YES Termination Proof

Termination Proof

by ttt2 (version ttt2 1.15)

Input

The rewrite relation of the following TRS is considered.

Begin(a(x0)) Wait(Right1(x0))
Begin(b(x0)) Wait(Right2(x0))
Begin(c(x0)) Wait(Right3(x0))
Begin(d(d(x0))) Wait(Right4(x0))
Begin(d(x0)) Wait(Right5(x0))
Right1(a(End(x0))) Left(b(b(b(End(x0)))))
Right2(b(End(x0))) Left(c(c(c(End(x0)))))
Right3(c(End(x0))) Left(d(d(d(End(x0)))))
Right4(c(End(x0))) Left(a(End(x0)))
Right5(c(d(End(x0)))) Left(a(End(x0)))
Right1(a(x0)) Aa(Right1(x0))
Right2(a(x0)) Aa(Right2(x0))
Right3(a(x0)) Aa(Right3(x0))
Right4(a(x0)) Aa(Right4(x0))
Right5(a(x0)) Aa(Right5(x0))
Right1(b(x0)) Ab(Right1(x0))
Right2(b(x0)) Ab(Right2(x0))
Right3(b(x0)) Ab(Right3(x0))
Right4(b(x0)) Ab(Right4(x0))
Right5(b(x0)) Ab(Right5(x0))
Right1(c(x0)) Ac(Right1(x0))
Right2(c(x0)) Ac(Right2(x0))
Right3(c(x0)) Ac(Right3(x0))
Right4(c(x0)) Ac(Right4(x0))
Right5(c(x0)) Ac(Right5(x0))
Right1(d(x0)) Ad(Right1(x0))
Right2(d(x0)) Ad(Right2(x0))
Right3(d(x0)) Ad(Right3(x0))
Right4(d(x0)) Ad(Right4(x0))
Right5(d(x0)) Ad(Right5(x0))
Aa(Left(x0)) Left(a(x0))
Ab(Left(x0)) Left(b(x0))
Ac(Left(x0)) Left(c(x0))
Ad(Left(x0)) Left(d(x0))
Wait(Left(x0)) Begin(x0)
a(a(x0)) b(b(b(x0)))
b(b(x0)) c(c(c(x0)))
c(c(x0)) d(d(d(x0)))
b(x0) d(d(x0))
c(d(d(x0))) a(x0)

Proof

1 Rule Removal

Using the linear polynomial interpretation over the arctic semiring over the integers
[b(x1)] = 9 · x1 + -∞
[Ac(x1)] = 6 · x1 + -∞
[d(x1)] = 4 · x1 + -∞
[Begin(x1)] = 0 · x1 + -∞
[Wait(x1)] = 0 · x1 + -∞
[Ad(x1)] = 4 · x1 + -∞
[Right2(x1)] = 9 · x1 + -∞
[Right5(x1)] = 4 · x1 + -∞
[a(x1)] = 14 · x1 + -∞
[Right3(x1)] = 6 · x1 + -∞
[Ab(x1)] = 9 · x1 + -∞
[Left(x1)] = 0 · x1 + -∞
[End(x1)] = 0 · x1 + -∞
[Right4(x1)] = 8 · x1 + -∞
[Aa(x1)] = 14 · x1 + -∞
[c(x1)] = 6 · x1 + -∞
[Right1(x1)] = 13 · x1 + -∞
the rules
Begin(b(x0)) Wait(Right2(x0))
Begin(c(x0)) Wait(Right3(x0))
Begin(d(d(x0))) Wait(Right4(x0))
Begin(d(x0)) Wait(Right5(x0))
Right1(a(End(x0))) Left(b(b(b(End(x0)))))
Right2(b(End(x0))) Left(c(c(c(End(x0)))))
Right3(c(End(x0))) Left(d(d(d(End(x0)))))
Right4(c(End(x0))) Left(a(End(x0)))
Right5(c(d(End(x0)))) Left(a(End(x0)))
Right1(a(x0)) Aa(Right1(x0))
Right2(a(x0)) Aa(Right2(x0))
Right3(a(x0)) Aa(Right3(x0))
Right4(a(x0)) Aa(Right4(x0))
Right5(a(x0)) Aa(Right5(x0))
Right1(b(x0)) Ab(Right1(x0))
Right2(b(x0)) Ab(Right2(x0))
Right3(b(x0)) Ab(Right3(x0))
Right4(b(x0)) Ab(Right4(x0))
Right5(b(x0)) Ab(Right5(x0))
Right1(c(x0)) Ac(Right1(x0))
Right2(c(x0)) Ac(Right2(x0))
Right3(c(x0)) Ac(Right3(x0))
Right4(c(x0)) Ac(Right4(x0))
Right5(c(x0)) Ac(Right5(x0))
Right1(d(x0)) Ad(Right1(x0))
Right2(d(x0)) Ad(Right2(x0))
Right3(d(x0)) Ad(Right3(x0))
Right4(d(x0)) Ad(Right4(x0))
Right5(d(x0)) Ad(Right5(x0))
Aa(Left(x0)) Left(a(x0))
Ab(Left(x0)) Left(b(x0))
Ac(Left(x0)) Left(c(x0))
Ad(Left(x0)) Left(d(x0))
Wait(Left(x0)) Begin(x0)
b(b(x0)) c(c(c(x0)))
c(c(x0)) d(d(d(x0)))
c(d(d(x0))) a(x0)
remain.

