YES
0 QTRS
↳1 QTRSRRRProof (⇔, 28 ms)
↳2 QTRS
↳3 Overlay + Local Confluence (⇔, 24 ms)
↳4 QTRS
↳5 DependencyPairsProof (⇔, 0 ms)
↳6 QDP
↳7 DependencyGraphProof (⇔, 0 ms)
↳8 AND
↳9 QDP
↳10 UsableRulesProof (⇔, 0 ms)
↳11 QDP
↳12 QReductionProof (⇔, 0 ms)
↳13 QDP
↳14 QDPSizeChangeProof (⇔, 2 ms)
↳15 YES
↳16 QDP
↳17 UsableRulesProof (⇔, 0 ms)
↳18 QDP
↳19 QReductionProof (⇔, 0 ms)
↳20 QDP
↳21 QDPSizeChangeProof (⇔, 0 ms)
↳22 YES
↳23 QDP
↳24 UsableRulesProof (⇔, 0 ms)
↳25 QDP
↳26 QReductionProof (⇔, 0 ms)
↳27 QDP
↳28 QDPSizeChangeProof (⇔, 0 ms)
↳29 YES
↳30 QDP
↳31 UsableRulesProof (⇔, 0 ms)
↳32 QDP
↳33 QReductionProof (⇔, 0 ms)
↳34 QDP
↳35 QDPSizeChangeProof (⇔, 0 ms)
↳36 YES
↳37 QDP
↳38 UsableRulesProof (⇔, 0 ms)
↳39 QDP
↳40 QReductionProof (⇔, 0 ms)
↳41 QDP
↳42 QDPSizeChangeProof (⇔, 0 ms)
↳43 YES
B(x) → W(M(M(V(x))))
M(x) → x
M(V(a(x))) → V(Xa(x))
M(V(b(x))) → V(Xb(x))
M(V(c(x))) → V(Xc(x))
M(V(d(x))) → V(Xd(x))
Xa(a(x)) → a(Xa(x))
Xa(b(x)) → b(Xa(x))
Xa(c(x)) → c(Xa(x))
Xa(d(x)) → d(Xa(x))
Xb(a(x)) → a(Xb(x))
Xb(b(x)) → b(Xb(x))
Xb(c(x)) → c(Xb(x))
Xb(d(x)) → d(Xb(x))
Xc(a(x)) → a(Xc(x))
Xc(b(x)) → b(Xc(x))
Xc(c(x)) → c(Xc(x))
Xc(d(x)) → d(Xc(x))
Xd(a(x)) → a(Xd(x))
Xd(b(x)) → b(Xd(x))
Xd(c(x)) → c(Xd(x))
Xd(d(x)) → d(Xd(x))
Xa(E(x)) → a(E(x))
Xb(E(x)) → b(E(x))
Xc(E(x)) → c(E(x))
Xd(E(x)) → d(E(x))
W(V(x)) → R(L(x))
L(a(x)) → Ya(L(x))
L(b(x)) → Yb(L(x))
L(c(x)) → Yc(L(x))
L(d(x)) → Yd(L(x))
L(a(a(x))) → D(b(b(b(x))))
L(b(b(x))) → D(c(c(c(x))))
L(c(c(x))) → D(d(d(d(x))))
L(b(x)) → D(d(d(x)))
L(c(d(d(x)))) → D(a(x))
Ya(D(x)) → D(a(x))
Yb(D(x)) → D(b(x))
Yc(D(x)) → D(c(x))
Yd(D(x)) → D(d(x))
R(D(x)) → B(x)
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(B(x1)) = 6 + x1
POL(D(x1)) = 7 + x1
