleft(x1)) = x1
(88) Obligation:
Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(89) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(90) YES
(91) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FINISH2(Db(x)) → FINISH2(x)
FINISH2(Da(x)) → FINISH2(x)
FINISH2(Dc(x)) → FINISH2(x)
FINISH2(Dd(x)) → FINISH2(x)
FINISH2(Df(x)) → FINISH2(x)
FINISH2(Dg(x)) → FINISH2(x)
The TRS R consists of the following rules:
a(guess(x)) → guess(Ca(x))
b(guess(x)) → guess(Cb(x))
c(guess(x)) → guess(Cc(x))
d(guess(x)) → guess(Cd(x))
f(guess(x)) → guess(Cf(x))
g(guess(x)) → guess(Cg(x))
Ba(moveleft(Ca(x))) → Aa(Ba(moveleft(x)))
Ba(moveleft(Cb(x))) → Ab(Ba(moveleft(x)))
Ba(moveleft(Cc(x))) → Ac(Ba(moveleft(x)))
Ba(moveleft(Cd(x))) → Ad(Ba(moveleft(x)))
Ba(moveleft(Cf(x))) → Af(Ba(moveleft(x)))
Ba(moveleft(Cg(x))) → Ag(Ba(moveleft(x)))
Bb(moveleft(Ca(x))) → Aa(Bb(moveleft(x)))
Bb(moveleft(Cb(x))) → Ab(Bb(moveleft(x)))
Bb(moveleft(Cc(x))) → Ac(Bb(moveleft(x)))
Bb(moveleft(Cd(x))) → Ad(Bb(moveleft(x)))
Bb(moveleft(Cf(x))) → Af(Bb(moveleft(x)))
Bb(moveleft(Cg(x))) → Ag(Bb(moveleft(x)))
Bc(moveleft(Ca(x))) → Aa(Bc(moveleft(x)))
Bc(moveleft(Cb(x))) → Ab(Bc(moveleft(x)))
Bc(moveleft(Cc(x))) → Ac(Bc(moveleft(x)))
Bc(moveleft(Cd(x))) → Ad(Bc(moveleft(x)))
Bc(moveleft(Cf(x))) → Af(Bc(moveleft(x)))
Bc(moveleft(Cg(x))) → Ag(Bc(moveleft(x)))
Bd(moveleft(Ca(x))) → Aa(Bd(moveleft(x)))
Bd(moveleft(Cb(x))) → Ab(Bd(moveleft(x)))
Bd(moveleft(Cc(x))) → Ac(Bd(moveleft(x)))
Bd(moveleft(Cd(x))) → Ad(Bd(moveleft(x)))
Bd(moveleft(Cf(x))) → Af(Bd(moveleft(x)))
Bd(moveleft(Cg(x))) → Ag(Bd(moveleft(x)))
Bf(moveleft(Ca(x))) → Aa(Bf(moveleft(x)))
Bf(moveleft(Cb(x))) → Ab(Bf(moveleft(x)))
Bf(moveleft(Cc(x))) → Ac(Bf(moveleft(x)))
Bf(moveleft(Cd(x))) → Ad(Bf(moveleft(x)))
Bf(moveleft(Cf(x))) → Af(Bf(moveleft(x)))
Bf(moveleft(Cg(x))) → Ag(Bf(moveleft(x)))
Bg(moveleft(Ca(x))) → Aa(Bg(moveleft(x)))
Bg(moveleft(Cb(x))) → Ab(Bg(moveleft(x)))
Bg(moveleft(Cc(x))) → Ac(Bg(moveleft(x)))
Bg(moveleft(Cd(x))) → Ad(Bg(moveleft(x)))
Bg(moveleft(Cf(x))) → Af(Bg(moveleft(x)))
Bg(moveleft(Cg(x))) → Ag(Bg(moveleft(x)))
Ba(moveleft(cut(x))) → goright(cut(Da(x)))
Bb(moveleft(cut(x))) → goright(cut(Db(x)))
Bc(moveleft(cut(x))) → goright(cut(Dc(x)))
Bd(moveleft(cut(x))) → goright(cut(Dd(x)))
Bf(moveleft(cut(x))) → goright(cut(Df(x)))
Bg(moveleft(cut(x))) → goright(cut(Dg(x)))
Aa(goright(x)) → goright(Ca(x))
Ab(goright(x)) → goright(Cb(x))
Ac(goright(x)) → goright(Cc(x))
