YES Termination Proof

Termination Proof

by ttt2 (version ttt2 1.15)

Input

The rewrite relation of the following TRS is considered.

begin(end(x0)) rewrite(end(x0))
begin(a(x0)) rotate(cut(Ca(guess(x0))))
begin(b(x0)) rotate(cut(Cb(guess(x0))))
begin(c(x0)) rotate(cut(Cc(guess(x0))))
begin(d(x0)) rotate(cut(Cd(guess(x0))))
guess(a(x0)) Ca(guess(x0))
guess(b(x0)) Cb(guess(x0))
guess(c(x0)) Cc(guess(x0))
guess(d(x0)) Cd(guess(x0))
guess(a(x0)) moveleft(Ba(wait(x0)))
guess(b(x0)) moveleft(Bb(wait(x0)))
guess(c(x0)) moveleft(Bc(wait(x0)))
guess(d(x0)) moveleft(Bd(wait(x0)))
guess(end(x0)) finish(end(x0))
Ca(moveleft(Ba(x0))) moveleft(Ba(Aa(x0)))
Cb(moveleft(Ba(x0))) moveleft(Ba(Ab(x0)))
Cc(moveleft(Ba(x0))) moveleft(Ba(Ac(x0)))
Cd(moveleft(Ba(x0))) moveleft(Ba(Ad(x0)))
Ca(moveleft(Bb(x0))) moveleft(Bb(Aa(x0)))
Cb(moveleft(Bb(x0))) moveleft(Bb(Ab(x0)))
Cc(moveleft(Bb(x0))) moveleft(Bb(Ac(x0)))
Cd(moveleft(Bb(x0))) moveleft(Bb(Ad(x0)))
Ca(moveleft(Bc(x0))) moveleft(Bc(Aa(x0)))
Cb(moveleft(Bc(x0))) moveleft(Bc(Ab(x0)))
Cc(moveleft(Bc(x0))) moveleft(Bc(Ac(x0)))
Cd(moveleft(Bc(x0))) moveleft(Bc(Ad(x0)))
Ca(moveleft(Bd(x0))) moveleft(Bd(Aa(x0)))
Cb(moveleft(Bd(x0))) moveleft(Bd(Ab(x0)))
Cc(moveleft(Bd(x0))) moveleft(Bd(Ac(x0)))
Cd(moveleft(Bd(x0))) moveleft(Bd(Ad(x0)))
cut(moveleft(Ba(x0))) Da(cut(goright(x0)))
cut(moveleft(Bb(x0))) Db(cut(goright(x0)))
cut(moveleft(Bc(x0))) Dc(cut(goright(x0)))
cut(moveleft(Bd(x0))) Dd(cut(goright(x0)))
goright(Aa(x0)) Ca(goright(x0))
goright(Ab(x0)) Cb(goright(x0))
goright(Ac(x0)) Cc(goright(x0))
goright(Ad(x0)) Cd(goright(x0))
goright(wait(a(x0))) moveleft(Ba(wait(x0)))
goright(wait(b(x0))) moveleft(Bb(wait(x0)))
goright(wait(c(x0))) moveleft(Bc(wait(x0)))
goright(wait(d(x0))) moveleft(Bd(wait(x0)))
goright(wait(end(x0))) finish(end(x0))
Ca(finish(x0)) finish(a(x0))
Cb(finish(x0)) finish(b(x0))
Cc(finish(x0)) finish(c(x0))
Cd(finish(x0)) finish(d(x0))
cut(finish(x0)) finish2(x0)
Da(finish2(x0)) finish2(a(x0))
Db(finish2(x0)) finish2(b(x0))
Dc(finish2(x0)) finish2(c(x0))
Dd(finish2(x0)) finish2(d(x0))
rotate(finish2(x0)) rewrite(x0)
rewrite(a(a(x0))) begin(b(b(b(x0))))
rewrite(b(b(x0))) begin(c(c(c(x0))))
rewrite(c(c(x0))) begin(d(d(d(x0))))
rewrite(b(x0)) begin(d(d(x0)))
rewrite(c(d(d(x0)))) begin(a(x0))