POL(E(x1)) = x1
POL(L(x1)) = x1
POL(M(x1)) = 2 + x1
POL(R(x1)) = x1
POL(V(x1)) = x1
POL(W(x1)) = 1 + x1
POL(Xa(x1)) = 641 + x1
POL(Xb(x1)) = 425 + x1
POL(Xc(x1)) = 281 + x1
POL(Xd(x1)) = 185 + x1
POL(Ya(x1)) = 640 + x1
POL(Yb(x1)) = 424 + x1
POL(Yc(x1)) = 280 + x1
POL(Yd(x1)) = 184 + x1
POL(a(x1)) = 640 + x1
POL(b(x1)) = 424 + x1
POL(c(x1)) = 280 + x1
POL(d(x1)) = 184 + x1
B(x) → W(M(M(V(x))))
M(x) → x
M(V(a(x))) → V(Xa(x))
M(V(b(x))) → V(Xb(x))
M(V(c(x))) → V(Xc(x))
M(V(d(x))) → V(Xd(x))
Xa(E(x)) → a(E(x))
Xb(E(x)) → b(E(x))
Xc(E(x)) → c(E(x))
Xd(E(x)) → d(E(x))
W(V(x)) → R(L(x))
L(a(a(x))) → D(b(b(b(x))))
L(b(b(x))) → D(c(c(c(x))))
L(c(c(x))) → D(d(d(d(x))))
L(b(x)) → D(d(d(x)))
L(c(d(d(x)))) → D(a(x))
R(D(x)) → B(x)
Xa(a(x)) → a(Xa(x))
Xa(b(x)) → b(Xa(x))
Xa(c(x)) → c(Xa(x))
Xa(d(x)) → d(Xa(x))
Xb(a(x)) → a(Xb(x))
Xb(b(x)) → b(Xb(x))
Xb(c(x)) → c(Xb(x))
Xb(d(x)) → d(Xb(x))
Xc(a(x)) → a(Xc(x))
Xc(b(x)) → b(Xc(x))
Xc(c(x)) → c(Xc(x))
Xc(d(x)) → d(Xc(x))
Xd(a(x)) → a(Xd(x))
Xd(b(x)) → b(Xd(x))
Xd(c(x)) → c(Xd(x))
Xd(d(x)) → d(Xd(x))
L(a(x)) → Ya(L(x))
L(b(x)) → Yb(L(x))
L(c(x)) → Yc(L(x))
L(d(x)) → Yd(L(x))
Ya(D(x)) → D(a(x))
Yb(D(x)) → D(b(x))
Yc(D(x)) → D(c(x))
Yd(D(x)) → D(d(x))
Xa(a(x)) → a(Xa(x))
Xa(b(x)) → b(Xa(x))
Xa(c(x)) → c(Xa(x))
Xa(d(x)) → d(Xa(x))
Xb(a(x)) → a(Xb(x))
Xb(b(x)) → b(Xb(x))
Xb(c(x)) → c(Xb(x))
Xb(d(x)) → d(Xb(x))
Xc(a(x)) → a(Xc(x))
Xc(b(x)) → b(Xc(x))
Xc(c(x)) → c(Xc(x))
Xc(d(x)) → d(Xc(x))
Xd(a(x)) → a(Xd(x))
Xd(b(x)) → b(Xd(x))
Xd(c(x)) → c(Xd(x))
Xd(d(x)) → d(Xd(x))
L(a(x)) → Ya(L(x))
L(b(x)) → Yb(L(x))
L(c(x)) → Yc(L(x))
L(d(x)) → Yd(L(x))
Ya(D(x)) → D(a(x))
Yb(D(x)) → D(b(x))
Yc(D(x)) → D(c(x))
Yd(D(x)) → D(d(x))
Xa(a(x0))
Xa(b(x0))
Xa(c(x0))
Xa(d(x0))
