YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
B(x0) | → | W(M(M(V(x0)))) |
M(x0) | → | x0 |
M(V(a(x0))) | → | V(Xa(x0)) |
M(V(b(x0))) | → | V(Xb(x0)) |
M(V(c(x0))) | → | V(Xc(x0)) |
M(V(d(x0))) | → | V(Xd(x0)) |
Xa(a(x0)) | → | a(Xa(x0)) |
Xa(b(x0)) | → | b(Xa(x0)) |
Xa(c(x0)) | → | c(Xa(x0)) |
Xa(d(x0)) | → | d(Xa(x0)) |
Xb(a(x0)) | → | a(Xb(x0)) |
Xb(b(x0)) | → | b(Xb(x0)) |
Xb(c(x0)) | → | c(Xb(x0)) |
Xb(d(x0)) | → | d(Xb(x0)) |
Xc(a(x0)) | → | a(Xc(x0)) |
Xc(b(x0)) | → | b(Xc(x0)) |
Xc(c(x0)) | → | c(Xc(x0)) |
Xc(d(x0)) | → | d(Xc(x0)) |
Xd(a(x0)) | → | a(Xd(x0)) |
Xd(b(x0)) | → | b(Xd(x0)) |
Xd(c(x0)) | → | c(Xd(x0)) |
Xd(d(x0)) | → | d(Xd(x0)) |
Xa(E(x0)) | → | a(E(x0)) |
Xb(E(x0)) | → | b(E(x0)) |
Xc(E(x0)) | → | c(E(x0)) |
Xd(E(x0)) | → | d(E(x0)) |
W(V(x0)) | → | R(L(x0)) |
L(a(x0)) | → | Ya(L(x0)) |
L(b(x0)) | → | Yb(L(x0)) |
L(c(x0)) | → | Yc(L(x0)) |
L(d(x0)) | → | Yd(L(x0)) |
L(a(a(x0))) | → | D(b(c(x0))) |
L(b(b(x0))) | → | D(c(d(x0))) |
L(c(c(x0))) | → | D(d(d(d(x0)))) |
L(d(d(d(x0)))) | → | D(a(c(x0))) |
Ya(D(x0)) | → | D(a(x0)) |
Yb(D(x0)) | → | D(b(x0)) |
Yc(D(x0)) | → | D(c(x0)) |
Yd(D(x0)) | → | D(d(x0)) |
R(D(x0)) | → | B(x0) |
[Yd(x1)] | = | 8 · x1 + -∞ |
[a(x1)] | = | 12 · x1 + -∞ |
[Ya(x1)] | = | 12 · x1 + -∞ |
[c(x1)] | = | 12 · x1 + -∞ |
[V(x1)] | = | 0 · x1 + -∞ |
[W(x1)] | = | 4 · x1 + -∞ |
[Yb(x1)] | = | 10 · x1 + -∞ |
[D(x1)] | = | 0 · x1 + -∞ |
[Yc(x1)] | = | 12 · x1 + -∞ |
[Xa(x1)] | = | 12 · x1 + -∞ |
[d(x1)] | = | 8 · x1 + -∞ |
[B(x1)] | = | 4 · x1 + -∞ |
[Xb(x1)] | = | 10 · x1 + -∞ |
[R(x1)] | = | 4 · x1 + -∞ |
[E(x1)] | = | 0 · x1 + -∞ |
[Xd(x1)] | = | 8 · x1 + -∞ |
[Xc(x1)] | = | 12 · x1 + -∞ |
[L(x1)] | = | 0 · x1 + -∞ |
[b(x1)] | = | 10 · x1 + -∞ |
[M(x1)] | = | 0 · x1 + -∞ |
B(x0) | → | W(M(M(V(x0)))) |
M(x0) | → | x0 |
M(V(a(x0))) | → | V(Xa(x0)) |
M(V(b(x0))) | → | V(Xb(x0)) |
M(V(c(x0))) | → | V(Xc(x0)) |
M(V(d(x0))) | → | V(Xd(x0)) |
Xa(a(x0)) | → | a(Xa(x0)) |
Xa(b(x0)) | → | b(Xa(x0)) |