Proof

1 Rule Removal

Using the linear polynomial interpretation over the arctic semiring over the integers
[Bc(x1)] = 3 · x1 + -∞
[guess(x1)] = 0 · x1 + -∞
[Ba(x1)] = 11 · x1 + -∞
[b(x1)] = 9 · x1 + -∞
[begin(x1)] = 0 · x1 + -∞
[a(x1)] = 14 · x1 + -∞
[moveleft(x1)] = 3 · x1 + -∞
[Aa(x1)] = 14 · x1 + -∞
[Da(x1)] = 14 · x1 + -∞
[Bd(x1)] = 1 · x1 + -∞
[Bb(x1)] = 6 · x1 + -∞
[Db(x1)] = 9 · x1 + -∞
[Ab(x1)] = 9 · x1 + -∞
[Dc(x1)] = 6 · x1 + -∞
[Ca(x1)] = 14 · x1 + -∞
[c(x1)] = 6 · x1 + -∞
[end(x1)] = 8 · x1 + -∞
[rotate(x1)] = 0 · x1 + -∞
[finish(x1)] = 0 · x1 + -∞
[goright(x1)] = 0 · x1 + -∞
[finish2(x1)] = 0 · x1 + -∞
[wait(x1)] = 0 · x1 + -∞
[d(x1)] = 4 · x1 + -∞
[Ac(x1)] = 6 · x1 + -∞
[Ad(x1)] = 4 · x1 + -∞
[Cc(x1)] = 6 · x1 + -∞
[Cb(x1)] = 9 · x1 + -∞
[Cd(x1)] = 4 · x1 + -∞
[cut(x1)] = 0 · x1 + -∞
[Dd(x1)] = 4 · x1 + -∞
[rewrite(x1)] = 0 · x1 + -∞
the rules
begin(end(x0)) rewrite(end(x0))
begin(a(x0)) rotate(cut(Ca(guess(x0))))
begin(b(x0)) rotate(cut(Cb(guess(x0))))
begin(c(x0)) rotate(cut(Cc(guess(x0))))
begin(d(x0)) rotate(cut(Cd(guess(x0))))
guess(a(x0)) Ca(guess(x0))
guess(b(x0)) Cb(guess(x0))
guess(c(x0)) Cc(guess(x0))
guess(d(x0)) Cd(guess(x0))
guess(a(x0)) moveleft(Ba(wait(x0)))
guess(b(x0)) moveleft(Bb(wait(x0)))
guess(c(x0)) moveleft(Bc(wait(x0)))
guess(d(x0)) moveleft(Bd(wait(x0)))
guess(end(x0)) finish(end(x0))
Ca(moveleft(Ba(x0))) moveleft(Ba(Aa(x0)))
Cb(moveleft(Ba(x0))) moveleft(Ba(Ab(x0)))
Cc(moveleft(Ba(x0))) moveleft(Ba(Ac(x0)))
Cd(moveleft(Ba(x0))) moveleft(Ba(Ad(x0)))
Ca(moveleft(Bb(x0))) moveleft(Bb(Aa(x0)))
Cb(moveleft(Bb(x0))) moveleft(Bb(Ab(x0)))
Cc(moveleft(Bb(x0))) moveleft(Bb(Ac(x0)))
Cd(moveleft(Bb(x0))) moveleft(Bb(Ad(x0)))
Ca(moveleft(Bc(x0))) moveleft(Bc(Aa(x0)))
Cb(moveleft(Bc(x0))) moveleft(Bc(Ab(x0)))
Cc(moveleft(Bc(x0))) moveleft(Bc(Ac(x0)))
Cd(moveleft(Bc(x0))) moveleft(Bc(Ad(x0)))
Ca(moveleft(Bd(x0))) moveleft(Bd(Aa(x0)))
Cb(moveleft(Bd(x0))) moveleft(Bd(Ab(x0)))
Cc(moveleft(Bd(x0))) moveleft(Bd(Ac(x0)))
Cd(moveleft(Bd(x0))) moveleft(Bd(Ad(x0)))
cut(moveleft(Ba(x0))) Da(cut(goright(x0)))
cut(moveleft(Bb(x0))) Db(cut(goright(x0)))
cut(moveleft(Bc(x0))) Dc(cut(goright(x0)))
cut(moveleft(Bd(x0))) Dd(cut(goright(x0)))
goright(Aa(x0)) Ca(goright(x0))
goright(Ab(x0)) Cb(goright(x0))
goright(Ac(x0)) Cc(goright(x0))
goright(Ad(x0)) Cd(goright(x0))
goright(wait(a(x0))) moveleft(Ba(wait(x0)))
goright(wait(b(x0))) moveleft(Bb(wait(x0)))
goright(wait(c(x0))) moveleft(Bc(wait(x0)))
goright(wait(d(x0))) moveleft(Bd(wait(x0)))
goright(wait(end(x0))) finish(end(x0))
Ca(finish(x0)) finish(a(x0))
Cb(finish(x0)) finish(b(x0))
Cc(finish(x0)) finish(c(x0))
Cd(finish(x0)) finish(d(x0))
cut(finish(x0)) finish2(x0)
Da(finish2(x0)) finish2(a(x0))
Db(finish2(x0)) finish2(b(x0))
Dc(finish2(x0)) finish2(c(x0))
Dd(finish2(x0)) finish2(d(x0))
rotate(finish2(x0)) rewrite(x0)
rewrite(b(b(x0))) begin(c(c(c(x0))))
rewrite(c(c(x0))) begin(d(d(d(x0))))
rewrite(c(d(d(x0)))) begin(a(x0))
remain.