Xb(a(x0))
Xb(b(x0))
Xb(c(x0))
Xb(d(x0))
Xc(a(x0))
Xc(b(x0))
Xc(c(x0))
Xc(d(x0))
Xd(a(x0))
Xd(b(x0))
Xd(c(x0))
Xd(d(x0))
L(a(x0))
L(b(x0))
L(c(x0))
L(d(x0))
Ya(D(x0))
Yb(D(x0))
Yc(D(x0))
Yd(D(x0))
XA(a(x)) → XA(x)
XA(b(x)) → XA(x)
XA(c(x)) → XA(x)
XA(d(x)) → XA(x)
XB(a(x)) → XB(x)
XB(b(x)) → XB(x)
XB(c(x)) → XB(x)
XB(d(x)) → XB(x)
XC(a(x)) → XC(x)
XC(b(x)) → XC(x)
XC(c(x)) → XC(x)
XC(d(x)) → XC(x)
XD(a(x)) → XD(x)
XD(b(x)) → XD(x)
XD(c(x)) → XD(x)
XD(d(x)) → XD(x)
L1(a(x)) → YA(L(x))
L1(a(x)) → L1(x)
L1(b(x)) → YB(L(x))
L1(b(x)) → L1(x)
L1(c(x)) → YC(L(x))
L1(c(x)) → L1(x)
L1(d(x)) → YD(L(x))
L1(d(x)) → L1(x)
Xa(a(x)) → a(Xa(x))
Xa(b(x)) → b(Xa(x))
Xa(c(x)) → c(Xa(x))
Xa(d(x)) → d(Xa(x))
Xb(a(x)) → a(Xb(x))
Xb(b(x)) → b(Xb(x))
Xb(c(x)) → c(Xb(x))
Xb(d(x)) → d(Xb(x))
Xc(a(x)) → a(Xc(x))
Xc(b(x)) → b(Xc(x))
Xc(c(x)) → c(Xc(x))
Xc(d(x)) → d(Xc(x))
Xd(a(x)) → a(Xd(x))
Xd(b(x)) → b(Xd(x))
Xd(c(x)) → c(Xd(x))
Xd(d(x)) → d(Xd(x))
L(a(x)) → Ya(L(x))
L(b(x)) → Yb(L(x))
L(c(x)) → Yc(L(x))
L(d(x)) → Yd(L(x))
Ya(D(x)) → D(a(x))
Yb(D(x)) → D(b(x))
Yc(D(x)) → D(c(x))
Yd(D(x)) → D(d(x))
Xa(a(x0))
Xa(b(x0))
Xa(c(x0))
Xa(d(x0))
Xb(a(x0))
Xb(b(x0))
Xb(c(x0))
Xb(d(x0))
Xc(a(x0))
Xc(b(x0))
Xc(c(x0))
Xc(d(x0))
Xd(a(x0))
Xd(b(x0))
Xd(c(x0))
Xd(d(x0))
L(a(x0))
L(b(x0))
L(c(x0))
L(d(x0))
Ya(D(x0))
Yb(D(x0))
Yc(D(x0))
Yd(D(x0))
L1(b(x)) → L1(x)
L1(a(x)) → L1(x)
L1(c(x)) → L1(x)
L1(d(x)) → L1(x)
Xa(a(x)) → a(Xa(x))
Xa(b(x)) → b(Xa(x))
Xa(c(x)) → c(Xa(x))
Xa(d(x)) → d(Xa(x))
Xb(a(x)) → a(Xb(x))
Xb(b(x)) → b(Xb(x))
Xb(c(x)) → c(Xb(x))
Xb(d(x)) → d(Xb(x))
Xc(a(x)) → a(Xc(x))
Xc(b(x)) → b(Xc(x))
Xc(c(x)) → c(Xc(x))
Xc(d(x)) → d(Xc(x))
Xd(a(x)) → a(Xd(x))
Xd(b(x)) → b(Xd(x))
Xd(c(x)) → c(Xd(x))
Xd(d(x)) → d(Xd(x))
