YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
B(x0) | → | W(M(M(V(x0)))) |
M(x0) | → | x0 |
M(V(a(x0))) | → | V(Xa(x0)) |
M(V(b(x0))) | → | V(Xb(x0)) |
M(V(c(x0))) | → | V(Xc(x0)) |
M(V(d(x0))) | → | V(Xd(x0)) |
Xa(a(x0)) | → | a(Xa(x0)) |
Xa(b(x0)) | → | b(Xa(x0)) |
Xa(c(x0)) | → | c(Xa(x0)) |
Xa(d(x0)) | → | d(Xa(x0)) |
Xb(a(x0)) | → | a(Xb(x0)) |
Xb(b(x0)) | → | b(Xb(x0)) |
Xb(c(x0)) | → | c(Xb(x0)) |
Xb(d(x0)) | → | d(Xb(x0)) |
Xc(a(x0)) | → | a(Xc(x0)) |
Xc(b(x0)) | → | b(Xc(x0)) |
Xc(c(x0)) | → | c(Xc(x0)) |
Xc(d(x0)) | → | d(Xc(x0)) |
Xd(a(x0)) | → | a(Xd(x0)) |
Xd(b(x0)) | → | b(Xd(x0)) |
Xd(c(x0)) | → | c(Xd(x0)) |
Xd(d(x0)) | → | d(Xd(x0)) |
Xa(E(x0)) | → | a(E(x0)) |
Xb(E(x0)) | → | b(E(x0)) |
Xc(E(x0)) | → | c(E(x0)) |
Xd(E(x0)) | → | d(E(x0)) |
W(V(x0)) | → | R(L(x0)) |
L(a(x0)) | → | Ya(L(x0)) |
L(b(x0)) | → | Yb(L(x0)) |
L(c(x0)) | → | Yc(L(x0)) |
L(d(x0)) | → | Yd(L(x0)) |
L(a(a(x0))) | → | D(b(b(b(x0)))) |
L(b(b(x0))) | → | D(c(c(c(x0)))) |
L(c(c(x0))) | → | D(d(d(d(x0)))) |
L(b(x0)) | → | D(d(d(x0))) |
L(c(d(d(x0)))) | → | D(a(x0)) |
Ya(D(x0)) | → | D(a(x0)) |
Yb(D(x0)) | → | D(b(x0)) |
Yc(D(x0)) | → | D(c(x0)) |
Yd(D(x0)) | → | D(d(x0)) |
R(D(x0)) | → | B(x0) |
[Yd(x1)] | = | 4 · x1 + -∞ |
[a(x1)] | = | 14 · x1 + -∞ |
[Ya(x1)] | = | 14 · x1 + -∞ |
[c(x1)] | = | 6 · x1 + -∞ |
[V(x1)] | = | 0 · x1 + -∞ |
[W(x1)] | = | 9 · x1 + -∞ |
[Yb(x1)] | = | 9 · x1 + -∞ |
[D(x1)] | = | 0 · x1 + -∞ |
[Yc(x1)] | = | 6 · x1 + -∞ |
[Xa(x1)] | = | 14 · x1 + -∞ |
[d(x1)] | = | 4 · x1 + -∞ |
[B(x1)] | = | 9 · x1 + -∞ |
[Xb(x1)] | = | 9 · x1 + -∞ |
[R(x1)] | = | 9 · x1 + -∞ |
[E(x1)] | = | 0 · x1 + -∞ |
[Xd(x1)] | = | 4 · x1 + -∞ |
[Xc(x1)] | = | 6 · x1 + -∞ |
[L(x1)] | = | 0 · x1 + -∞ |
[b(x1)] | = | 9 · x1 + -∞ |
[M(x1)] | = | 0 · x1 + -∞ |
B(x0) | → | W(M(M(V(x0)))) |
M(x0) | → | x0 |
M(V(a(x0))) | → | V(Xa(x0)) |
M(V(b(x0))) | → | V(Xb(x0)) |
M(V(c(x0))) | → | V(Xc(x0)) |
M(V(d(x0))) | → | V(Xd(x0)) |
Xa(a(x0)) | → | a(Xa(x0)) |
Xa(b(x0)) | → | b(Xa(x0)) |
Xa(c(x0)) | → | c(Xa(x0)) |
Xa(d(x0)) | → | d(Xa(x0)) |
Xb(a(x0)) | → | a(Xb(x0)) |
Xb(b(x0)) | → | b(Xb(x0)) |
Xb(c(x0)) | → | c(Xb(x0)) |
Xb(d(x0)) | → | d(Xb(x0)) |
Xc(a(x0)) | → | a(Xc(x0)) |
Xc(b(x0)) | → | b(Xc(x0)) |
Xc(c(x0)) | → | c(Xc(x0)) |
Xc(d(x0)) | → | d(Xc(x0)) |