Ad(goright(x)) → goright(Cd(x))
Af(goright(x)) → goright(Cf(x))
Ag(goright(x)) → goright(Cg(x))
a(wait(goright(x))) → wait(Ba(moveleft(x)))
b(wait(goright(x))) → wait(Bb(moveleft(x)))
c(wait(goright(x))) → wait(Bc(moveleft(x)))
d(wait(goright(x))) → wait(Bd(moveleft(x)))
f(wait(goright(x))) → wait(Bf(moveleft(x)))
g(wait(goright(x))) → wait(Bg(moveleft(x)))
finish(Ca(x)) → a(finish(x))
finish(Cb(x)) → b(finish(x))
finish(Cc(x)) → c(finish(x))
finish(Cd(x)) → d(finish(x))
finish(Cf(x)) → f(finish(x))
finish(Cg(x)) → g(finish(x))
finish2(Da(x)) → a(finish2(x))
finish2(Db(x)) → b(finish2(x))
finish2(Dc(x)) → c(finish2(x))
finish2(Dd(x)) → d(finish2(x))
finish2(Df(x)) → f(finish2(x))
finish2(Dg(x)) → g(finish2(x))
The set Q consists of the following terms:
a(guess(x0))
b(guess(x0))
c(guess(x0))
d(guess(x0))
f(guess(x0))
g(guess(x0))
Ba(moveleft(Ca(x0)))
Ba(moveleft(Cb(x0)))
Ba(moveleft(Cc(x0)))
Ba(moveleft(Cd(x0)))
Ba(moveleft(Cf(x0)))
Ba(moveleft(Cg(x0)))
Bb(moveleft(Ca(x0)))
Bb(moveleft(Cb(x0)))
Bb(moveleft(Cc(x0)))
Bb(moveleft(Cd(x0)))
Bb(moveleft(Cf(x0)))
Bb(moveleft(Cg(x0)))
Bc(moveleft(Ca(x0)))
Bc(moveleft(Cb(x0)))
Bc(moveleft(Cc(x0)))
Bc(moveleft(Cd(x0)))
Bc(moveleft(Cf(x0)))
Bc(moveleft(Cg(x0)))
Bd(moveleft(Ca(x0)))
Bd(moveleft(Cb(x0)))
Bd(moveleft(Cc(x0)))
Bd(moveleft(Cd(x0)))
Bd(moveleft(Cf(x0)))
Bd(moveleft(Cg(x0)))
Bf(moveleft(Ca(x0)))
Bf(moveleft(Cb(x0)))
Bf(moveleft(Cc(x0)))
Bf(moveleft(Cd(x0)))
Bf(moveleft(Cf(x0)))
Bf(moveleft(Cg(x0)))
Bg(moveleft(Ca(x0)))
Bg(moveleft(Cb(x0)))
Bg(moveleft(Cc(x0)))
Bg(moveleft(Cd(x0)))
Bg(moveleft(Cf(x0)))
Bg(moveleft(Cg(x0)))
Ba(moveleft(cut(x0)))
Bb(moveleft(cut(x0)))
Bc(moveleft(cut(x0)))
Bd(moveleft(cut(x0)))
Bf(moveleft(cut(x0)))
Bg(moveleft(cut(x0)))
Aa(goright(x0))
Ab(goright(x0))
Ac(goright(x0))
Ad(goright(x0))
Af(goright(x0))
Ag(goright(x0))
a(wait(goright(x0)))
b(wait(goright(x0)))
c(wait(goright(x0)))
d(wait(goright(x0)))
f(wait(goright(x0)))
g(wait(goright(x0)))
finish(Ca(x0))
finish(Cb(x0))
finish(Cc(x0))
finish(Cd(x0))
finish(Cf(x0))
finish(Cg(x0))
finish2(Da(x0))
finish2(Db(x0))
finish2(Dc(x0))
finish2(Dd(x0))
finish2(Df(x0))
finish2(Dg(x0))
We have to consider all minimal (P,Q,R)-chains.
(92) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(93) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FINISH2(Db(x)) → FINISH2(x)
FINISH2(Da(x)) → FINISH2(x)
FINISH2(Dc(x)) → FINISH2(x)
FINISH2(Dd(x)) → FINISH2(x)
FINISH2(Df(x)) → FINISH2(x)
FINISH2(Dg(x)) → FINISH2(x)
R is empty.