L(a(x)) → Ya(L(x))
L(b(x)) → Yb(L(x))
L(c(x)) → Yc(L(x))
L(d(x)) → Yd(L(x))
Ya(D(x)) → D(a(x))
Yb(D(x)) → D(b(x))
Yc(D(x)) → D(c(x))
Yd(D(x)) → D(d(x))
Xa(a(x0))
Xa(b(x0))
Xa(c(x0))
Xa(d(x0))
Xb(a(x0))
Xb(b(x0))
Xb(c(x0))
Xb(d(x0))
Xc(a(x0))
Xc(b(x0))
Xc(c(x0))
Xc(d(x0))
Xd(a(x0))
Xd(b(x0))
Xd(c(x0))
Xd(d(x0))
L(a(x0))
L(b(x0))
L(c(x0))
L(d(x0))
Ya(D(x0))
Yb(D(x0))
Yc(D(x0))
Yd(D(x0))
L1(b(x)) → L1(x)
L1(a(x)) → L1(x)
L1(c(x)) → L1(x)
L1(d(x)) → L1(x)
Xa(a(x0))
Xa(b(x0))
Xa(c(x0))
Xa(d(x0))
Xb(a(x0))
Xb(b(x0))
Xb(c(x0))
Xb(d(x0))
Xc(a(x0))
Xc(b(x0))
Xc(c(x0))
Xc(d(x0))
Xd(a(x0))
Xd(b(x0))
Xd(c(x0))
Xd(d(x0))
L(a(x0))
L(b(x0))
L(c(x0))
L(d(x0))
Ya(D(x0))
Yb(D(x0))
Yc(D(x0))
Yd(D(x0))
Xa(a(x0))
Xa(b(x0))
Xa(c(x0))
Xa(d(x0))
Xb(a(x0))
Xb(b(x0))
Xb(c(x0))
Xb(d(x0))
Xc(a(x0))
Xc(b(x0))
Xc(c(x0))
Xc(d(x0))
Xd(a(x0))
Xd(b(x0))
Xd(c(x0))
Xd(d(x0))
L(a(x0))
L(b(x0))
L(c(x0))
L(d(x0))
Ya(D(x0))
Yb(D(x0))
Yc(D(x0))
Yd(D(x0))
L1(b(x)) → L1(x)
L1(a(x)) → L1(x)
L1(c(x)) → L1(x)
L1(d(x)) → L1(x)
From the DPs we obtained the following set of size-change graphs:
XD(b(x)) → XD(x)
XD(a(x)) → XD(x)
XD(c(x)) → XD(x)
XD(d(x)) → XD(x)
Xa(a(x)) → a(Xa(x))
Xa(b(x)) → b(Xa(x))
Xa(c(x)) → c(Xa(x))
Xa(d(x)) → d(Xa(x))
Xb(a(x)) → a(Xb(x))
Xb(b(x)) → b(Xb(x))
Xb(c(x)) → c(Xb(x))
Xb(d(x)) → d(Xb(x))
Xc(a(x)) → a(Xc(x))
Xc(b(x)) → b(Xc(x))
Xc(c(x)) → c(Xc(x))
Xc(d(x)) → d(Xc(x))
Xd(a(x)) → a(Xd(x))
Xd(b(x)) → b(Xd(x))
Xd(c(x)) → c(Xd(x))
Xd(d(x)) → d(Xd(x))
L(a(x)) → Ya(L(x))
L(b(x)) → Yb(L(x))
L(c(x)) → Yc(L(x))
L(d(x)) → Yd(L(x))
Ya(D(x)) → D(a(x))
Yb(D(x)) → D(b(x))
Yc(D(x)) → D(c(x))
Yd(D(x)) → D(d(x))
Xa(a(x0))
Xa(b(x0))
Xa(c(x0))
Xa(d(x0))
Xb(a(x0))
Xb(b(x0))
Xb(c(x0))
Xb(d(x0))
Xc(a(x0))
Xc(b(x0))
Xc(c(x0))