1.1 Rule Removal

Using the linear polynomial interpretation over the arctic semiring over the integers
[Bc(x1)] = 8 · x1 + -∞
[guess(x1)] = 0 · x1 + -∞
[Ba(x1)] = 0 · x1 + -∞
[b(x1)] = 13 · x1 + -∞
[begin(x1)] = 2 · x1 + -∞
[a(x1)] = 0 · x1 + -∞
[moveleft(x1)] = 0 · x1 + -∞
[Aa(x1)] = 0 · x1 + -∞
[Da(x1)] = 0 · x1 + -∞
[Bd(x1)] = 1 · x1 + -∞
[Bb(x1)] = 13 · x1 + -∞
[Db(x1)] = 13 · x1 + -∞
[Ab(x1)] = 13 · x1 + -∞
[Dc(x1)] = 8 · x1 + -∞
[Ca(x1)] = 0 · x1 + -∞
[c(x1)] = 8 · x1 + -∞
[end(x1)] = 0 · x1 + -∞
[rotate(x1)] = 0 · x1 + -∞
[finish(x1)] = 0 · x1 + -∞
[goright(x1)] = 0 · x1 + -∞
[finish2(x1)] = 0 · x1 + -∞
[wait(x1)] = 0 · x1 + -∞
[d(x1)] = 1 · x1 + -∞
[Ac(x1)] = 8 · x1 + -∞
[Ad(x1)] = 1 · x1 + -∞
[Cc(x1)] = 8 · x1 + -∞
[Cb(x1)] = 13 · x1 + -∞
[Cd(x1)] = 1 · x1 + -∞
[cut(x1)] = 2 · x1 + -∞
[Dd(x1)] = 1 · x1 + -∞
[rewrite(x1)] = 0 · x1 + -∞
the rules
begin(a(x0)) rotate(cut(Ca(guess(x0))))
begin(b(x0)) rotate(cut(Cb(guess(x0))))
begin(c(x0)) rotate(cut(Cc(guess(x0))))
begin(d(x0)) rotate(cut(Cd(guess(x0))))
guess(a(x0)) Ca(guess(x0))
guess(b(x0)) Cb(guess(x0))
guess(c(x0)) Cc(guess(x0))
guess(d(x0)) Cd(guess(x0))
guess(a(x0)) moveleft(Ba(wait(x0)))
guess(b(x0)) moveleft(Bb(wait(x0)))
guess(c(x0)) moveleft(Bc(wait(x0)))
guess(d(x0)) moveleft(Bd(wait(x0)))
guess(end(x0)) finish(end(x0))
Ca(moveleft(Ba(x0))) moveleft(Ba(Aa(x0)))
Cb(moveleft(Ba(x0))) moveleft(Ba(Ab(x0)))
Cc(moveleft(Ba(x0))) moveleft(Ba(Ac(x0)))
Cd(moveleft(Ba(x0))) moveleft(Ba(Ad(x0)))
Ca(moveleft(Bb(x0))) moveleft(Bb(Aa(x0)))
Cb(moveleft(Bb(x0))) moveleft(Bb(Ab(x0)))
Cc(moveleft(Bb(x0))) moveleft(Bb(Ac(x0)))
Cd(moveleft(Bb(x0))) moveleft(Bb(Ad(x0)))
Ca(moveleft(Bc(x0))) moveleft(Bc(Aa(x0)))
Cb(moveleft(Bc(x0))) moveleft(Bc(Ab(x0)))
Cc(moveleft(Bc(x0))) moveleft(Bc(Ac(x0)))
Cd(moveleft(Bc(x0))) moveleft(Bc(Ad(x0)))
Ca(moveleft(Bd(x0))) moveleft(Bd(Aa(x0)))
Cb(moveleft(Bd(x0))) moveleft(Bd(Ab(x0)))
Cc(moveleft(Bd(x0))) moveleft(Bd(Ac(x0)))
Cd(moveleft(Bd(x0))) moveleft(Bd(Ad(x0)))
cut(moveleft(Ba(x0))) Da(cut(goright(x0)))
cut(moveleft(Bb(x0))) Db(cut(goright(x0)))
cut(moveleft(Bc(x0))) Dc(cut(goright(x0)))
cut(moveleft(Bd(x0))) Dd(cut(goright(x0)))
goright(Aa(x0)) Ca(goright(x0))
goright(Ab(x0)) Cb(goright(x0))
goright(Ac(x0)) Cc(goright(x0))
goright(Ad(x0)) Cd(goright(x0))
goright(wait(a(x0))) moveleft(Ba(wait(x0)))
goright(wait(b(x0))) moveleft(Bb(wait(x0)))
goright(wait(c(x0))) moveleft(Bc(wait(x0)))
goright(wait(d(x0))) moveleft(Bd(wait(x0)))
goright(wait(end(x0))) finish(end(x0))
Ca(finish(x0)) finish(a(x0))
Cb(finish(x0)) finish(b(x0))
Cc(finish(x0)) finish(c(x0))
Cd(finish(x0)) finish(d(x0))
Da(finish2(x0)) finish2(a(x0))
Db(finish2(x0)) finish2(b(x0))
Dc(finish2(x0)) finish2(c(x0))
Dd(finish2(x0)) finish2(d(x0))
rotate(finish2(x0)) rewrite(x0)
rewrite(b(b(x0))) begin(c(c(c(x0))))
remain.