Xd(a(x0)) | → | a(Xd(x0)) |
Xd(b(x0)) | → | b(Xd(x0)) |
Xd(c(x0)) | → | c(Xd(x0)) |
Xd(d(x0)) | → | d(Xd(x0)) |
Xa(E(x0)) | → | a(E(x0)) |
Xb(E(x0)) | → | b(E(x0)) |
Xc(E(x0)) | → | c(E(x0)) |
Xd(E(x0)) | → | d(E(x0)) |
W(V(x0)) | → | R(L(x0)) |
L(a(x0)) | → | Ya(L(x0)) |
L(b(x0)) | → | Yb(L(x0)) |
L(c(x0)) | → | Yc(L(x0)) |
L(d(x0)) | → | Yd(L(x0)) |
L(b(b(x0))) | → | D(c(c(c(x0)))) |
L(c(c(x0))) | → | D(d(d(d(x0)))) |
L(c(d(d(x0)))) | → | D(a(x0)) |
Ya(D(x0)) | → | D(a(x0)) |
Yb(D(x0)) | → | D(b(x0)) |
Yc(D(x0)) | → | D(c(x0)) |
Yd(D(x0)) | → | D(d(x0)) |
R(D(x0)) | → | B(x0) |
[Yd(x1)] | = | 0 · x1 + -∞ |
[a(x1)] | = | 0 · x1 + -∞ |
[Ya(x1)] | = | 0 · x1 + -∞ |
[c(x1)] | = | 4 · x1 + -∞ |
[V(x1)] | = | 8 · x1 + -∞ |
[W(x1)] | = | 0 · x1 + -∞ |
[Yb(x1)] | = | 8 · x1 + -∞ |
[D(x1)] | = | 1 · x1 + -∞ |
[Yc(x1)] | = | 4 · x1 + -∞ |
[Xa(x1)] | = | 0 · x1 + -∞ |
[d(x1)] | = | 0 · x1 + -∞ |
[B(x1)] | = | 8 · x1 + -∞ |
[Xb(x1)] | = | 8 · x1 + -∞ |
[R(x1)] | = | 8 · x1 + -∞ |
[E(x1)] | = | 1 · x1 + -∞ |
[Xd(x1)] | = | 0 · x1 + -∞ |
[Xc(x1)] | = | 4 · x1 + -∞ |
[L(x1)] | = | 0 · x1 + -∞ |
[b(x1)] | = | 8 · x1 + -∞ |
[M(x1)] | = | 0 · x1 + -∞ |
B(x0) | → | W(M(M(V(x0)))) |
M(x0) | → | x0 |
M(V(a(x0))) | → | V(Xa(x0)) |
M(V(b(x0))) | → | V(Xb(x0)) |
M(V(c(x0))) | → | V(Xc(x0)) |
M(V(d(x0))) | → | V(Xd(x0)) |
Xa(a(x0)) | → | a(Xa(x0)) |
Xa(b(x0)) | → | b(Xa(x0)) |
Xa(c(x0)) | → | c(Xa(x0)) |
Xa(d(x0)) | → | d(Xa(x0)) |
Xb(a(x0)) | → | a(Xb(x0)) |
Xb(b(x0)) | → | b(Xb(x0)) |
Xb(c(x0)) | → | c(Xb(x0)) |
Xb(d(x0)) | → | d(Xb(x0)) |
Xc(a(x0)) | → | a(Xc(x0)) |
Xc(b(x0)) | → | b(Xc(x0)) |
Xc(c(x0)) | → | c(Xc(x0)) |
Xc(d(x0)) | → | d(Xc(x0)) |
Xd(a(x0)) | → | a(Xd(x0)) |
Xd(b(x0)) | → | b(Xd(x0)) |
Xd(c(x0)) | → | c(Xd(x0)) |
Xd(d(x0)) | → | d(Xd(x0)) |
Xa(E(x0)) | → | a(E(x0)) |
Xb(E(x0)) | → | b(E(x0)) |
Xc(E(x0)) | → | c(E(x0)) |
Xd(E(x0)) | → | d(E(x0)) |
W(V(x0)) | → | R(L(x0)) |
L(a(x0)) | → | Ya(L(x0)) |
L(b(x0)) | → | Yb(L(x0)) |
L(c(x0)) | → | Yc(L(x0)) |
L(d(x0)) | → | Yd(L(x0)) |
Ya(D(x0)) | → | D(a(x0)) |
Yb(D(x0)) | → | D(b(x0)) |
Yc(D(x0)) | → | D(c(x0)) |
Yd(D(x0)) | → | D(d(x0)) |
[Yd(x1)] | = | 0 · x1 + -∞ |
[a(x1)] | = | 0 · x1 + -∞ |
[Ya(x1)] | = | 0 · x1 + -∞ |
[c(x1)] | = | 0 · x1 + -∞ |
[V(x1)] | = | 0 · x1 + -∞ |