Xc(d(x0))
Xd(a(x0))
Xd(b(x0))
Xd(c(x0))
Xd(d(x0))
L(a(x0))
L(b(x0))
L(c(x0))
L(d(x0))
Ya(D(x0))
Yb(D(x0))
Yc(D(x0))
Yd(D(x0))
XD(b(x)) → XD(x)
XD(a(x)) → XD(x)
XD(c(x)) → XD(x)
XD(d(x)) → XD(x)
Xa(a(x0))
Xa(b(x0))
Xa(c(x0))
Xa(d(x0))
Xb(a(x0))
Xb(b(x0))
Xb(c(x0))
Xb(d(x0))
Xc(a(x0))
Xc(b(x0))
Xc(c(x0))
Xc(d(x0))
Xd(a(x0))
Xd(b(x0))
Xd(c(x0))
Xd(d(x0))
L(a(x0))
L(b(x0))
L(c(x0))
L(d(x0))
Ya(D(x0))
Yb(D(x0))
Yc(D(x0))
Yd(D(x0))
Xa(a(x0))
Xa(b(x0))
Xa(c(x0))
Xa(d(x0))
Xb(a(x0))
Xb(b(x0))
Xb(c(x0))
Xb(d(x0))
Xc(a(x0))
Xc(b(x0))
Xc(c(x0))
Xc(d(x0))
Xd(a(x0))
Xd(b(x0))
Xd(c(x0))
Xd(d(x0))
L(a(x0))
L(b(x0))
L(c(x0))
L(d(x0))
Ya(D(x0))
Yb(D(x0))
Yc(D(x0))
Yd(D(x0))
XD(b(x)) → XD(x)
XD(a(x)) → XD(x)
XD(c(x)) → XD(x)
XD(d(x)) → XD(x)
From the DPs we obtained the following set of size-change graphs:
XC(b(x)) → XC(x)
XC(a(x)) → XC(x)
XC(c(x)) → XC(x)
XC(d(x)) → XC(x)
Xa(a(x)) → a(Xa(x))
Xa(b(x)) → b(Xa(x))
Xa(c(x)) → c(Xa(x))
Xa(d(x)) → d(Xa(x))
Xb(a(x)) → a(Xb(x))
Xb(b(x)) → b(Xb(x))
Xb(c(x)) → c(Xb(x))
Xb(d(x)) → d(Xb(x))
Xc(a(x)) → a(Xc(x))
Xc(b(x)) → b(Xc(x))
Xc(c(x)) → c(Xc(x))
Xc(d(x)) → d(Xc(x))
Xd(a(x)) → a(Xd(x))
Xd(b(x)) → b(Xd(x))
Xd(c(x)) → c(Xd(x))
Xd(d(x)) → d(Xd(x))
L(a(x)) → Ya(L(x))
L(b(x)) → Yb(L(x))
L(c(x)) → Yc(L(x))
L(d(x)) → Yd(L(x))
Ya(D(x)) → D(a(x))
Yb(D(x)) → D(b(x))
Yc(D(x)) → D(c(x))
Yd(D(x)) → D(d(x))
Xa(a(x0))
Xa(b(x0))
Xa(c(x0))
Xa(d(x0))
Xb(a(x0))
Xb(b(x0))
Xb(c(x0))
Xb(d(x0))
Xc(a(x0))
Xc(b(x0))
Xc(c(x0))
Xc(d(x0))
Xd(a(x0))
Xd(b(x0))
Xd(c(x0))
Xd(d(x0))
L(a(x0))
L(b(x0))
L(c(x0))
L(d(x0))
Ya(D(x0))
Yb(D(x0))
Yc(D(x0))
Yd(D(x0))
XC(b(x)) → XC(x)
XC(a(x)) → XC(x)
XC(c(x)) → XC(x)
XC(d(x)) → XC(x)
Xa(a(x0))
Xa(b(x0))
Xa(c(x0))
Xa(d(x0))
Xb(a(x0))
Xb(b(x0))
Xb(c(x0))