1.1.1 Rule Removal

Using the linear polynomial interpretation over the arctic semiring over the integers
[Bc(x1)] = 0 · x1 + -∞
[guess(x1)] = 0 · x1 + -∞
[Ba(x1)] = 0 · x1 + -∞
[b(x1)] = 0 · x1 + -∞
[begin(x1)] = 4 · x1 + -∞
[a(x1)] = 0 · x1 + -∞
[moveleft(x1)] = 0 · x1 + -∞
[Aa(x1)] = 0 · x1 + -∞
[Da(x1)] = 0 · x1 + -∞
[Bd(x1)] = 14 · x1 + -∞
[Bb(x1)] = 0 · x1 + -∞
[Db(x1)] = 0 · x1 + -∞
[Ab(x1)] = 0 · x1 + -∞
[Dc(x1)] = 0 · x1 + -∞
[Ca(x1)] = 0 · x1 + -∞
[c(x1)] = 0 · x1 + -∞
[end(x1)] = 0 · x1 + -∞
[rotate(x1)] = 0 · x1 + -∞
[finish(x1)] = 0 · x1 + -∞
[goright(x1)] = 0 · x1 + -∞
[finish2(x1)] = 8 · x1 + -∞
[wait(x1)] = 0 · x1 + -∞
[d(x1)] = 14 · x1 + -∞
[Ac(x1)] = 0 · x1 + -∞
[Ad(x1)] = 14 · x1 + -∞
[Cc(x1)] = 0 · x1 + -∞
[Cb(x1)] = 0 · x1 + -∞
[Cd(x1)] = 14 · x1 + -∞
[cut(x1)] = 3 · x1 + -∞
[Dd(x1)] = 14 · x1 + -∞
[rewrite(x1)] = 5 · x1 + -∞
the rules
guess(a(x0)) Ca(guess(x0))
guess(b(x0)) Cb(guess(x0))
guess(c(x0)) Cc(guess(x0))
guess(d(x0)) Cd(guess(x0))
guess(a(x0)) moveleft(Ba(wait(x0)))
guess(b(x0)) moveleft(Bb(wait(x0)))
guess(c(x0)) moveleft(Bc(wait(x0)))
guess(d(x0)) moveleft(Bd(wait(x0)))
guess(end(x0)) finish(end(x0))
Ca(moveleft(Ba(x0))) moveleft(Ba(Aa(x0)))
Cb(moveleft(Ba(x0))) moveleft(Ba(Ab(x0)))
Cc(moveleft(Ba(x0))) moveleft(Ba(Ac(x0)))
Cd(moveleft(Ba(x0))) moveleft(Ba(Ad(x0)))
Ca(moveleft(Bb(x0))) moveleft(Bb(Aa(x0)))
Cb(moveleft(Bb(x0))) moveleft(Bb(Ab(x0)))
Cc(moveleft(Bb(x0))) moveleft(Bb(Ac(x0)))
Cd(moveleft(Bb(x0))) moveleft(Bb(Ad(x0)))
Ca(moveleft(Bc(x0))) moveleft(Bc(Aa(x0)))
Cb(moveleft(Bc(x0))) moveleft(Bc(Ab(x0)))
Cc(moveleft(Bc(x0))) moveleft(Bc(Ac(x0)))
Cd(moveleft(Bc(x0))) moveleft(Bc(Ad(x0)))
Ca(moveleft(Bd(x0))) moveleft(Bd(Aa(x0)))
Cb(moveleft(Bd(x0))) moveleft(Bd(Ab(x0)))
Cc(moveleft(Bd(x0))) moveleft(Bd(Ac(x0)))
Cd(moveleft(Bd(x0))) moveleft(Bd(Ad(x0)))