The set Q consists of the following terms:
a(guess(x0))
b(guess(x0))
c(guess(x0))
d(guess(x0))
f(guess(x0))
g(guess(x0))
Ba(moveleft(Ca(x0)))
Ba(moveleft(Cb(x0)))
Ba(moveleft(Cc(x0)))
Ba(moveleft(Cd(x0)))
Ba(moveleft(Cf(x0)))
Ba(moveleft(Cg(x0)))
Bb(moveleft(Ca(x0)))
Bb(moveleft(Cb(x0)))
Bb(moveleft(Cc(x0)))
Bb(moveleft(Cd(x0)))
Bb(moveleft(Cf(x0)))
Bb(moveleft(Cg(x0)))
Bc(moveleft(Ca(x0)))
Bc(moveleft(Cb(x0)))
Bc(moveleft(Cc(x0)))
Bc(moveleft(Cd(x0)))
Bc(moveleft(Cf(x0)))
Bc(moveleft(Cg(x0)))
Bd(moveleft(Ca(x0)))
Bd(moveleft(Cb(x0)))
Bd(moveleft(Cc(x0)))
Bd(moveleft(Cd(x0)))
Bd(moveleft(Cf(x0)))
Bd(moveleft(Cg(x0)))
Bf(moveleft(Ca(x0)))
Bf(moveleft(Cb(x0)))
Bf(moveleft(Cc(x0)))
Bf(moveleft(Cd(x0)))
Bf(moveleft(Cf(x0)))
Bf(moveleft(Cg(x0)))
Bg(moveleft(Ca(x0)))
Bg(moveleft(Cb(x0)))
Bg(moveleft(Cc(x0)))
Bg(moveleft(Cd(x0)))
Bg(moveleft(Cf(x0)))
Bg(moveleft(Cg(x0)))
Ba(moveleft(cut(x0)))
Bb(moveleft(cut(x0)))
Bc(moveleft(cut(x0)))
Bd(moveleft(cut(x0)))
Bf(moveleft(cut(x0)))
Bg(moveleft(cut(x0)))
Aa(goright(x0))
Ab(goright(x0))
Ac(goright(x0))
Ad(goright(x0))
Af(goright(x0))
Ag(goright(x0))
a(wait(goright(x0)))
b(wait(goright(x0)))
c(wait(goright(x0)))
d(wait(goright(x0)))
f(wait(goright(x0)))
g(wait(goright(x0)))
finish(Ca(x0))
finish(Cb(x0))
finish(Cc(x0))
finish(Cd(x0))
finish(Cf(x0))
finish(Cg(x0))
finish2(Da(x0))
finish2(Db(x0))
finish2(Dc(x0))
finish2(Dd(x0))
finish2(Df(x0))
finish2(Dg(x0))
We have to consider all minimal (P,Q,R)-chains.
(94) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
a(guess(x0))
b(guess(x0))
c(guess(x0))
d(guess(x0))
f(guess(x0))
g(guess(x0))
Ba(moveleft(Ca(x0)))
Ba(moveleft(Cb(x0)))
Ba(moveleft(Cc(x0)))
Ba(moveleft(Cd(x0)))
Ba(moveleft(Cf(x0)))
Ba(moveleft(Cg(x0)))
Bb(moveleft(Ca(x0)))
Bb(moveleft(Cb(x0)))
Bb(moveleft(Cc(x0)))
Bb(moveleft(Cd(x0)))
Bb(moveleft(Cf(x0)))
Bb(moveleft(Cg(x0)))
Bc(moveleft(Ca(x0)))
Bc(moveleft(Cb(x0)))
Bc(moveleft(Cc(x0)))
Bc(moveleft(Cd(x0)))
Bc(moveleft(Cf(x0)))
Bc(moveleft(Cg(x0)))
Bd(moveleft(Ca(x0)))
Bd(moveleft(Cb(x0)))
Bd(moveleft(Cc(x0)))
Bd(moveleft(Cd(x0)))
Bd(moveleft(Cf(x0)))
Bd(moveleft(Cg(x0)))
Bf(moveleft(Ca(x0)))
Bf(moveleft(Cb(x0)))
Bf(moveleft(Cc(x0)))
Bf(moveleft(Cd(x0)))
Bf(moveleft(Cf(x0)))
Bf(moveleft(Cg(x0)))
Bg(moveleft(Ca(x0)))
Bg(moveleft(Cb(x0)))
Bg(moveleft(Cc(x0)))
Bg(moveleft(Cd(x0)))
Bg(moveleft(Cf(x0)))
Bg(moveleft(Cg(x0)))
Ba(moveleft(cut(x0)))
Bb(moveleft(cut(x0)))
Bc(moveleft(cut(x0)))
Bd(moveleft(cut(x0)))
Bf(moveleft(cut(x0)))