Xb(d(x0))
Xc(a(x0))
Xc(b(x0))
Xc(c(x0))
Xc(d(x0))
Xd(a(x0))
Xd(b(x0))
Xd(c(x0))
Xd(d(x0))
L(a(x0))
L(b(x0))
L(c(x0))
L(d(x0))
Ya(D(x0))
Yb(D(x0))
Yc(D(x0))
Yd(D(x0))
Xa(a(x0))
Xa(b(x0))
Xa(c(x0))
Xa(d(x0))
Xb(a(x0))
Xb(b(x0))
Xb(c(x0))
Xb(d(x0))
Xc(a(x0))
Xc(b(x0))
Xc(c(x0))
Xc(d(x0))
Xd(a(x0))
Xd(b(x0))
Xd(c(x0))
Xd(d(x0))
L(a(x0))
L(b(x0))
L(c(x0))
L(d(x0))
Ya(D(x0))
Yb(D(x0))
Yc(D(x0))
Yd(D(x0))
XC(b(x)) → XC(x)
XC(a(x)) → XC(x)
XC(c(x)) → XC(x)
XC(d(x)) → XC(x)
From the DPs we obtained the following set of size-change graphs:
XB(b(x)) → XB(x)
XB(a(x)) → XB(x)
XB(c(x)) → XB(x)
XB(d(x)) → XB(x)
Xa(a(x)) → a(Xa(x))
Xa(b(x)) → b(Xa(x))
Xa(c(x)) → c(Xa(x))
Xa(d(x)) → d(Xa(x))
Xb(a(x)) → a(Xb(x))
Xb(b(x)) → b(Xb(x))
Xb(c(x)) → c(Xb(x))
Xb(d(x)) → d(Xb(x))
Xc(a(x)) → a(Xc(x))
Xc(b(x)) → b(Xc(x))
Xc(c(x)) → c(Xc(x))
Xc(d(x)) → d(Xc(x))
Xd(a(x)) → a(Xd(x))
Xd(b(x)) → b(Xd(x))
Xd(c(x)) → c(Xd(x))
Xd(d(x)) → d(Xd(x))
L(a(x)) → Ya(L(x))
L(b(x)) → Yb(L(x))
L(c(x)) → Yc(L(x))
L(d(x)) → Yd(L(x))
Ya(D(x)) → D(a(x))
Yb(D(x)) → D(b(x))
Yc(D(x)) → D(c(x))
Yd(D(x)) → D(d(x))
Xa(a(x0))
Xa(b(x0))
Xa(c(x0))
Xa(d(x0))
Xb(a(x0))
Xb(b(x0))
Xb(c(x0))
Xb(d(x0))
Xc(a(x0))
Xc(b(x0))
Xc(c(x0))
Xc(d(x0))
Xd(a(x0))
Xd(b(x0))
Xd(c(x0))
Xd(d(x0))
L(a(x0))
L(b(x0))
L(c(x0))
L(d(x0))
Ya(D(x0))
Yb(D(x0))
Yc(D(x0))
Yd(D(x0))
XB(b(x)) → XB(x)
XB(a(x)) → XB(x)
XB(c(x)) → XB(x)
XB(d(x)) → XB(x)
Xa(a(x0))
Xa(b(x0))
Xa(c(x0))
Xa(d(x0))
Xb(a(x0))
Xb(b(x0))
Xb(c(x0))
Xb(d(x0))
Xc(a(x0))
Xc(b(x0))
Xc(c(x0))
Xc(d(x0))
Xd(a(x0))
Xd(b(x0))
Xd(c(x0))
Xd(d(x0))
L(a(x0))
L(b(x0))
L(c(x0))
L(d(x0))
Ya(D(x0))
Yb(D(x0))
Yc(D(x0))
Yd(D(x0))
Xa(a(x0))
Xa(b(x0))
Xa(c(x0))
Xa(d(x0))
Xb(a(x0))
Xb(b(x0))
Xb(c(x0))
Xb(d(x0))
Xc(a(x0))
Xc(b(x0))