cut(moveleft(Ba(x0))) Da(cut(goright(x0)))
cut(moveleft(Bb(x0))) Db(cut(goright(x0)))
cut(moveleft(Bc(x0))) Dc(cut(goright(x0)))
cut(moveleft(Bd(x0))) Dd(cut(goright(x0)))
goright(Aa(x0)) Ca(goright(x0))
goright(Ab(x0)) Cb(goright(x0))
goright(Ac(x0)) Cc(goright(x0))
goright(Ad(x0)) Cd(goright(x0))
goright(wait(a(x0))) moveleft(Ba(wait(x0)))
goright(wait(b(x0))) moveleft(Bb(wait(x0)))
goright(wait(c(x0))) moveleft(Bc(wait(x0)))
goright(wait(d(x0))) moveleft(Bd(wait(x0)))
goright(wait(end(x0))) finish(end(x0))
Ca(finish(x0)) finish(a(x0))
Cb(finish(x0)) finish(b(x0))
Cc(finish(x0)) finish(c(x0))
Cd(finish(x0)) finish(d(x0))
Da(finish2(x0)) finish2(a(x0))
Db(finish2(x0)) finish2(b(x0))
Dc(finish2(x0)) finish2(c(x0))
Dd(finish2(x0)) finish2(d(x0))
remain.

1.1.1.1 Rule Removal

Using the Knuth Bendix order with w0 = 1 and the following precedence and weight function
prec(finish2) = 0 weight(finish2) = 1
prec(Dd) = 2 weight(Dd) = 1
prec(Dc) = 1 weight(Dc) = 1
prec(Db) = 2 weight(Db) = 1
prec(Da) = 2 weight(Da) = 1
prec(goright) = 2 weight(goright) = 1
prec(Ad) = 0 weight(Ad) = 1
prec(Ac) = 0 weight(Ac) = 1
prec(Ab) = 0 weight(Ab) = 1
prec(Aa) = 0 weight(Aa) = 1
prec(finish) = 0 weight(finish) = 1
prec(Bd) = 0 weight(Bd) = 1
prec(Bc) = 0 weight(Bc) = 1
prec(Bb) = 0 weight(Bb) = 1
prec(moveleft) = 0 weight(moveleft) = 1
prec(Ba) = 0 weight(Ba) = 1
prec(wait) = 11 weight(wait) = 0
prec(Cd) = 1 weight(Cd) = 1
prec(d) = 0 weight(d) = 1
prec(Cc) = 1 weight(Cc) = 1
prec(c) = 0 weight(c) = 1
prec(Cb) = 1 weight(Cb) = 1
prec(b) = 0 weight(b) = 1
prec(cut) = 3 weight(cut) = 1
prec(Ca) = 1 weight(Ca) = 1
prec(guess) = 4 weight(guess) = 1
prec(a) = 0 weight(a) = 1
prec(end) = 0 weight(end) = 1
all rules could be removed.

1.1.1.1.1 R is empty

There are no rules in the TRS. Hence, it is terminating.