Xa(c(x0)) | → | c(Xa(x0)) |
Xa(d(x0)) | → | d(Xa(x0)) |
Xb(a(x0)) | → | a(Xb(x0)) |
Xb(b(x0)) | → | b(Xb(x0)) |
Xb(c(x0)) | → | c(Xb(x0)) |
Xb(d(x0)) | → | d(Xb(x0)) |
Xc(a(x0)) | → | a(Xc(x0)) |
Xc(b(x0)) | → | b(Xc(x0)) |
Xc(c(x0)) | → | c(Xc(x0)) |
Xc(d(x0)) | → | d(Xc(x0)) |
Xd(a(x0)) | → | a(Xd(x0)) |
Xd(b(x0)) | → | b(Xd(x0)) |
Xd(c(x0)) | → | c(Xd(x0)) |
Xd(d(x0)) | → | d(Xd(x0)) |
Xa(E(x0)) | → | a(E(x0)) |
Xb(E(x0)) | → | b(E(x0)) |
Xc(E(x0)) | → | c(E(x0)) |
Xd(E(x0)) | → | d(E(x0)) |
W(V(x0)) | → | R(L(x0)) |
L(a(x0)) | → | Ya(L(x0)) |
L(b(x0)) | → | Yb(L(x0)) |
L(c(x0)) | → | Yc(L(x0)) |
L(d(x0)) | → | Yd(L(x0)) |
L(b(b(x0))) | → | D(c(d(x0))) |
L(c(c(x0))) | → | D(d(d(d(x0)))) |
L(d(d(d(x0)))) | → | D(a(c(x0))) |
Ya(D(x0)) | → | D(a(x0)) |
Yb(D(x0)) | → | D(b(x0)) |
Yc(D(x0)) | → | D(c(x0)) |
Yd(D(x0)) | → | D(d(x0)) |
R(D(x0)) | → | B(x0) |
[Yd(x1)] | = | 0 · x1 + -∞ |
[a(x1)] | = | 0 · x1 + -∞ |
[Ya(x1)] | = | 0 · x1 + -∞ |
[c(x1)] | = | 0 · x1 + -∞ |
[V(x1)] | = | 0 · x1 + -∞ |
[W(x1)] | = | 0 · x1 + -∞ |
[Yb(x1)] | = | 8 · x1 + -∞ |
[D(x1)] | = | 0 · x1 + -∞ |
[Yc(x1)] | = | 0 · x1 + -∞ |
[Xa(x1)] | = | 0 · x1 + -∞ |
[d(x1)] | = | 0 · x1 + -∞ |
[B(x1)] | = | 0 · x1 + -∞ |
[Xb(x1)] | = | 8 · x1 + -∞ |
[R(x1)] | = | 0 · x1 + -∞ |
[E(x1)] | = | 0 · x1 + -∞ |
[Xd(x1)] | = | 0 · x1 + -∞ |
[Xc(x1)] | = | 0 · x1 + -∞ |
[L(x1)] | = | 0 · x1 + -∞ |
[b(x1)] | = | 8 · x1 + -∞ |
[M(x1)] | = | 0 · x1 + -∞ |
B(x0) | → | W(M(M(V(x0)))) |
M(x0) | → | x0 |
M(V(a(x0))) | → | V(Xa(x0)) |
M(V(b(x0))) | → | V(Xb(x0)) |
M(V(c(x0))) | → | V(Xc(x0)) |
M(V(d(x0))) | → | V(Xd(x0)) |
Xa(a(x0)) | → | a(Xa(x0)) |
Xa(b(x0)) | → | b(Xa(x0)) |
Xa(c(x0)) | → | c(Xa(x0)) |
Xa(d(x0)) | → | d(Xa(x0)) |
Xb(a(x0)) | → | a(Xb(x0)) |
Xb(b(x0)) | → | b(Xb(x0)) |
Xb(c(x0)) | → | c(Xb(x0)) |
Xb(d(x0)) | → | d(Xb(x0)) |
Xc(a(x0)) | → | a(Xc(x0)) |
Xc(b(x0)) | → | b(Xc(x0)) |
Xc(c(x0)) | → | c(Xc(x0)) |
Xc(d(x0)) | → | d(Xc(x0)) |
Xd(a(x0)) | → | a(Xd(x0)) |
Xd(b(x0)) | → | b(Xd(x0)) |
Xd(c(x0)) | → | c(Xd(x0)) |
Xd(d(x0)) | → | d(Xd(x0)) |
Xa(E(x0)) | → | a(E(x0)) |
Xb(E(x0)) | → | b(E(x0)) |
Xc(E(x0)) | → | c(E(x0)) |
Xd(E(x0)) | → | d(E(x0)) |
W(V(x0)) | → | R(L(x0)) |
L(a(x0)) | → | Ya(L(x0)) |
L(b(x0)) | → | Yb(L(x0)) |
L(c(x0)) | → | Yc(L(x0)) |
L(d(x0)) | → | Yd(L(x0)) |
L(c(c(x0))) | → | D(d(d(d(x0)))) |
L(d(d(d(x0)))) | → | D(a(c(x0))) |
Ya(D(x0)) | → | D(a(x0)) |
Yb(D(x0)) | → | D(b(x0)) |
Yc(D(x0)) | → | D(c(x0)) |
Yd(D(x0)) | → | D(d(x0)) |
R(D(x0)) | → | B(x0) |
[Yd(x1)] | = | 7 · x1 + -∞ |
[a(x1)] | = | 0 · x1 + -∞ |
[Ya(x1)] | = | 0 · x1 + -∞ |
[c(x1)] | = | 14 · x1 + -∞ |
[V(x1)] | = | 1 · x1 + -∞ |
[W(x1)] | = | 1 · x1 + -∞ |
[Yb(x1)] | = | 2 · x1 + -∞ |
[D(x1)] | = | 8 · x1 + -∞ |
[Yc(x1)] | = | 14 · x1 + -∞ |
[Xa(x1)] | = | 1 · x1 + -∞ |
[d(x1)] | = | 7 · x1 + -∞ |
[B(x1)] | = | 9 · x1 + -∞ |
[Xb(x1)] | = | 4 · x1 + -∞ |
[R(x1)] | = | 1 · x1 + -∞ |
[E(x1)] | = | 0 · x1 + -∞ |
[Xd(x1)] | = | 7 · x1 + -∞ |
[Xc(x1)] | = | 14 · x1 + -∞ |
[L(x1)] | = | 1 · x1 + -∞ |
[b(x1)] | = | 2 · x1 + -∞ |
[M(x1)] | = | 2 · x1 + -∞ |
M(V(b(x0))) | → | V(Xb(x0)) |
Xa(a(x0)) | → | a(Xa(x0)) |
Xa(b(x0)) | → | b(Xa(x0)) |
Xa(c(x0)) | → | c(Xa(x0)) |
Xa(d(x0)) | → | d(Xa(x0)) |
Xb(a(x0)) | → | a(Xb(x0)) |
Xb(b(x0)) | → | b(Xb(x0)) |
Xb(c(x0)) | → | c(Xb(x0)) |
Xb(d(x0)) | → | d(Xb(x0)) |
Xc(a(x0)) | → | a(Xc(x0)) |
Xc(b(x0)) | → | b(Xc(x0)) |
Xc(c(x0)) | → | c(Xc(x0)) |
Xc(d(x0)) | → | d(Xc(x0)) |
Xd(a(x0)) | → | a(Xd(x0)) |
Xd(b(x0)) | → | b(Xd(x0)) |
Xd(c(x0)) | → | c(Xd(x0)) |
Xd(d(x0)) | → | d(Xd(x0)) |
Xc(E(x0)) | → | c(E(x0)) |
Xd(E(x0)) | → | d(E(x0)) |
W(V(x0)) | → | R(L(x0)) |
L(a(x0)) | → | Ya(L(x0)) |
L(b(x0)) | → | Yb(L(x0)) |
L(c(x0)) | → | Yc(L(x0)) |
L(d(x0)) | → | Yd(L(x0)) |
L(c(c(x0))) | → | D(d(d(d(x0)))) |
L(d(d(d(x0)))) | → | D(a(c(x0))) |
Ya(D(x0)) | → | D(a(x0)) |
Yb(D(x0)) | → | D(b(x0)) |
Yc(D(x0)) | → | D(c(x0)) |
Yd(D(x0)) | → | D(d(x0)) |
R(D(x0)) | → | B(x0) |
final states:
{45, 44, 43, 41, 39, 36, 32, 31, 30, 29, 28, 26, 25, 23, 22, 21, 20, 18, 17, 16, 15, 13, 12, 11, 10, 9, 8, 7, 6, 4, 1}
transitions:
23 | → | 14 |
25 | → | 19 |
32 | → | 27 |
29 | → | 27 |
89 | → | 50 |
103 | → | 50 |
10 | → | 3 |
51 | → | 27 |
51 | → | 28 |
51 | → | 29 |
51 | → | 30 |
51 | → | 31 |
97 | → | 50 |
15 | → | 14 |
18 | → | 19 |
50 | → | 68 |
50 | → | 74 |
50 | → | 76 |
50 | → | 82 |
50 | → | 84 |
9 | → | 3 |
95 | → | 50 |
59 | → | 50 |
55 | → | 50 |
20 | → | 19 |
31 | → | 27 |
8 | → | 5 |
13 | → | 14 |
38 | → | 88 |
38 | → | 94 |
38 | → | 96 |
38 | → | 102 |
38 | → | 104 |
36 | → | 27 |
21 | → | 19 |
6 | → | 5 |
22 | → | 19 |
75 | → | 50 |
105 | → | 26 |
67 | → | 26 |
11 | → | 3 |
4 | → | 5 |
28 | → | 27 |
16 | → | 14 |
63 | → | 50 |
12 | → | 3 |
85 | → | 26 |
77 | → | 50 |
7 | → | 5 |
69 | → | 50 |
30 | → | 27 |
35 | → | 49 |
35 | → | 54 |
35 | → | 58 |
35 | → | 62 |
35 | → | 66 |
83 | → | 50 |
17 | → | 14 |
R0(27) | → | 26 |
Xa0(2) | → | 5 |
B1(84) | → | 85 |
B1(104) | → | 105 |
B1(66) | → | 67 |
Xd0(2) | → | 19 |
c0(14) | → | 16 |
c0(24) | → | 23 |
c0(2) | → | 37 |
c0(3) | → | 11 |
c0(19) | → | 21 |
c0(5) | → | 7 |
D0(33) | → | 44 |
D0(40) | → | 39 |
D0(38) | → | 36 |
D0(42) | → | 41 |
D0(35) | → | 32 |
D0(37) | → | 43 |
E0(2) | → | 24 |
Ya0(27) | → | 28 |
V0(3) | → | 1 |
a1(68) | → | 69 |
a1(49) | → | 50 |
a1(88) | → | 89 |
d0(2) | → | 33 |
d0(34) | → | 35 |
d0(14) | → | 17 |
d0(33) | → | 34 |
d0(19) | → | 22 |
d0(24) | → | 25 |
d0(5) | → | 8 |
d0(3) | → | 12 |
Xb0(2) | → | 3 |
b1(94) | → | 95 |
b1(54) | → | 55 |
b1(74) | → | 75 |
a0(37) | → | 38 |
a0(3) | → | 9 |
a0(2) | → | 40 |
a0(14) | → | 13 |
a0(5) | → | 4 |
a0(19) | → | 18 |
L0(2) | → | 27 |
f200 | → | 2 |
Yd0(27) | → | 31 |
Yc0(27) | → | 30 |
D1(50) | → | 51 |
b0(19) | → | 20 |
b0(2) | → | 42 |
b0(3) | → | 10 |
b0(14) | → | 15 |
b0(5) | → | 6 |
d1(62) | → | 63 |
d1(82) | → | 83 |
d1(102) | → | 103 |
B0(2) | → | 45 |
Yb0(27) | → | 29 |
Xc0(2) | → | 14 |
c1(76) | → | 77 |
c1(96) | → | 97 |
c1(58) | → | 59 |