1.1 Rule Removal

Using the linear polynomial interpretation over the arctic semiring over the integers
[b(x1)] = 0 · x1 + -∞
[Ac(x1)] = 0 · x1 + -∞
[d(x1)] = 0 · x1 + -∞
[Begin(x1)] = 0 · x1 + -∞
[Wait(x1)] = 0 · x1 + -∞
[Ad(x1)] = 0 · x1 + -∞
[Right2(x1)] = 0 · x1 + -∞
[Right5(x1)] = 0 · x1 + -∞
[a(x1)] = 0 · x1 + -∞
[Right3(x1)] = 0 · x1 + -∞
[Ab(x1)] = 0 · x1 + -∞
[Left(x1)] = 0 · x1 + -∞
[End(x1)] = 0 · x1 + -∞
[Right4(x1)] = 0 · x1 + -∞
[Aa(x1)] = 0 · x1 + -∞
[c(x1)] = 0 · x1 + -∞
[Right1(x1)] = 8 · x1 + -∞
the rules
Begin(b(x0)) Wait(Right2(x0))
Begin(c(x0)) Wait(Right3(x0))
Begin(d(d(x0))) Wait(Right4(x0))
Begin(d(x0)) Wait(Right5(x0))
Right2(b(End(x0))) Left(c(c(c(End(x0)))))
Right3(c(End(x0))) Left(d(d(d(End(x0)))))
Right4(c(End(x0))) Left(a(End(x0)))
Right5(c(d(End(x0)))) Left(a(End(x0)))
Right1(a(x0)) Aa(Right1(x0))
Right2(a(x0)) Aa(Right2(x0))
Right3(a(x0)) Aa(Right3(x0))
Right4(a(x0)) Aa(Right4(x0))
Right5(a(x0)) Aa(Right5(x0))
Right1(b(x0)) Ab(Right1(x0))
Right2(b(x0)) Ab(Right2(x0))
Right3(b(x0)) Ab(Right3(x0))
Right4(b(x0)) Ab(Right4(x0))
Right5(b(x0)) Ab(Right5(x0))
Right1(c(x0)) Ac(Right1(x0))
Right2(c(x0)) Ac(Right2(x0))
Right3(c(x0)) Ac(Right3(x0))
Right4(c(x0)) Ac(Right4(x0))
Right5(c(x0)) Ac(Right5(x0))
Right1(d(x0)) Ad(Right1(x0))
Right2(d(x0)) Ad(Right2(x0))
Right3(d(x0)) Ad(Right3(x0))
Right4(d(x0)) Ad(Right4(x0))
Right5(d(x0)) Ad(Right5(x0))
Aa(Left(x0)) Left(a(x0))
Ab(Left(x0)) Left(b(x0))
Ac(Left(x0)) Left(c(x0))
Ad(Left(x0)) Left(d(x0))
Wait(Left(x0)) Begin(x0)
b(b(x0)) c(c(c(x0)))
c(c(x0)) d(d(d(x0)))
c(d(d(x0))) a(x0)
remain.