Bg(moveleft(cut(x0)))
Aa(goright(x0))
Ab(goright(x0))
Ac(goright(x0))
Ad(goright(x0))
Af(goright(x0))
Ag(goright(x0))
a(wait(goright(x0)))
b(wait(goright(x0)))
c(wait(goright(x0)))
d(wait(goright(x0)))
f(wait(goright(x0)))
g(wait(goright(x0)))
finish(Ca(x0))
finish(Cb(x0))
finish(Cc(x0))
finish(Cd(x0))
finish(Cf(x0))
finish(Cg(x0))
finish2(Da(x0))
finish2(Db(x0))
finish2(Dc(x0))
finish2(Dd(x0))
finish2(Df(x0))
finish2(Dg(x0))
(95) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FINISH2(Db(x)) → FINISH2(x)
FINISH2(Da(x)) → FINISH2(x)
FINISH2(Dc(x)) → FINISH2(x)
FINISH2(Dd(x)) → FINISH2(x)
FINISH2(Df(x)) → FINISH2(x)
FINISH2(Dg(x)) → FINISH2(x)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(96) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- FINISH2(Db(x)) → FINISH2(x)
The graph contains the following edges 1 > 1
- FINISH2(Da(x)) → FINISH2(x)
The graph contains the following edges 1 > 1
- FINISH2(Dc(x)) → FINISH2(x)
The graph contains the following edges 1 > 1
- FINISH2(Dd(x)) → FINISH2(x)
The graph contains the following edges 1 > 1
- FINISH2(Df(x)) → FINISH2(x)
The graph contains the following edges 1 > 1
- FINISH2(Dg(x)) → FINISH2(x)
The graph contains the following edges 1 > 1
(97) YES
(98) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FINISH(Cb(x)) → FINISH(x)
FINISH(Ca(x)) → FINISH(x)
FINISH(Cc(x)) → FINISH(x)
FINISH(Cd(x)) → FINISH(x)
FINISH(Cf(x)) → FINISH(x)
FINISH(Cg(x)) → FINISH(x)
The TRS R consists of the following rules:
a(guess(x)) → guess(Ca(x))
b(guess(x)) → guess(Cb(x))
c(guess(x)) → guess(Cc(x))
d(guess(x)) → guess(Cd(x))
f(guess(x)) → guess(Cf(x))
g(guess(x)) → guess(Cg(x))
Ba(moveleft(Ca(x))) → Aa(Ba(moveleft(x)))
Ba(moveleft(Cb(x))) → Ab(Ba(moveleft(x)))
Ba(moveleft(Cc(x))) → Ac(Ba(moveleft(x)))
Ba(moveleft(Cd(x))) → Ad(Ba(moveleft(x)))
Ba(moveleft(Cf(x))) → Af(Ba(moveleft(x)))
Ba(moveleft(Cg(x))) → Ag(Ba(moveleft(x)))
Bb(moveleft(Ca(x))) → Aa(Bb(moveleft(x)))
Bb(moveleft(Cb(x))) → Ab(Bb(moveleft(x)))
Bb(moveleft(Cc(x))) → Ac(Bb(moveleft(x)))
Bb(moveleft(Cd(x))) → Ad(Bb(moveleft(x)))
Bb(moveleft(Cf(x))) → Af(Bb(moveleft(x)))
Bb(moveleft(Cg(x))) → Ag(Bb(moveleft(x)))
Bc(moveleft(Ca(x))) → Aa(Bc(moveleft(x)))
Bc(moveleft(Cb(x))) → Ab(Bc(moveleft(x)))
Bc(moveleft(Cc(x))) → Ac(Bc(moveleft(x)))
Bc(moveleft(Cd(x))) → Ad(Bc(moveleft(x)))
Bc(moveleft(Cf(x))) → Af(Bc(moveleft(x)))
Bc(moveleft(Cg(x))) → Ag(Bc(moveleft(x)))
Bd(moveleft(Ca(x))) → Aa(Bd(moveleft(x)))
Bd(moveleft(Cb(x))) → Ab(Bd(moveleft(x)))
Bd(moveleft(Cc(x))) → Ac(Bd(moveleft(x)))
Bd(moveleft(Cd(x))) → Ad(Bd(moveleft(x)))
Bd(moveleft(Cf(x))) → Af(Bd(moveleft(x)))
Bd(moveleft(Cg(x))) → Ag(Bd(moveleft(x)))
Bf(moveleft(Ca(x))) → Aa(Bf(moveleft(x)))
Bf(moveleft(Cb(x))) → Ab(Bf(moveleft(x)))
Bf(moveleft(Cc(x))) → Ac(Bf(moveleft(x)))
Bf(moveleft(Cd(x))) → Ad(Bf(moveleft(x)))
Bf(moveleft(Cf(x))) → Af(Bf(moveleft(x)))
Bf(moveleft(Cg(x))) → Ag(Bf(moveleft(x)))
Bg(moveleft(Ca(x))) → Aa(Bg(moveleft(x)))
Bg(moveleft(Cb(x))) → Ab(Bg(moveleft(x)))
Bg(moveleft(Cc(x))) → Ac(Bg(moveleft(x)))
Bg(moveleft(Cd(x))) → Ad(Bg(moveleft(x)))
Bg(moveleft(Cf(x))) → Af(Bg(moveleft(x)))
Bg(moveleft(Cg(x))) → Ag(Bg(moveleft(x)))
Ba(moveleft(cut(x))) → goright(cut(Da(x)))
Bb(moveleft(cut(x))) → goright(cut(Db(x)))
Bc(moveleft(cut(x))) → goright(cut(Dc(x)))
Bd(moveleft(cut(x))) → goright(cut(Dd(x)))
Bf(moveleft(cut(x))) → goright(cut(Df(x)))
Bg(moveleft(cut(x))) → goright(cut(Dg(x)))
Aa(goright(x)) → goright(Ca(x))
Ab(goright(x)) → goright(Cb(x))
Ac(goright(x)) → goright(Cc(x))
Ad(goright(x)) → goright(Cd(x))
Af(goright(x)) → goright(Cf(x))
Ag(goright(x)) → goright(Cg(x))
a(wait(goright(x))) → wait(Ba(moveleft(x)))
b(wait(goright(x))) → wait(Bb(moveleft(x)))
c(wait(goright(x))) → wait(Bc(moveleft(x)))
d(wait(goright(x))) → wait(Bd(moveleft(x)))
f(wait(goright(x))) → wait(Bf(moveleft(x)))
g(wait(goright(x))) → wait(Bg(moveleft(x)))
finish(Ca(x)) → a(finish(x))
finish(Cb(x)) → b(finish(x))
finish(Cc(x)) → c(finish(x))
finish(Cd(x)) → d(finish(x))
finish(Cf(x)) → f(finish(x))
finish(Cg(x)) → g(finish(x))
finish2(Da(x)) → a(finish2(x))
finish2(Db(x)) → b(finish2(x))
finish2(Dc(x)) → c(finish2(x))
finish2(Dd(x)) → d(finish2(x))
finish2(Df(x)) → f(finish2(x))
finish2(Dg(x)) → g(finish2(x))
The set Q consists of the following terms:
a(guess(x0))
b(guess(x0))
c(guess(x0))
d(guess(x0))
f(guess(x0))
g(guess(x0))
Ba(moveleft(Ca(x0)))
Ba(moveleft(Cb(x0)))
Ba(moveleft(Cc(x0)))
Ba(moveleft(Cd(x0)))
Ba(moveleft(Cf(x0)))
Ba(moveleft(Cg(x0)))
Bb(moveleft(Ca(x0)))
Bb(moveleft(Cb(x0)))
Bb(moveleft(Cc(x0)))
Bb(moveleft(Cd(x0)))
Bb(moveleft(Cf(x0)))
Bb(moveleft(Cg(x0)))
Bc(moveleft(Ca(x0)))
Bc(moveleft(Cb(x0)))
Bc(moveleft(Cc(x0)))
Bc(moveleft(Cd(x0)))
Bc(moveleft(Cf(x0)))
Bc(moveleft(Cg(x0)))
Bd(moveleft(Ca(x0)))
Bd(moveleft(Cb(x0)))
Bd(moveleft(Cc(x0)))
Bd(moveleft(Cd(x0)))
Bd(moveleft(Cf(x0)))
Bd(moveleft(Cg(x0)))
Bf(moveleft(Ca(x0)))
Bf(moveleft(Cb(x0)))
Bf(moveleft(Cc(x0)))
Bf(moveleft(Cd(x0)))
Bf(moveleft(Cf(x0)))