Xc(c(x0))
Xc(d(x0))
Xd(a(x0))
Xd(b(x0))
Xd(c(x0))
Xd(d(x0))
L(a(x0))
L(b(x0))
L(c(x0))
L(d(x0))
Ya(D(x0))
Yb(D(x0))
Yc(D(x0))
Yd(D(x0))
XB(b(x)) → XB(x)
XB(a(x)) → XB(x)
XB(c(x)) → XB(x)
XB(d(x)) → XB(x)
From the DPs we obtained the following set of size-change graphs:
XA(b(x)) → XA(x)
XA(a(x)) → XA(x)
XA(c(x)) → XA(x)
XA(d(x)) → XA(x)
Xa(a(x)) → a(Xa(x))
Xa(b(x)) → b(Xa(x))
Xa(c(x)) → c(Xa(x))
Xa(d(x)) → d(Xa(x))
Xb(a(x)) → a(Xb(x))
Xb(b(x)) → b(Xb(x))
Xb(c(x)) → c(Xb(x))
Xb(d(x)) → d(Xb(x))
Xc(a(x)) → a(Xc(x))
Xc(b(x)) → b(Xc(x))
Xc(c(x)) → c(Xc(x))
Xc(d(x)) → d(Xc(x))
Xd(a(x)) → a(Xd(x))
Xd(b(x)) → b(Xd(x))
Xd(c(x)) → c(Xd(x))
Xd(d(x)) → d(Xd(x))
L(a(x)) → Ya(L(x))
L(b(x)) → Yb(L(x))
L(c(x)) → Yc(L(x))
L(d(x)) → Yd(L(x))
Ya(D(x)) → D(a(x))
Yb(D(x)) → D(b(x))
Yc(D(x)) → D(c(x))
Yd(D(x)) → D(d(x))
Xa(a(x0))
Xa(b(x0))
Xa(c(x0))
Xa(d(x0))
Xb(a(x0))
Xb(b(x0))
Xb(c(x0))
Xb(d(x0))
Xc(a(x0))
Xc(b(x0))
Xc(c(x0))
Xc(d(x0))
Xd(a(x0))
Xd(b(x0))
Xd(c(x0))
Xd(d(x0))
L(a(x0))
L(b(x0))
L(c(x0))
L(d(x0))
Ya(D(x0))
Yb(D(x0))
Yc(D(x0))
Yd(D(x0))
XA(b(x)) → XA(x)
XA(a(x)) → XA(x)
XA(c(x)) → XA(x)
XA(d(x)) → XA(x)
Xa(a(x0))
Xa(b(x0))
Xa(c(x0))
Xa(d(x0))
Xb(a(x0))
Xb(b(x0))
Xb(c(x0))
Xb(d(x0))
Xc(a(x0))
Xc(b(x0))
Xc(c(x0))
Xc(d(x0))
Xd(a(x0))
Xd(b(x0))
Xd(c(x0))
Xd(d(x0))
L(a(x0))
L(b(x0))
L(c(x0))
L(d(x0))
Ya(D(x0))
Yb(D(x0))
Yc(D(x0))
Yd(D(x0))
Xa(a(x0))
Xa(b(x0))
Xa(c(x0))
Xa(d(x0))
Xb(a(x0))
Xb(b(x0))
Xb(c(x0))
Xb(d(x0))
Xc(a(x0))
Xc(b(x0))
Xc(c(x0))
Xc(d(x0))
Xd(a(x0))
Xd(b(x0))
Xd(c(x0))
Xd(d(x0))
L(a(x0))
L(b(x0))
L(c(x0))
L(d(x0))
Ya(D(x0))
Yb(D(x0))
Yc(D(x0))
Yd(D(x0))
XA(b(x)) → XA(x)
XA(a(x)) → XA(x)
XA(c(x)) → XA(x)
XA(d(x)) → XA(x)
From the DPs we obtained the following set of size-change graphs: