YES
0 QTRS
↳1 QTRSRRRProof (⇔, 57 ms)
↳2 QTRS
↳3 DependencyPairsProof (⇔, 18 ms)
↳4 QDP
↳5 DependencyGraphProof (⇔, 0 ms)
↳6 QDP
↳7 QDPOrderProof (⇔, 14 ms)
↳8 QDP
↳9 PisEmptyProof (⇔, 0 ms)
↳10 YES
a(a(x)) → b(c(c(c(x))))
b(c(x)) → d(d(d(d(x))))
a(x) → d(c(d(x)))
b(b(x)) → c(c(c(x)))
c(c(x)) → d(d(d(x)))
c(d(d(x))) → a(x)
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(a(x1)) = 25 + x1
POL(b(x1)) = 17 + x1
POL(c(x1)) = 11 + x1
POL(d(x1)) = 7 + x1
b(b(x)) → c(c(c(x)))
c(c(x)) → d(d(d(x)))
a(a(x)) → b(c(c(c(x))))
b(c(x)) → d(d(d(d(x))))
a(x) → d(c(d(x)))
c(d(d(x))) → a(x)
A(a(x)) → B(c(c(c(x))))
A(a(x)) → C(c(c(x)))
A(a(x)) → C(c(x))
A(a(x)) → C(x)
A(x) → C(d(x))
C(d(d(x))) → A(x)
a(a(x)) → b(c(c(c(x))))
b(c(x)) → d(d(d(d(x))))
a(x) → d(c(d(x)))
c(d(d(x))) → a(x)
A(a(x)) → C(c(c(x)))
C(d(d(x))) → A(x)
A(a(x)) → C(c(x))
A(a(x)) → C(x)
A(x) → C(d(x))
a(a(x)) → b(c(c(c(x))))
b(c(x)) → d(d(d(d(x))))
a(x) → d(c(d(x)))
c(d(d(x))) → a(x)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A(a(x)) → C(c(c(x)))
C(d(d(x))) → A(x)
A(a(x)) → C(c(x))
A(a(x)) → C(x)
A(x) → C(d(x))
POL(A(x1)) = 4 + 2·x1
POL(C(x1)) = 1 + 2·x1
POL(a(x1)) = 5 + x1
POL(b(x1)) = 1 + x1
POL(c(x1)) = 3 + x1
POL(d(x1)) = 1 + x1
c(d(d(x))) → a(x)
a(a(x)) → b(c(c(c(x))))
a(x) → d(c(d(x)))
b(c(x)) → d(d(d(d(x))))
a(a(x)) → b(c(c(c(x))))
b(c(x)) → d(d(d(d(x))))
a(x) → d(c(d(x)))
c(d(d(x))) → a(x)