Bf(moveleft(Cg(x0)))
Bg(moveleft(Ca(x0)))
Bg(moveleft(Cb(x0)))
Bg(moveleft(Cc(x0)))
Bg(moveleft(Cd(x0)))
Bg(moveleft(Cf(x0)))
Bg(moveleft(Cg(x0)))
Ba(moveleft(cut(x0)))
Bb(moveleft(cut(x0)))
Bc(moveleft(cut(x0)))
Bd(moveleft(cut(x0)))
Bf(moveleft(cut(x0)))
Bg(moveleft(cut(x0)))
Aa(goright(x0))
Ab(goright(x0))
Ac(goright(x0))
Ad(goright(x0))
Af(goright(x0))
Ag(goright(x0))
a(wait(goright(x0)))
b(wait(goright(x0)))
c(wait(goright(x0)))
d(wait(goright(x0)))
f(wait(goright(x0)))
g(wait(goright(x0)))
finish(Ca(x0))
finish(Cb(x0))
finish(Cc(x0))
finish(Cd(x0))
finish(Cf(x0))
finish(Cg(x0))
finish2(Da(x0))
finish2(Db(x0))
finish2(Dc(x0))
finish2(Dd(x0))
finish2(Df(x0))
finish2(Dg(x0))
We have to consider all minimal (P,Q,R)-chains.
(99) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(100) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FINISH(Cb(x)) → FINISH(x)
FINISH(Ca(x)) → FINISH(x)
FINISH(Cc(x)) → FINISH(x)
FINISH(Cd(x)) → FINISH(x)
FINISH(Cf(x)) → FINISH(x)
FINISH(Cg(x)) → FINISH(x)
R is empty.
The set Q consists of the following terms:
a(guess(x0))
b(guess(x0))
c(guess(x0))
d(guess(x0))
f(guess(x0))
g(guess(x0))
Ba(moveleft(Ca(x0)))
Ba(moveleft(Cb(x0)))
Ba(moveleft(Cc(x0)))
Ba(moveleft(Cd(x0)))
Ba(moveleft(Cf(x0)))
Ba(moveleft(Cg(x0)))
Bb(moveleft(Ca(x0)))
Bb(moveleft(Cb(x0)))
Bb(moveleft(Cc(x0)))
Bb(moveleft(Cd(x0)))
Bb(moveleft(Cf(x0)))
Bb(moveleft(Cg(x0)))
Bc(moveleft(Ca(x0)))
Bc(moveleft(Cb(x0)))
Bc(moveleft(Cc(x0)))
Bc(moveleft(Cd(x0)))
Bc(moveleft(Cf(x0)))
Bc(moveleft(Cg(x0)))
Bd(moveleft(Ca(x0)))
Bd(moveleft(Cb(x0)))
Bd(moveleft(Cc(x0)))
Bd(moveleft(Cd(x0)))
Bd(moveleft(Cf(x0)))
Bd(moveleft(Cg(x0)))
Bf(moveleft(Ca(x0)))
Bf(moveleft(Cb(x0)))
Bf(moveleft(Cc(x0)))
Bf(moveleft(Cd(x0)))
Bf(moveleft(Cf(x0)))
Bf(moveleft(Cg(x0)))
Bg(moveleft(Ca(x0)))
Bg(moveleft(Cb(x0)))
Bg(moveleft(Cc(x0)))
Bg(moveleft(Cd(x0)))
Bg(moveleft(Cf(x0)))
Bg(moveleft(Cg(x0)))
Ba(moveleft(cut(x0)))
Bb(moveleft(cut(x0)))
Bc(moveleft(cut(x0)))
Bd(moveleft(cut(x0)))
Bf(moveleft(cut(x0)))
Bg(moveleft(cut(x0)))
Aa(goright(x0))
Ab(goright(x0))
Ac(goright(x0))
Ad(goright(x0))
Af(goright(x0))
Ag(goright(x0))
a(wait(goright(x0)))
b(wait(goright(x0)))
c(wait(goright(x0)))
d(wait(goright(x0)))
f(wait(goright(x0)))
g(wait(goright(x0)))
finish(Ca(x0))
finish(Cb(x0))
finish(Cc(x0))
finish(Cd(x0))
finish(Cf(x0))
finish(Cg(x0))
finish2(Da(x0))
finish2(Db(x0))
finish2(Dc(x0))
finish2(Dd(x0))
finish2(Df(x0))
finish2(Dg(x0))
We have to consider all minimal (P,Q,R)-chains.