[W(x1)] | = | 1 · x1 + -∞ |
[Yb(x1)] | = | 1 · x1 + -∞ |
[D(x1)] | = | 0 · x1 + -∞ |
[Yc(x1)] | = | 0 · x1 + -∞ |
[Xa(x1)] | = | 1 · x1 + -∞ |
[d(x1)] | = | 0 · x1 + -∞ |
[B(x1)] | = | 9 · x1 + -∞ |
[Xb(x1)] | = | 2 · x1 + -∞ |
[R(x1)] | = | 0 · x1 + -∞ |
[E(x1)] | = | 15 · x1 + -∞ |
[Xd(x1)] | = | 2 · x1 + -∞ |
[Xc(x1)] | = | 0 · x1 + -∞ |
[L(x1)] | = | 0 · x1 + -∞ |
[b(x1)] | = | 1 · x1 + -∞ |
[M(x1)] | = | 4 · x1 + -∞ |
B(x0) | → | W(M(M(V(x0)))) |
Xa(a(x0)) | → | a(Xa(x0)) |
Xa(b(x0)) | → | b(Xa(x0)) |
Xa(c(x0)) | → | c(Xa(x0)) |
Xa(d(x0)) | → | d(Xa(x0)) |
Xb(a(x0)) | → | a(Xb(x0)) |
Xb(b(x0)) | → | b(Xb(x0)) |
Xb(c(x0)) | → | c(Xb(x0)) |
Xb(d(x0)) | → | d(Xb(x0)) |
Xc(a(x0)) | → | a(Xc(x0)) |
Xc(b(x0)) | → | b(Xc(x0)) |
Xc(c(x0)) | → | c(Xc(x0)) |
Xc(d(x0)) | → | d(Xc(x0)) |
Xd(a(x0)) | → | a(Xd(x0)) |
Xd(b(x0)) | → | b(Xd(x0)) |
Xd(c(x0)) | → | c(Xd(x0)) |
Xd(d(x0)) | → | d(Xd(x0)) |
Xc(E(x0)) | → | c(E(x0)) |
L(a(x0)) | → | Ya(L(x0)) |
L(b(x0)) | → | Yb(L(x0)) |
L(c(x0)) | → | Yc(L(x0)) |
L(d(x0)) | → | Yd(L(x0)) |
Ya(D(x0)) | → | D(a(x0)) |
Yb(D(x0)) | → | D(b(x0)) |
Yc(D(x0)) | → | D(c(x0)) |
Yd(D(x0)) | → | D(d(x0)) |
final states:
{39, 37, 35, 33, 32, 31, 30, 28, 26, 25, 24, 23, 21, 20, 19, 18, 16, 15, 14, 13, 11, 10, 9, 8, 6, 1}
transitions:
23 | → | 22 |
25 | → | 22 |
32 | → | 29 |
10 | → | 7 |
15 | → | 12 |
18 | → | 17 |
9 | → | 7 |
20 | → | 17 |
31 | → | 29 |
8 | → | 7 |
13 | → | 12 |
26 | → | 17 |
21 | → | 22 |
6 | → | 7 |
11 | → | 12 |
28 | → | 29 |
16 | → | 17 |
14 | → | 12 |
30 | → | 29 |
24 | → | 22 |
19 | → | 17 |
Xd0(2) | → | 22 |
a0(12) | → | 11 |
a0(22) | → | 21 |
a0(2) | → | 34 |
a0(17) | → | 16 |
a0(7) | → | 6 |
Xb0(2) | → | 12 |
b0(7) | → | 8 |
b0(12) | → | 13 |
b0(2) | → | 36 |
b0(17) | → | 18 |
b0(22) | → | 23 |
Yd0(29) | → | 32 |
Xc0(2) | → | 17 |
Ya0(29) | → | 28 |
W0(5) | → | 1 |
c0(27) | → | 26 |
c0(2) | → | 38 |
c0(17) | → | 19 |
c0(7) | → | 9 |
c0(22) | → | 24 |
c0(12) | → | 14 |
M0(4) | → | 5 |
M0(3) | → | 4 |
V0(2) | → | 3 |
E0(2) | → | 27 |
f200 | → | 2 |
Yc0(29) | → | 31 |
Yb0(29) | → | 30 |
Xa0(2) | → | 7 |
D0(38) | → | 37 |
D0(34) | → | 33 |
D0(40) | → | 39 |
D0(36) | → | 35 |
L0(2) | → | 29 |
d0(12) | → | 15 |
d0(2) | → | 40 |
d0(22) | → | 25 |
d0(17) | → | 20 |
d0(7) | → | 10 |