1.1.1 Rule Removal

Using the linear polynomial interpretation over the arctic semiring over the integers
[b(x1)] = 8 · x1 + -∞
[Ac(x1)] = 0 · x1 + -∞
[d(x1)] = 0 · x1 + -∞
[Begin(x1)] = 0 · x1 + -∞
[Wait(x1)] = 0 · x1 + -∞
[Ad(x1)] = 0 · x1 + -∞
[Right2(x1)] = 4 · x1 + -∞
[Right5(x1)] = 0 · x1 + -∞
[a(x1)] = 0 · x1 + -∞
[Right3(x1)] = 0 · x1 + -∞
[Ab(x1)] = 8 · x1 + -∞
[Left(x1)] = 0 · x1 + -∞
[End(x1)] = 0 · x1 + -∞
[Right4(x1)] = 0 · x1 + -∞
[Aa(x1)] = 0 · x1 + -∞
[c(x1)] = 0 · x1 + -∞
[Right1(x1)] = 0 · x1 + -∞
the rules
Begin(c(x0)) Wait(Right3(x0))
Begin(d(d(x0))) Wait(Right4(x0))
Begin(d(x0)) Wait(Right5(x0))
Right3(c(End(x0))) Left(d(d(d(End(x0)))))
Right4(c(End(x0))) Left(a(End(x0)))
Right5(c(d(End(x0)))) Left(a(End(x0)))
Right1(a(x0)) Aa(Right1(x0))
Right2(a(x0)) Aa(Right2(x0))
Right3(a(x0)) Aa(Right3(x0))
Right4(a(x0)) Aa(Right4(x0))
Right5(a(x0)) Aa(Right5(x0))
Right1(b(x0)) Ab(Right1(x0))
Right2(b(x0)) Ab(Right2(x0))
Right3(b(x0)) Ab(Right3(x0))
Right4(b(x0)) Ab(Right4(x0))
Right5(b(x0)) Ab(Right5(x0))
Right1(c(x0)) Ac(Right1(x0))
Right2(c(x0)) Ac(Right2(x0))
Right3(c(x0)) Ac(Right3(x0))
Right4(c(x0)) Ac(Right4(x0))
Right5(c(x0)) Ac(Right5(x0))
Right1(d(x0)) Ad(Right1(x0))
Right2(d(x0)) Ad(Right2(x0))
Right3(d(x0)) Ad(Right3(x0))
Right4(d(x0)) Ad(Right4(x0))
Right5(d(x0)) Ad(Right5(x0))
Aa(Left(x0)) Left(a(x0))
Ab(Left(x0)) Left(b(x0))
Ac(Left(x0)) Left(c(x0))
Ad(Left(x0)) Left(d(x0))
Wait(Left(x0)) Begin(x0)
c(c(x0)) d(d(d(x0)))
c(d(d(x0))) a(x0)
remain.

1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the arctic semiring over the integers
[b(x1)] = 14 · x1 + -∞
[Ac(x1)] = 4 · x1 + -∞
[d(x1)] = 1 · x1 + -∞
[Begin(x1)] = 1 · x1 + -∞
[Wait(x1)] = 0 · x1 + -∞
[Ad(x1)] = 1 · x1 + -∞
[Right2(x1)] = 6 · x1 + -∞
[Right5(x1)] = 0 · x1 + -∞
[a(x1)] = 0 · x1 + -∞
[Right3(x1)] = 1 · x1 + -∞
[Ab(x1)] = 14 · x1 + -∞
[Left(x1)] = 1 · x1 + -∞
[End(x1)] = 2 · x1 + -∞
[Right4(x1)] = 3 · x1 + -∞
[Aa(x1)] = 0 · x1 + -∞
[c(x1)] = 4 · x1 + -∞
[Right1(x1)] = 0 · x1 + -∞
the rules
Begin(d(d(x0))) Wait(Right4(x0))
Right1(a(x0)) Aa(Right1(x0))
Right2(a(x0)) Aa(Right2(x0))
Right3(a(x0)) Aa(Right3(x0))
Right4(a(x0)) Aa(Right4(x0))
Right5(a(x0)) Aa(Right5(x0))
Right1(b(x0)) Ab(Right1(x0))
Right2(b(x0)) Ab(Right2(x0))
Right3(b(x0)) Ab(Right3(x0))
Right4(b(x0)) Ab(Right4(x0))
Right5(b(x0)) Ab(Right5(x0))
Right1(c(x0)) Ac(Right1(x0))
Right2(c(x0)) Ac(Right2(x0))
Right3(c(x0)) Ac(Right3(x0))
Right4(c(x0)) Ac(Right4(x0))
Right5(c(x0)) Ac(Right5(x0))
Right1(d(x0)) Ad(Right1(x0))
Right2(d(x0)) Ad(Right2(x0))
Right3(d(x0)) Ad(Right3(x0))
Right4(d(x0)) Ad(Right4(x0))
Right5(d(x0)) Ad(Right5(x0))
Aa(Left(x0)) Left(a(x0))
Ab(Left(x0)) Left(b(x0))
Ac(Left(x0)) Left(c(x0))
Ad(Left(x0)) Left(d(x0))
Wait(Left(x0)) Begin(x0)
remain.

1.1.1.1.1 Rule Removal

Using the Knuth Bendix order with w0 = 1 and the following precedence and weight function
prec(Ad) = 2 weight(Ad) = 1
prec(Ac) = 1 weight(Ac) = 1
prec(Ab) = 2 weight(Ab) = 1
prec(Aa) = 2 weight(Aa) = 1
prec(Left) = 0 weight(Left) = 1
prec(Right5) = 3 weight(Right5) = 1
prec(Right4) = 11 weight(Right4) = 1
prec(d) = 0 weight(d) = 1
prec(Right3) = 15 weight(Right3) = 0
prec(c) = 0 weight(c) = 1
prec(Right2) = 11 weight(Right2) = 1
prec(b) = 0 weight(b) = 1
prec(Wait) = 0 weight(Wait) = 1
prec(Right1) = 11 weight(Right1) = 1
prec(Begin) = 0 weight(Begin) = 1
prec(a) = 0 weight(a) = 1
all rules could be removed.

1.1.1.1.1.1 R is empty

There are no rules in the TRS. Hence, it is terminating.