(101) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
a(guess(x0))
b(guess(x0))
c(guess(x0))
d(guess(x0))
f(guess(x0))
g(guess(x0))
Ba(moveleft(Ca(x0)))
Ba(moveleft(Cb(x0)))
Ba(moveleft(Cc(x0)))
Ba(moveleft(Cd(x0)))
Ba(moveleft(Cf(x0)))
Ba(moveleft(Cg(x0)))
Bb(moveleft(Ca(x0)))
Bb(moveleft(Cb(x0)))
Bb(moveleft(Cc(x0)))
Bb(moveleft(Cd(x0)))
Bb(moveleft(Cf(x0)))
Bb(moveleft(Cg(x0)))
Bc(moveleft(Ca(x0)))
Bc(moveleft(Cb(x0)))
Bc(moveleft(Cc(x0)))
Bc(moveleft(Cd(x0)))
Bc(moveleft(Cf(x0)))
Bc(moveleft(Cg(x0)))
Bd(moveleft(Ca(x0)))
Bd(moveleft(Cb(x0)))
Bd(moveleft(Cc(x0)))
Bd(moveleft(Cd(x0)))
Bd(moveleft(Cf(x0)))
Bd(moveleft(Cg(x0)))
Bf(moveleft(Ca(x0)))
Bf(moveleft(Cb(x0)))
Bf(moveleft(Cc(x0)))
Bf(moveleft(Cd(x0)))
Bf(moveleft(Cf(x0)))
Bf(moveleft(Cg(x0)))
Bg(moveleft(Ca(x0)))
Bg(moveleft(Cb(x0)))
Bg(moveleft(Cc(x0)))
Bg(moveleft(Cd(x0)))
Bg(moveleft(Cf(x0)))
Bg(moveleft(Cg(x0)))
Ba(moveleft(cut(x0)))
Bb(moveleft(cut(x0)))
Bc(moveleft(cut(x0)))
Bd(moveleft(cut(x0)))
Bf(moveleft(cut(x0)))
Bg(moveleft(cut(x0)))
Aa(goright(x0))
Ab(goright(x0))
Ac(goright(x0))
Ad(goright(x0))
Af(goright(x0))
Ag(goright(x0))
a(wait(goright(x0)))
b(wait(goright(x0)))
c(wait(goright(x0)))
d(wait(goright(x0)))
f(wait(goright(x0)))
g(wait(goright(x0)))
finish(Ca(x0))
finish(Cb(x0))
finish(Cc(x0))
finish(Cd(x0))
finish(Cf(x0))
finish(Cg(x0))
finish2(Da(x0))
finish2(Db(x0))
finish2(Dc(x0))
finish2(Dd(x0))
finish2(Df(x0))
finish2(Dg(x0))
(102) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FINISH(Cb(x)) → FINISH(x)
FINISH(Ca(x)) → FINISH(x)
FINISH(Cc(x)) → FINISH(x)
FINISH(Cd(x)) → FINISH(x)
FINISH(Cf(x)) → FINISH(x)
FINISH(Cg(x)) → FINISH(x)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(103) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- FINISH(Cb(x)) → FINISH(x)
The graph contains the following edges 1 > 1
- FINISH(Ca(x)) → FINISH(x)
The graph contains the following edges 1 > 1
- FINISH(Cc(x)) → FINISH(x)
The graph contains the following edges 1 > 1
- FINISH(Cd(x)) → FINISH(x)
The graph contains the following edges 1 > 1
- FINISH(Cf(x)) → FINISH(x)
The graph contains the following edges 1 > 1
- FINISH(Cg(x)) → FINISH(x)
The graph contains the following edges 1 > 1
(104) YES